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Abstract—In collaborative environments, members may try to acquire similar information on the web in order to gain knowledge in one

domain. For example, in a company several departments may successively need to buy business intelligence software and employees

from these departments may have studied online about different business intelligence tools and their features independently. It will be

productive to get them connected and share learned knowledge. We investigate fine-grained knowledge sharing in collaborative

environments. We propose to analyze members’ web surfing data to summarize the fine-grained knowledge acquired by them.

A two-step framework is proposed for mining fine-grained knowledge: (1) web surfing data is clustered into tasks by a nonparametric

generative model; (2) a novel discriminative infinite Hidden Markov Model is developed to mine fine-grained aspects in each task.

Finally, the classic expert search method is applied to the mined results to find proper members for knowledge sharing. Experiments on

web surfing data collected from our lab at UCSB and IBM show that the fine-grained aspect mining framework works as expected and

outperforms baselines. When it is integrated with expert search, the search accuracy improves significantly, in comparison with

applying the classic expert search method directly on web surfing data.

Index Terms—Advisor search, text mining, Dirichlet processes, graphical models

Ç

1 INTRODUCTION

INTERACTING with the web and with colleagues/friends to
acquire information is a daily routine of many human

beings. In a collaborative environment, it could be common
that members try to acquire similar information on the web
in order to gain specific knowledge in one domain. For
example, in a company several departments may succes-
sively need to buy business intelligence (BI) software, and
employees from these departments may have studied
online about different BI tools and their features indepen-
dently. In a research lab, members are often focused on
projects which require similar background knowledge. A
researcher may want to solve a data mining problem using
nonparametric graphical models which she is not familiar
with but have been studied by another researcher before.
In these cases, resorting to a right person could be far more
efficient than studying by oneself, since people can provide
digested information, insights and live interactions, com-
pared to the web. For the first scenario, it is more produc-
tive for an employee to get advices on the choices of BI
tools and explanations of their features from experienced
employees; for the second scenario, the first researcher
could get suggestions on model design and good learning

materials from the second researcher. Most people in
collaborative environments would be happy to share expe-
riences with and give suggestions to others on specific
problems. However, finding a right person is challenging
due to the variety of information needs. In this paper, we
investigate how to enable such knowledge sharing mecha-
nism by analyzing user data.

An illustrative toy example is given in Fig. 1. One can
use “tcpdump” to intercept a sequence of web surfing
activities (IP packets) for each member. The scene is, Alice
starts to surf the web and wants to learn how to develop a
Java multithreading program, which has already been stud-
ied by Bob (red rectangle). In this case, it might be a good
idea to consult Bob, rather than studying by herself. We
aim to provide such recommendations by analyzing surfing
activities automatically. In this example, not necessarily
Bob is an expert in every aspect of Java programming; how-
ever, due to his significant surfing activities in Java multi-
threading, it is reasonable to assume that he has gained
enough knowledge in this area so that he can help Alice (in
practice we could set a threshold on the amount of related
surfing data to test significance). Even if Bob is still learn-
ing, he could share his experiences in learning and possibly
suggest good learning materials to Alice, thus saving
Alice’s effort and time.

This scenario departs from the traditional expert search
problem in that expert search aims to find domain experts
based on their associated documents in an enterprise
repository, while our goal is to find proper “advisors” who
are most likely possessing the desired piece of fine-grained
knowledge based on their web surfing activities. The seman-
tic structures hidden in web surfing (as illustrated by Fig. 1)
reflect people’s knowledge acquisition process and make
web surfing data significantly different from enterprise
repositories. Traditional expert search methods may not be
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able to well handle the web surfing data. For example, in the
above example John spent a lot of effort on “Java IO” which
is only partially relevant to Alice’s need. If we simply treat
web surfing data as a collection of documents and apply
traditional expert search methods, John would be ranked
higher than Bob since he viewed more contents about
“Java”, though not quite relevant. We will analyze this
issue in detail in Section 6 and demonstrate it empirically in
Section 7.2. Therefore, it is necessary to first summarize peo-
ple’s fine-grained knowledge reflected in their web surfing
activities by recognizing the semantic structures, and then
search over the mined pieces of fine-grained knowledge
(e.g. “Java IO”). We call this search scenario, “advisor
search”, to differentiate from traditional expert search. We
use the term advisor search to emphasize that the knowl-
edge of the retrieved people might not be very deep, but
good enough to help others if they have not solidly gained
the related knowledge yet.

In order to analyze the knowledge acquired by web
users, we propose to log and analyze users’ web surfing
data (not only search, but also browsing activities, which
reveal a user’s knowledge gaining process). Users’ interac-
tions with the web can be segmented into different “tasks”,
e.g., “learning Java” and “shopping”. Textual contents of a
task are usually cohesive. We define a session (a document
in Fig. 1) as an aggregation of consecutively browsed web
contents of a user that belong to the same task. Sessions
are atomic units in our analysis. The content of sessions in
a task could evolve gradually: people usually learn basic
concepts first and then move towards advanced topics. A
task can be further decomposed into fine-grained aspects
(called micro-aspects). A micro-aspect could be roughly
defined as a significantly more cohesive subset of sessions
in a task. For example, the task “learning Java” might con-
tain “Java IO” and “Java multithreading” as two micro-
aspects. When pursuing a task, a user could spend many
sessions on a micro-aspect. Mining these micro-aspects
(micro-knowledge) is critical: it can provide a detailed
description of the knowledge gained by a person, which is
the basis for advisor search.

We propose a two-step framework for mining fine-
grained knowledge (micro-aspects): (1) In the first step, we
formulate tasks from sessions. We design an infinite
Gaussian mixture model based on Dirichlet Process (DP)
[12] to cluster sessions. We adopt a nonparametric scheme
since the number of tasks is difficult to predict. (2) We
then extract micro-aspects from sessions in each task. The

challenges are: the number of micro-aspects in a task is
unknown; sessions for different micro-aspects of a task are
textually similar; sessions for a micro-aspect might not be
consecutive. To this end, a novel discriminative infinite
Hidden Markov Model (d-iHMM) is proposed to mine
micro-aspects and evolution patterns (if any) in each task. A
background model is introduced in order to enhance the
discriminative power. Finally, we apply a language model
based expert search method [1] over the mined micro-
aspects for advisor search.

To our knowledge, there is no existing techniques for
micro-aspect mining. Although the hierarchical topic
modeling algorithm [5] can discover general-to-specific
topic hierarchies, it decomposes sessions into topics but not
groups them. A person with many sessions containing
partially relevant topics would still be ranked unexpectedly
high (like the “John vs. Bob” problem aforementioned). Our
goal is to detect people’s online learning activities (e.g.
learning “Java IO”) in session data reflected by subsets of
sessions, rather than discerning topics hierarchically in
sessions (e.g. “Java” with “IO” as its subtopic). Mining the
semantic structures in sessions (Fig. 1) is important for
advisor search, as will be shown in Section 6.

The proposed two-step framework intrinsically groups
sessions into micro-aspects in a coarse-to-fine fashion,
which bears some similarity to hierarchical clustering
[30]. However, traditional hierarchical clustering methods
could not handle session data well. This is because people
usually go to the same website for different micro-aspects
of a task. For example, researchers could commonly use
Google Scholar1 to look for papers related to Clustering.
Two micro-aspects, “spectral clustering” and “density-
based clustering”, can be difficult to separate since there
are a lot of background contents in their sessions, e.g.
navigational texts, template texts, etc. These background
contents can drastically blur the boundary between the
two micro-aspects, considering they are already similar.
Hence, traditional hierarchical clustering methods could
easily mess up micro-aspects of a task, while the proposed
d-iHMM model can better separate different micro-
aspects since it models the background contents explicitly.
The experimental results verify our analysis: d-iHMM
does better than iHMM [2] (which can be approximately
regarded as clustering sessions into micro-aspects without
background modeling) in micro-aspect mining.

The contributions of this work are summarized as
follows. (1) We propose the fine-grained knowledge sharing
problem in collaborative environments. The goal is not find-
ing domain experts but a person who has the desired
specific knowledge. This problem is significant in practice
in that learning from an advisor (if she/he is easy to find)
might be more efficient than studying on the web (though
not always). A lot of repeating efforts could be saved. (2)
We propose to solve this problem by first summarizing web
surfing data into fine-grained aspects, and then search over
these aspects. We compare this strategy with searching
advisors directly over sessions (i.e. applying traditional
expert search methods on web surfing data directly) both
analytically (Section 6) and empirically (Section 7.2). (3) We

Fig. 1. An illustrative toy example for knowledge sharing in a collabora-
tive environment.

1. http://scholar.google.com
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propose a novel two-step micro-aspect mining framework
consisting of two nonparametric DP models. This frame-
work does not require pre-specified number of tasks and
number of micro-aspects of a task, and can correctly
summarize sessions into micro-aspects by explicitly model-
ing background contents in sessions of a task. (4) We collect
real user-generated web surfing data at our lab and at IBM
to test the feasibility of our idea. Experiments on both data-
sets show that our scheme is effective and outperforms the
one using raw session data. We also show the proposed
DP models work as expected and achieve better perfor-
mance than baseline methods. Certainly, the selection of
these algorithms is not unique. Through this study, we
demonstrate the possibility of finding right persons auto-
matically by analyzing their web surfing data.

The rest of the paper is organized as follows: the next
section outlines related work. Section 3 gives the problem
formulation. In Section 4 we present the Gaussian DP
model for clustering sessions into tasks. Section 5 describes
the proposed d-iHMM model for mining fine-grained
aspects in each task (i.e. session cluster), followed by a dis-
cussion of the advisor search method based on the mined
micro-aspects and a detailed analytical comparison to
searching directly over sessions in Section 6. Experiments
are described in Section 7, and finally, Section 8 concludes
our work.

2 RELATED WORK

In this section we review research fields that are related to
our work: expert search, analysis of user search tasks and
topic modeling.

2.1 Expert Search

Expert search aims at retrieving people who have expertise
on the given query topic. Early approaches involve building
a knowledge base which contains the descriptions of
people’s skills within an organization [8]. Expert search
became a hot research area since the start of the TREC enter-
prise track [9] in 2005. Balog et al. proposed a language
model framework [1] for expert search. Their Model 2 is a
document-centric approach which first computes the rele-
vance of documents to a query and then accumulates for
each candidate the relevance scores of the documents that
are associated with the candidate. This process was
formulated in a generative probabilistic model. Balog et al.
showed that Model 2 performed better [1] and it became
one of the most prominent methods for expert search. Other
methods have been proposed for enterprise expert search
(e.g. [11], [24]), but the nature of these methods is still
accumulating relevance scores of associated documents to
candidates. Expert retrieval in other scenarios has also been
studied, e.g. online question answering communities [19],
academic society [10].

The proposed advisor search problem is different from
traditional expert search. (1) Advisor search is dedicated to
retrieving people who are most likely possessing the
desired piece of fine-grained knowledge, while traditional
expert search does not explicitly take this goal. (2) The criti-
cal difference lies in the data, i.e. sessions are significantly
different from documents in enterprise repositories. A

person typically generates multiple sessions for a micro-
aspect of a task, e.g. a person could spend many sessions
learning about Java multithreading skills. In other words,
the uniqueness of sessions is that they contain semantic structures
which reflect people’s knowledge acquisition process. If we treat
sessions as documents in an enterprise repository and apply
the traditional expert search methods (e.g. [1]), we could get
incorrect ranking: due to the accumulation nature of
traditional methods, a candidate who generated a lot of
marginally relevant sessions (same task but other micro-
aspects) will be ranked higher than the one who generated
less but highly relevant sessions, e.g. John vs. Bob in Fig. 1
for the query “Java multi-thread programming” (Section 6
will provide a detailed analysis of this issue). Therefore, it
is important to recognize the semantic structures and
summarize the session data into micro-aspects so that we
can find the desired advisor accurately. In this paper we
develop nonparametric generative models to mine micro-
aspects and show the superiority of our search scheme over
the simple idea of applying traditional expert search
methods on session data directly.

2.2 Analysis of Search Tasks

Recently, researchers have focused on detecting, modeling
and analyzing user search tasks from query logs. Here we
name some representative works. Jones and Klinkner
found that search tasks are interleaved and used classifiers
to segment the sequence of user queries into tasks [15]. Liu
and Belkin combined task stage and task type with dwell
time to predict the usefulness of a result document, using
a three-stage and two-type controlled experiment [18]. Ji
et al. used graph regularization to identify search tasks in
query logs [14]. Kotov et al. designed classifiers to identify
same-task queries for a given query and to predict whether
a user will resume a task [16]. Wang et al. formulated the
cross-session search task mining problem as a semi-super-
vised clustering problem where the dependency structure
among queries in a search task was explicitly modeled and
a set of automatic annotation rules were proposed as weak
supervision [28].

This line of research tries to recover tasks from people’s
search behaviors and bears some similarity to our work.
Nevertheless, our work differs from theirs from the follow-
ing aspects. First, we consider general web surfing contents
(including search), rather than search engine query logs.
Query logs do not record the subsequent surfing activity
after the user clicked a relevant search result. Moreover, it is
found that 50 percent of a user’s online pageviews are
content browsing [17]. Web surfing data provides more
comprehensive information about the knowledge gaining
activities of users. Although various methods were
proposed for extracting search tasks in query logs, these
methods cannot be applied in our setting since they exploit
query log specific properties. Second, none of the above
works tried to mine fine-grained aspects for each task.
When studying, people could spend some effort on one
fine-grained aspect of a task and generate multiple contents.
Summarizing fine-grained aspects can provide a fine-
grained description of the knowledge gained by a person.
Finally, none of existing works which analyze user online
behaviors (not limited to search behaviors, e.g. [29]) tried to
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address advisor search by exploiting the data generated
from users’ past online behaviors.

2.3 Topic Modeling

Topic modeling is a popular tool for analyzing topics in a
document collection. The most prevalent topic modeling
method is Latent Dirichlet Allocation (LDA) [7]. Based on
LDA, various topic modeling methods have been proposed,
e.g. the dynamic topic model for sequential data [6] and the
hierarchical topic model for building topic hierarchies [5].
The Hierarchical DP (HDP) model can also be instantiated
as a nonparametric version of LDA [25]. However, our
problem is not a topic modeling problem. Our goal is to
recover the semantic structures of people’s online learning
activities from their web surfing data, i.e. identifying groups
of sessions representing tasks (e.g. learning “Java”) and
micro-aspects (e.g. learning “Java multithreading”). While
topic modeling decomposes a document into topics. After
applying topic modeling methods on session data, it is still
difficult to find the right advisor by using the mined topics.
This is because a person with many sessions containing par-
tially relevant topics would still be ranked unexpectedly
high, due to the accumulation of relevance among sessions.
Grouping sessions into micro-aspects is important for
advisor search.

3 PROBLEM FORMULATION

We refer to a member in a collaborative environment
as a “candidate”. In our problem, we have a group of h
candidates fe1; . . . ; ehg where each candidate ei generates a

sequence of sessions WðiÞ ¼ fwðiÞ
1 ; . . . ; w

ðiÞ
Ni
g. For clarity, we

group sessions of different candidates together using a
uniform subscript index: W ¼ fw1; . . . ; wNg, with totally N
sessions. The fine-grained knowledge sharing problem
consists of three subproblems:

1) Partition W into a set of clusters C ¼ fC1; . . . ; Ctg
where each cluster represents a task;

2) Partition sessions in each Ci into a set of micro-
aspects Si ¼ fsi1; . . . ; sitig, where each micro-aspect

sij is a significantly more cohesive subset of sessions
from Ci.

3) Compute the association weight between ei and sjk

as jWðiÞT sjkj. Given a query q, produce a ranking of
feig according to their relevance to q assessed by the
relevance of the associated micro-asepcts and the
corresponding association weights.

4 SESSION CLUSTERING

The input of this step is W, where each wi is a D0 � 1 word
frequency vector with D0 as the vocabulary size. The intui-
tion is that contents generated for the same task are textu-
ally similar while those for different tasks are dissimilar.
Hence, clustering is a natural choice for recovering tasks
from sessions. In our case, it is difficult to preset the number
of tasks given a collection of sessions. Therefore, we need to
automatically determine the number of clusters (k), which
is also one of the most difficult problems in clustering
research. Most methods for automatically determining k

run the clustering algorithm with different values of k and
choose the best one according to a predefined criterion [13],
which could be costly. In Spectral Clustering, a heuristic
for determining k is to search for a significant raise in the
magnitude of the eigenvalues [27]. However, this does not
work in our context since the web contents are so noisy
that eigenvalues start to raise gradually from the second
smallest eigenvalue. In this work, we advocate using a gen-
erative model with a Dirichlet Process prior [12] for cluster-
ing. DPs provide nonparametric priors for k and the
most likely k is learned automatically. A DP, written as
G � DPða; G0Þ, can be interpreted as drawing components
(clusters here) from an infinite component pool, with a

called the scaling parameter and G0 being the prior for a
random component. An intuitive interpretation of DP is the
stick-breaking construction:

piðvÞ ¼ vi
Yi�1

j¼1

ð1� vjÞ; G ¼
X1
i¼1

pidci
;

where v ¼ fv1; v2; . . .g with each vi drawn from the Beta dis-
tribution Betað1;aÞ, ci is a component drawn from G0 and
dci

is an atom at ci. pi is the mixture weight of ci given by

breaking the current length of the “stick” (i.e.
Qi�1

j¼1ð1� vjÞ)
by the fraction vi. The generation of p is often written as
p � GEMðaÞ. p defines a prior mixing distribution among
the infinite many components. The posterior mixing
distribution and the real number of components drawn
from the DP is then learned from the data. Readers are
referred to [25] for a detailed description of DPs.

4.1 Clustering by GDP Mixture Model

When using probabilistic models for clustering, the Gauss-
ian mixture model is a common choice and can be viewed
as a probabilistic version of k-means [13]. However, the
data dimensionality D0 is too high to apply Gaussian distri-
butions in our case (often above 10K). Therefore, we first
apply the well-known Laplacian Eigenmap (LE) technique
[3] to reduce the dimensionality from D0 to D where
D0 � D. We choose LE since it could also capture the non-
linear manifold structure of a task, e.g. the topics of a task
could evolve and drift which could be described by the
“half-moon” structure [3].

Let Y ¼ fy1; . . . ; yNg denote the session vectors in the
subspace learned by LE. The graphical representation of
GDP is depicted in Fig. 2. The DP prior is represented by
the stick-breaking construction process, with fvkg1k¼1 and a

defined above. zi is an assignment variable of the mixture

Fig. 2. The graphical representation of the Gaussian Dirichlet Process
mixture model.
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component (i.e. cluster) with which yi is associated. mk and
�k are D� 1 vectors denoting the mean vector and the diag-
onal precision matrix’s diagonal vector of the kth Gaussian
component. This means each dimension of the data is
independent. fm0;b0; a0; b0g are the set of hyperparameters
for the Gaussian-Gamma conjugate prior of Gaussian
components. The generative process of GDP is as follows:

1) Draw vkja � Betað1;aÞ, k ¼ 1; 2; . . .
2) Draw �kjja0; b0 � Gammaða0; b0Þ, k ¼ 1; 2; . . . ; j ¼

1; . . . ; D
3) Draw mkjm0;b0; �k � Nðm0; ðb0D

�kÞ�1Þ, k ¼ 1; 2; . . .
4) For the ith session:

a) Draw zijv � MultðpðvÞÞ
b) Draw yijzi;m; � � Nðmzi

; ðD�zi Þ�1Þ:
Here Multð�Þ denotes the multinomial distribution. D�k is

a diagonal matrix with elements of �k on its diagonal.
The infinite Gaussian mixture model has already been

proposed and used for clustering. The overall design of our
model follows previous work, but with a different design
choice for the prior of �k. Previous models treat �k either as
the full precision matrix with a Wishart prior [23] or as a
scalar with a Gamma prior [21]. The former design choice is
able to model complicated cluster structures but the time
cost is high, while the modeling power of the latter one is
very limited. In our model, �k is a vector, meaning that
different dimensions are independent and have different
precisions. The reasons are: (1) the output of LE is the
orthogonal eigenvectors of a real symmetric matrix, which
means different dimensions are independent; (2) different
dimensions may have different degrees of variation. In this
way, the model is relatively more efficient and, meanwhile,
retains certain expressive power.

Either Gibbs sampling or variational inference can be
used to solve the GDP model. Although Gibbs sampling
can provide theoretical guarantees of accuracy, variational
inference converges much faster and can also provide a
reasonable approximation to the real posteriors [4]. Hence,
we choose variational inference in this work. The derivation
is simply an application of the general derivation in [4].
Readers can refer to the appendix (as a supplemental
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2015.2411283) for a detailed description of the varia-
tional inference of the GDP model.

5 MINING FINE-GRAINED KNOWLEDGE

The major challenge of mining micro-aspects is that the
micro-aspects in a task are already similar with one another.
If we model each component (i.e. micro-aspect) indepen-
dently (as most traditional models do), it is likely that we
mess up sessions from different micro-aspects, i.e. leading
to bad discrimination. Therefore, we should model different
micro-aspects in a task jointly, separating the common
content characteristics of the task from the distinctive char-
acteristics of each micro-aspect. To this end, we extends the
infinite Hidden Markov Model (iHMM) [2] and propose a
novel discriminative infinite Hidden Markov Model to
mine micro-aspects and possible evolution patterns in a
task. The graphical representation is shown in Fig. 3a. The
observed variables of the model is a sequence of T sessions

fwtgTt¼1 belonging to a cluster outputted by the GDP. In
practice, a cluster can contain multiple sequences from
different people. However, we only discuss the single
sequence case for clarity. Extension to the multi-sequence
case is a trivial work since those sequences do not depend
on each other. A background unigram model, ub, which is
estimated by aggregating all the task’s sessions, is shared
among states (i.e. micro-aspects). st’s are state assignment
variables. zti is an indicator variable, controlling whether
word wti is generated by ust (zti ¼ 1) or ub (zti ¼ 0).
ht 2 ð0; 1Þ encodes the fraction of words in wt which are not
generated by ub, with d0 as a Beta prior. In this way, the
common background contents in the task’s sessions are
explained by ub, thus increasing the discriminative power of
the model. d-iHMM is fundamentally based on the Hierar-
chical DP model [25] where the infinite component pools
(corresponding to fpkg) of all states share the same base
infinite component pool (corresponding to b). The
generative process is summarized as follows:

1) Draw bjg0 � GEMðg0Þ
2) For k ¼ 1; 2; . . ., draw pk � DPða;bÞ, uk � Dirðh0; . . . ;

h0Þ
3) For t ¼ 1 to T :

a) Draw stjst�1 � Multðpst�1
Þ, htjd0 � Betað1; d0Þ

b) For each word wti in the tth session
i) Draw ztijht � BernoulliðhtÞ
ii) If zti ¼ 1, draw wti � MultðustÞ, else draw

wti � MultðubÞ:

Fig. 3. The graphical representations of (a) the d-iHMMmodel, and (b) the original iHMMmodel.

GUAN ET AL.: FINE-GRAINED KNOWLEDGE SHARING IN COLLABORATIVE ENVIRONMENTS 2167



Here Dirðh0; . . . ; h0Þ is a symmetric Dirichlet distribution
where the dimension is the vocabulary size, D0. pðs1js0Þ is
given by a uniform multinomial distribution. As in [25], we
place Gamma priors on the hyperparameters a and g0:
a � Gammaðaa; baÞ and g0 � Gammaðag0 ; bg0Þ. The evolu-

tion patterns learned (if statistically strong) could be used
for content recommendation. Furthermore, d-iHMM could
be iteratively applied on the learned micro-aspects to find
more fine-grained aspects.

The key difference between d-iHMM and iHMM is the
background model part, i.e., ub, d0, ht’s and zti’s are all
new nodes compared to the graphical model of iHMM
(Fig. 3b). Modeling the common background contents
makes d-iHMM significantly different from iHMM and
enhances the discriminative power so that we can identify
relatively more cohesive subsets of documents from a set
of cohesive documents with background contents.

5.1 Solving d-iHMM by Beam Sampling

The beam sampling method for iHMM is proposed in [26],
which is shown to converge to the true posterior much
faster than a classical Gibbs sampler. Therefore, we develop
a beam sampler for our d-iHMMmodel.

Beam sampling adopts the slice sampling [22] idea
to limit the number of states considered at each time step
to a finite number, so that dynamic programming can
be used to sample whole state trajectories efficiently. Spe-
cifically, we first sample an auxiliary variable ut for each
time step t in the sequence with conditional distribution
ut � Uniformð0;pst�1stÞ. Given futg, the sequence fstg is re-

sampled, considering only the values of st�1 that satisfy
pst�1st > ut. Hence, futg act as a truncation of the infinite

number of states and make the number of trajectories with
positive probabilities finite, so that the whole sequence can
be sampled holistically. fstg is sampled in one run by a
forward filtering backward sampling algorithm.

Each sampling iteration samples futg, fstg, fztig, fukg,
fpkg and b in turn. We first sample futg as described above
and create more states if the maximum unassigned proba-
bilities in fpkg (the last element of each pk) is greater than
the minimum of futg. Then we perform a forward sweep of
fstgwhere for the tth step we compute

pðstjw1:t; u1:t; ztÞ
/ pðst; ut; wtjw1:t�1; u1:t�1; ztÞ
¼ pðwtjst; ztÞ
�
X
st�1

Iðut < pst�1stÞpðst�1jw1:t�1; u1:t�1; zt�1Þ;
(1)

where pðwtjst; ztÞ means we generate a word wti by ust only
if zti ¼ 1, and IðCÞ ¼ 1 if condition C is true and 0 other-
wise. sT is sampled from pðsT jw1:T ; u1:T ; zT Þ. Then we
perform a backward sweep to sample each st given stþ1 by

pðstjstþ1; w1:T ; u1:T ; ztÞ ¼ pðstjstþ1; w1:t; u1:tþ1; ztÞ
/ pðstjw1:t; u1:tþ1; ztÞpðstþ1jst; utþ1Þ

/ pðutþ1jstÞpðstjw1:t; u1:t; ztÞ pðutþ1jst; stþ1Þpðstþ1jstÞ
pðutþ1jstÞ

¼ pðstjw1:t; u1:t; ztÞIðutþ1 < pststþ1
Þ: (2)

In order to efficiently sample zti, we integrate out fhtg.
This makes all zti’s belonging to wt dependent on one
another. Let z:ti be the set of z variables for wt except zti. We
have

pðztijz:ti; d0; wt; u; ub; stÞ
/ pðzti; z:ti; wtjd0; u; ub; stÞ ¼ pðztjd0Þpðwtjzt; st; u; ubÞ

/ BðPj ztj þ 1; jwtj �
P

j ztj þ d0Þ
Bð1; d0Þ pðwtijzti; st; u; ubÞ;

(3)

where jwtj is the number of words in wt. The final sampling
probability ratio is (omitting variables in the condition for
clarity):

pðzti ¼ 1j � � �Þ
pðzti ¼ 0j � � �Þ ¼

pðwtijustÞð
P

j6¼i ztj þ 1Þ
pðwtijubÞðjwtj �

P
j6¼i ztj þ d0 � 1Þ ; (4)

where pðwjukÞ means the probability of generating word w
by uk.

For uk, since the prior Dirichlet distribution is conjugate
to the multinomial distribution, the posterior sampling
distribution of uk is

Dirðh0 þ wðk; 1Þ; h0 þ wðk; 2Þ; . . . ; h0 þ wðk; dÞÞ; (5)

where wðk; iÞ is the total number of word occurrences of the
ith word in the vocabulary which are generated by uk.

The sampling distributions of pk and b follow directly
from [25], but we briefly describe them for completeness.
Let nij be the number of times we jump from state i to state
j. Let M be the number of distinct states in the sequence,
relabeled from 1 to M. Merging the infinitely many states
not represented in the sequence into one state, the sampling
distribution of ðpk1; . . . ;pkM;

P1
k0¼Mþ1 pkk0 Þ is

Dir ab1 þ nk1; . . . ;abM þ nkM;a
X1

i¼Mþ1

bi

 !
: (6)

To sample b, a set of auxiliary variables fmijg is used with
independent conditional distributions

pðmij ¼ mjs;b;aÞ / Sðnij;mÞðabjÞm; (7)

where Sð�; �Þ denotes Stirling numbers of the first kind. ðb1;

. . . ;bM;
P1

k0¼Mþ1 bk0 Þ is then sampled by Dirðm�1; . . . ;m�M;

g0Þwithm�k ¼
PM

k0¼1 mk0k.

6 ADVISOR SEARCH

After we obtain the mined micro-aspects of each task,
advisor search can then be implemented on the collection of
learned micro-aspects. We employ the traditional language
model based expert search method [1]. Let d be a document
(i.e. micro-aspect). Given a query q, the method uses pðejqÞ to
rank advisor candidates. By assuming uniform prior
distributions pðeÞ and pðdÞ and applying Bayes’ rule, it is
equivalent to rank candidates by pðqjeÞ ¼Pd pðqjdÞpðdjeÞ or
pðqjeÞ /Pd pðqjdÞpðejdÞ [1]. pðqjdÞ is the probability of
generating q by d’s unigram model, with proper smoothing
[1]. Intrinsically, the method can be viewed as a weighted
accumulation of pðqjdÞ’s from the associated documents of e.
Recall that the weight between e and d is the number of
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sessions of e which fall in d. pðdjeÞ and pðejdÞ encode the
normalized association weights between candidates and
documents from a candidate’s perspective (candidate scheme)
and a document’s perspective (document scheme), respec-
tively. The candidate scheme is not intuitive in our context.
Consider two candidates e1 and e2. e1 viewed totally 100 ses-
sions in which 10 sessions fall in d, while for e2 the two
numbers are 10 and 2. Hence, pðdje1Þ ¼ 0:1 < pðdje2Þ ¼ 0:2.
However, e1 viewed more sessions in d than e2 and should
have a stronger association. Therefore, the document scheme
is used for ranking.

Compared to applying traditional expert search methods
directly on session data, searching over micro-aspects has
the advantage that the associations between candidates and
“documents” are correctly normalized. A toy example is
shown in Fig. 4. Suppose a user wants to query about “Java
multithread programming”. Suppose orange (with black
lines) sessions’ relevance scores are 0.9 and those of green
sessions are 0.1. Note the association weights between can-
didates and sessions are all 1. If we apply the language
model method on sessions directly (which means sessions
are “documents”), the ranking scores of Bob and John are
1.8 and 2 respectively.2 In contrast, by summarizing the two
micro-aspects in Fig. 4 and employing micro-aspects as
“documents”, Bob’s score becomes 0.9 while that of John
becomes 0.1, which is our expectation.

Time complexity. The time cost of GDP can be regarded
roughly as OðNKDIÞ where I is the number of iterations
and K is the truncation level of the variational distribution
for the infinite Gaussian mixtures (see appendix, available
in the online supplemental material). If other variables are
fixed, the time cost is approximately linear in N . The time

cost of d-iHMM isOððM2ðT þ 1Þ þ 2ðM þ T Þ þNwÞIÞwhere
I is the number of sampling iterations, M is the number of
states (could vary in different iterations) and Nw is the total
number of words in the T sessions. d-iHMM could be more
costly than GDP given T ¼ N , since Nw can be much larger
than T . Fortunately, the runs of d-iHMM on different tasks
are independent and consequently can be parallelized. It is
possible to further speed up GDP and d-iHMM by incorpo-
rating recent parallel computing techniques for machine
learning algorithms (e.g. [20]). Nevertheless, parallel com-
puting is beyond the focus of this work, which is to demon-
strate the feasibility of summarizing fine-grained aspects

fromweb surfing data for advisor search. The advisor search
step is efficient since the main cost is only one matrix vector
multiplication (OðSahÞ, where Sa is the total number of
micro-aspects and h is the number of candidates).

7 EXPERIMENTS

We validate our methods for fine-grained knowledge min-
ing and advisor search on real web surfing data. Firstly, we
show the results of advisor search using the full pipeline.
Then we evaluate the individual models, GDP for session
clustering and d-iHMM for fine-grained knowledge mining.

7.1 Datasets

We collected web surfing data from two real collaborative
environments: (1) the data mining lab at UCSB, and (2) the
“networking” research group in IBM T. J. Watson Research
Center. The first dataset, Surf-Lab, consists of surfing data
from eight students in the data mining lab at UCSB. We run
the “tcpdump” program (“windump” in windows) on each
student’s PC, in order to record their surfing activities.
Afterwards, HTTP packets (only those generated by web
browers) and the corresponding textual contents were
extracted from the dump files. The second dataset, Surf-
IBM, is collected from the gateway at IBM T. J. Watson
Research Center. Web surfing packets generated by 20
research scientists in the “networking” research group are
captured. The Surf-IBM dataset is processed in a similar
way. Both datasets span nearly two months. The sequence
of http contents of each person was segmented into sessions
according to the following rule: we place a session bound-
ary between two consecutive contents if their timestamps
are at least 10 minutes away from each other, or their cosine
similarity is below a threshold (0.5 in this work). Surf-Lab
has 686 sessions and Surf-IBM has 3,925 sessions.

7.2 Advisor Search

We first show the results of advisor search. Three schemes
are compared: session-based, micro-aspect-based and task-
based, with an increasing granularity. The language model
based expert searchmethodmentioned in Section 6 is used as
the retrieval method. We have tried using other traditional
expert search methods, but the results are very similar since
they all intrinsically accumulate relevance scores of associ-
ated “documents” to candidates. For each scheme, a language
model is constructed for each “document”, i.e. a session, a
micro-aspect, or a task, by aggregating all the texts belonging
to it. Note that the session-based scheme is intrinsically
applying the traditional language model based expert search
method onweb surfing data directly.

The evaluation methodology is as follows: we generate
20 queries for each dataset. These queries represent the fine-
grained knowledge required by the specific projects on
which the candidates were working during the data collec-
tion period. Queries for Surf-IBM are shown in Table 1 as
some examples. The ground truth labels of a query are
obtained by showing candidates their top relevant sessions
assessed by the language model method and asking them to
assign a relevance score to themselves for the data collection
period on a scale from 0 to 2: (1) score ¼ 0 means
“irrelevant”; (2) score ¼ 1 means “partially relevant”, i.e.

Fig. 4. A toy example for comparing session based and micro-aspect
based advisor search.

2. We also use the document scheme here. The reason is similar: if
we use the candidate scheme, e1 who viewed 10 sessions about “Java
IO” in total 100 sessions may receive a lower score than e2 who viewed
2 in total 10 sessions for a query q related to “Java IO”. Assuming the
relevance scores of “Java IO” sessions are all 0.9, it is easy to verify that,

using the candidate scheme, pðqje1Þ ¼
P10

i¼1 0:9� 0:01 ¼ 0:09 and

pðqje2Þ ¼
P2

i¼1 0:9� 0:1 ¼ 0:18:
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he/she has background knowledge for the query; (3) score
¼ 2 means “very relevant”. Normalized discount cumula-
tive gain (NDCG) is used as the evaluation metric:

NDCG@n ¼ Zn

Xn
i¼1

2ri � 1

log2ðiþ 1Þ ; (8)

where ri is the relevance score of the candidate at rank i and
Zn is a normalization term to let the perfect ranking have a
NDCG value of 1. We focus on n ¼ 1; 2; 3, since it is costly
for a user to verify many suggested advisors. It is important
to place correct people at highest positions.

The results are shown in Tables 2 and 3. We can see that
the micro-aspect-based scheme outperforms the other two
schemes. One-tailed Wilcoxon test is performed based on
all 40 queries to evaluate the significance of the superior-
ity. In particular, the micro-aspect-based scheme is signifi-
cantly better than the session-based scheme at significance
level 0:05, and significantly better than the task-based
scheme at significance level 0:01. The task-based scheme is
the worst (significantly worse than the session-based
scheme at significance level 0:05). This is because a task
can contain multiple micro-aspects which might not match
a user’s need very well.

Specifically, we find for one fifth of queries the micro-
aspect-based scheme outperforms the session-based scheme.
For other queries, they generate very similar rankings. We

examine those one fifth of queries and find the situations
conform to our analysis in Section 6. Specific investigation
results for two queries are shown in Tables 4 and 5. Candi-
dates are anonymized. For the two queries, the micro-
aspect-based scheme ranks c1 and c3 at the top while the ses-
sion-based scheme ranks c2 and c4 at the top, respectively. In
Surf-Lab, we found c2 was reading <Thinking in Java> and
generated 45 sessions, none of which was focused on the
“multithreading” aspect. c1 generated three true relevant
sessions and should be regarded as a better candidate. Simi-
lar situation is observed for c3 and c4 with respect to the
query “Mobile Location Network Protocols”.

7.3 Session Clustering

Instead of providing a comprehensive comparison of differ-
ent clustering methods, which is not the focus of this work,
the following experiment shows that the proposed GDP
model with LE preprocessing (named LEGDP) achieves its
design goal. We implement two baseline methods for com-
parison: (1) Spectral Clustering (SC), which is a popular
clustering method requiring users to specify the number of
clusters; (2) GDP with Principle Component Analysis
(PCAGDP), which first uses PCA to reduce data dimension-
ality and then applies GDP on the subspace. We use Surf-
Lab in this experiment.

The ground truth task labels were obtained manually.
Each student involved in Surf-Lab was given his/her ses-
sion data and was asked to assign a task label to each
session. Three popular evaluation metrics for clustering are
employed: Purity, F-measure and Normalized Mutual Informa-
tion (NMI). Purity tries to map each cluster to the class in
the ground truth which is the most frequent in the cluster. It
is defined as the accuracy of this map as follows:

PurityðV;XÞ ¼ 1

n

XK
k¼1

maxj2f1;;Jgjvk \ �jj; (9)

TABLE 1
Queries for Surf-IBM (Delimited by “;”)

Disruption tolerant network protocols; DoS attack; Intrusion
detection vulnerability scanning; Cloud computing bigtable;
Database data mirroring; Big data Big Blue; IBM websphere;
Network topology ring; Network collapsed backbone;
Mobile location network protocols; Virus malware; 802.11b
protocol; Python programming; Machine learning jeopardy;
Gateway antivirus program; Network traffic congestion;
Security information Management authorization; DB2 data-
base; Database data integrity; Network virtualization

TABLE 2
Comparison of Three Advisor Search Schemes

on the Surf-Lab Dataset

Method NDCG@1 NDCG@2 NDCG@3

Micro-aspect-based .883 .918 .942
Session-based .783 .839 .885
Task-based .783 .825 .841

The session-based scheme is intrinsically applying the traditional language
model based expert search method on web surfing data directly.

TABLE 4
An Example Query from Surf-Lab Where

the Micro-Aspect-Based Scheme
Shows Better Performance

Q: Java multithreading

Candidate True rel/Generally rel
c1 3/4
c2 0/45

“True rel/Generally rel” means the number of sessions which
are indeed relevant to the query divided by the number of ses-
sions which are relevant to the general domain “Java.”

TABLE 5
An Example Query from Surf-IBMWhere

the Micro-Aspect-Based Scheme
Shows Better Performance

Q: Mobile Location Network Protocols

Candidate True rel/Generally rel
c3 8/13
c4 1/66

“True rel/Generally rel” means the number of sessions which
are indeed relevant to the query divided by the number of ses-
sions which are relevant to the general domain “Network
Protocols.”

TABLE 3
Comparison of Three Advisor Search Schemes

on the Surf-IBM Dataset

Method NDCG@1 NDCG@2 NDCG@3

Micro-aspect-based .900 .926 .928
Session-based .817 .885 .894
Task-based .633 .666 .669

The session-based scheme is intrinsically applying the traditional language
model based expert search method on web surfing data directly.
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where V ¼ fv1; . . . ;vKg is the set of clusters and X ¼
f�1; . . . ; �Jg is the set of ground truth classes. F-measure oper-
ates on pairs of objects (i.e. sessions). The clustering result is
treated as nðn� 1Þ=2 decisions, each of which corresponds to
a pair of objects and decides whether they belong to the same
class. Based on this, the precision and recall scores are com-
puted and the F-measure is computed as the harmonic mean
of precision and recall. NMI is defined as

NMIðV;XÞ ¼ IðV;XÞ
1
2 ðHðVÞ þHðXÞÞ ; (10)

where Ið�Þ and Hð�Þ represent mutual information and
entropy, respectively.

7.3.1 Performance Comparison

First, we show that LEGDP can roughly capture the number
of tasks. To this end, we derive two small datasets from
Surf-Lab: (1) 3p-Lab, which contains three people and 169
sessions; (2) 5p-Lab, which comprises five people and 411
sessions. We tune model parameters on 3p-Lab (details in
Section 7.3.2) and continue to use the same set of parameters
on 5p-Lab and Surf-Lab. The results are shown in Table 6.
As can be seen, LEGDP approximately captures the number
of tasks. We also show the number of clusters learned by

PCAGDP. PCAGDP cannot well capture the number of
tasks. The reason could be that PCA is a linear dimensional-
ity reduction method and may not capture the complex
topical variations of a task.

Second, we investigate the clustering performance
measured by Purity, F1 and NMI. Table 7 shows the results.
For LEGDP and SC, we use the same session affinity matrix
W [27]. Therefore, the intrinsic difference between LEGDP
and SC is due to GDP and k-means. We set the parameter k
for SC to the number of clusters learned by LEGDP for
the sake of fairness. We can see from Table 7 that both
LEGDP and SC outperforms PCAGDP. This indicates that
the nonlinear manifold structures do exist in tasks. PCA
can only capture linear manifold structures and therefore
does not perform well. LEGDP and SC can achieve compa-
rable performance, but SC needs the user to pre-specify the
parameter k.

7.3.2 Parameter Selection for LEGDP

The parameters of LEGDP include the number of selected
eigenvectors in LE (i.e. the dimensionalityD), the truncation
level K of the variational distribution for the infinite
Gaussianmixtures (see appendix, available in the online sup-
plemental material) and hyperparameters a0 and b0 of GDP
which encode the prior knowledge for the variance (variance
¼ 1/precision) of each Gaussian component. In this section
we explore how to set these parameters in practice.

We vary these parameters and investigate their impact
on the number of learned clusters and the clustering
performance (F1 and NMI). The results are shown in
Figs. 5 and 6. For the sake of clarity, we omit the results
for 5p-Lab. The trends for 5p-Lab are very similar to those
shown in the figures. Figs. 5a and 6a give the results for
D. As can be seen, too small D indicates a subspace of
low discriminative power and therefore the number of
clusters is too small and the performance is bad. On the

TABLE 6
Comparison of the Numbers of Tasks Discovered

by LEGDP and PCAGDP

Method
Dataset

3p-Lab 5p-Lab Surf-Lab

Ground Truth 33 47 61
LEGDP 37 45 59
PCAGDP 19 38 44

TABLE 7
Performance Comparison of Different Clustering Methods on the Surf-Lab Dataset

Method
3p-Lab 5p-Lab Surf-Lab

Purity F1 NMI Purity F1 NMI Purity F1 NMI

LEGDP .768 .956 .772 .751 .953 .764 .667 .947 .698
SC .762 .948 .753 .721 .948 .733 .658 .933 .675
PCAGDP .414 .562 .448 .457 .667 .484 .448 .685 .467

Fig. 5. Number of learned clusters by LEGDP when varying (a)D, (b) a0 / b0, and (c) K.
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contrary, too large D leads to the sparsity problem (i.e.
curse of dimensionality). Hence, the algorithm learns too
many clusters and the performance also starts to
decrease. We find D 2 ½25; 35� generally results in good
performance. a0 and b0 together give a prior for the clus-
ter precision �k, i.e. Eð�kjÞ ¼ a0=b0. Here we fix b0 ¼ 1 and
vary a0=b0 by taking the average of the sample precisions
of all dimensions as the unit. We find there is a wide
range of safe values, i.e. a0=b0 between 80	 and 150	
(average sample precision), in which LEGDP can achieve
reasonable numbers of clusters (Fig. 5b) and good
performance (Fig. 6b). This implies that the model behav-
ior is not very sensitive to prior hyperparameters. Finally,
as shown in Figs. 5c and 6c, the parameter T shows little
influence on the modeling results, as long as it is assigned
a value significantly higher than the real number of tasks.

7.4 Fine-Grained Knowledge Mining

In this section, we show the results of fine-grained knowl-
edge mining by the d-iHMM model. We only show
the results for Surf-Lab. The observations on Surf-IBM are
very similar. The basic iHMM model is employed for
comparison. Since it is difficult and laborious to perform
quantitative evaluation by manual labeling, the models are
evaluated by an intuitive measure and case studies. The
hyperparameters of d-iHMM and iHMM are set as follows:
h0 ¼ 0:5, aa ¼ 4, ba ¼ 2, ag0 ¼ 3 and bg0 ¼ 6. The additional

hyperparameter d0 of d-iHMM is set to 0.25.
Our goal is to learn different states (micro-aspects) in a

textually cohesive task. The intuition is that the learned
states should have low intra-entropies and high inter-dis-
tances between them. Therefore, we use the average state

entropy divided by the average pairwise distance between
states as an intuitive measure to evaluate the results:

1
S

P
pð�

P
i pi logðpiÞÞ

2
SðS�1Þ

P
p

P
q 6¼p

1
2 ðKLðp; qÞ þKLðq; pÞÞ ; (11)

where S is the total number of states, KLð�Þ represents the
KL-Divergence function and p, q represent the empirical
unigram distributions for two learned states estimated by
aggregating all the associated sessions. The unigram
distributions are defined on the 100 most frequent words in
the task. A good set of states should have a low value of this
measure. The results are shown in Fig. 7. For some small-
size tasks, either d-iHMM or iHMM outputs only one state.
The results of these tasks are omitted since the measure is
undefined. We can see from Fig. 7 that d-iHMM can learn
better states for almost all the tasks.

The top five words of each learned state’s unigram
model for the task “clustering study” are shown in Tables 8
(d-iHMM) and 9 (iHMM). Table 8 shows that d-iHMM suc-
cessfully summarizes different pieces of fine-grained knowl-
edge into different states. These include different clustering
methods such as spectral clustering (state 1), single-pass
clustering (state 5) and density based methods (state 7), and
different application settings, e.g. protein sequence cluster-
ing (state 2), news event detection (state 4). The iHMM
model generates 10 states for “clustering study” (Table 9).
We find iHMM tends to mess up different micro-aspects.
For example, both state 3 and state 4 contain “segment
clustering”, and both state 7 and state 8 have “single-pass
clustering”. It sometimes mixes different micro-aspects, e.g.
state 7 also contains “sequence clustering”. As another
example, we show the micro-aspects learned for the task

Fig. 7. Comparison of d-iHMM and iHMM with respect to the average
state entropy divided by the average pairwise KL-Divergence between
states.

TABLE 8
Micro-Aspects Mined by d-iHMM for the Task “Clustering Study”

Top five words of the unigram model

Background clustering, endnote, pdf, uc, data
state 1 spectral, clustering, tutorial, algorithms, matrix
state 2 sequence, protein, sequences, oxford, press
state 3 mean, nonparametric, shift, vision, blurring
state 4 detection, evolving, online, news, topic
state 5 pass, single, clustering, new, cluster
state 6 segment, audio, segments, broadcast, segmentation
state 7 algorithm, spatial, density, noise, fuzzy
state 8 smooth, time, gene, function, expression

Fig. 6. Performance of LEGDP when varying (a)D, (b) a0 / b0, and (c) K.
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“Programming contests” by d-iHMM and iHMM in
Tables 10 and 11, respectively. This task is due to a user who
was participating in Topcoder3 contests. Both models learn
four states for this task. We can see from Table 10 that this
user was learning some classic algorithms and data struc-
tures: sorting, maximum flow and black-red trees. The
iHMM model again fails to separate different micro-aspects
(Table 11). The explanation is that different micro-aspects
under the same task share common background textual
characteristics. iHMM tries to model the background content
in each state independently, which leads to low discrimina-
tive power. On the contrary, d-iHMMhas higher discrimina-
tive power by modeling background words in each state by
a common background unigrammodel.

7.5 Running Time

We test the efficiency of the whole framework. We collect
more web surfing packets from IBM’s gateway to form
datasets of various sizes. The running time of LEGDP and
d-iHMM is shown in Fig. 8. The tests were run in MATLAB
on a PC with Intel Core i7 and 8 G memory. The running
time of LEGDP seems linear w.r.t the number of sessions,
while that of d-iHMM shows a slightly accelerated growth
(due to M). The observations conform to the analysis in
Section 6. We set the number of sampling iterations to 500
for d-iHMM. d-iHMM is more costly. Fortunately, the
computation for different tasks can be parallelized. The
advisor search phase only requires a few milliseconds since
its main cost is one matrix vector multiplication.

8 CONCLUSIONS

We introduced a novel problem, fine-grained knowledge
sharing in collaborative environments, which is desirable in

practice. We identified digging out fine-grained knowledge
reflected by people’s interactions with the outside world as
the key to solving this problem. We proposed a two-step
framework to mine fine-grained knowledge and integrated
it with the classic expert search method for finding right
advisors. Experiments on real web surfing data showed
encouraging results.

There are open issues for this problem. (1) The fine-
grained knowledge could have a hierarchical structure. For
example, “Java IO” can contain “File IO” and “Network IO”
as sub-knowledge. We could iteratively apply d-iHMM on
the learned micro-aspects to derive a hierarchy, but how to
search over this hierarchy is not a trivial problem. (2) The
basic search model can be refined, e.g. incorporating the
time factor since people gradually forget as time flows. (3)
Privacy is also an issue. In this work, we demonstrate
the feasibility of mining task micro-aspects for solving
this knowledge sharing problem. We leave these possible
improvements to future work.
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