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Abstract—According to the literature in psychology, the existence of small dense subgroups is closely related to many mental

illnesses, such as depression, bullying, and psychotic disorders. Here, small dense subgroups refer to the small groups in the social

network in which members are socially dense but have no or few links to other individuals outside the group. Therefore, in this article,

we make the first attempt to address the issue of small dense subgroups with the concept of network intervention from Psychology. We

first introduce the new notion of D-Subgroups (D-SGs) to quantify the small dense subgroups. Then, following the concept of network

intervention, we formulate a new research problem, Small Subgroup Maximum Reduction Problem (SSMP), to reduce the number of

small dense subgroups (i.e., D-SGs) in the social network. We prove that SSMP is NP-Hard and propose a linear-time algorithm,

namely 3-SMMTG, to find the optimal solution for a special case of SSMP with D ¼ 3. We then devise a 1
2 ð1� 1

eÞ-approximation

algorithm, namely ESGR, for the general SSMP and enhance its efficiency with effective pruning methods. We conduct a 8-week

evaluation study with 812 participants to validate the proposed SSMP and ESGR. The results show that the participants with the

network intervention recommended by ESGR have significant improvements on Internet addiction and depression, as compared to

those individuals without any intervention. We also perform experiments on 7 real datasets, and the experimental results manifest that

the proposed algorithms outperform the other baselines in both efficiency and solution quality.

Index Terms—Small dense subgroups, algorithm design, social networks, mental disorders

Ç

1 INTRODUCTION

EXTRACTING socially dense subgraphs from social networks
has been extensively studied and has many practical

applications [1], [2], [3], [4], [5]. However, the existence of
small dense subgroups, i.e., small socially dense groups where
group members are tightly connected within the group, but
they have no or very few links to other individuals outside the
group, may not always be beneficial for the members, accord-
ing to the literature in psychology and sociology [6], [7], [8],
[9]. Moreover, being in small dense subgroups is one impor-
tant factor tomanymental illnesses [10], [11].

On the other hand, network intervention is widely adopted
in psychology to strengthen and augment individuals’ social
networks for desired behavior changes [12], [13], which usu-
ally involves the addition of new members and new friend-
ships in the social network. By doing so, some small dense
subgroupsmay become a larger dense group, and individuals
may benefit from various interactions and social supports
from the others. For example, network intervention is applied
to the students to encourage them to build healthy social ties
with others [14] for suicide prevention, and network interven-
tion is performed to improve the student’s learning [15] and

improve the social communication skills of students with
autism spectrumdisorders [16].

To enable network intervention to improve the individuals’
well-being, certain social network property that is related to
small dense subgroups should be modified with the inclusion of
newmembers and friendships. An important question arises:
what is the property we would like to modify by employing
network intervention? Conventional measurement such as
vertex degree, closeness centrality and betweenness centrality
do not workwell, because thesemeasures cannot well capture
the idea of small socially dense groups,where groupmembers
are tightly connected within the group, but have no or very
few links to other individuals outside the group. That is, the
measuresmentioned abovework fine to describe how dense a
group is, but they fail to describe how sparse a group links to
other individuals outside the group. Therefore, in this paper,
we propose the newnotion ofD-Subgroups (D-SGs) to capture
the concept of small dense subgroups in social networks,
where D-SG is employed as the basis for quantifying small
dense subgroups in social networks. Given the social network
graph G ¼ ðV;EÞ, three vertices u, v, w in V form a triangle if
all three edges ðu; vÞ, ðu;wÞ, ðv;wÞ exist in E. A triangle is a
D-SG if the degree of each of its vertices is at mostD onG. Spe-
cifically,D-SG is defined as follows.

Definition 1 (D-SG). Given a non-negative integer D and verti-
ces u; v; w 2 V , fu; v; wg is a D-Subgroup (D-SG) if i) fu; v; wg
is a triangle, and ii) degGðuÞ � D, degGðvÞ � D, and
degGðwÞ � D hold, where degGðuÞ denotes the degree of vertex
u on G.

In the above definition, triangle is used as the basic ele-
ment for D-SG because triangles are widely used to model
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the social tightness, e.g., clustering coefficient, transitivity
ratio, and k-truss [2] all employ triangles as basic elements.
Recall that a small dense subgroup refers to a small group
that is socially tight within but has no or very few links to
other individuals, the D-SG serves well as a basic unit for
measuring small dense subgroups because a triangle is a
small complete graph of size 3 (socially dense within the
small group). On the other hand, the degree upper bound,
D, limits the number of links outward. Therefore, in this
paper, we employ D-SGs to quantify small dense subgroups
an individual participates in. Please note that D can be set as
different values (suggested by mental health professionals)
to fit various application scenarios and different social
networks.

Data Analysis for D-SGs. To illustrate the possible correla-
tions of D-SGs with mental well-being, we conduct an analy-
sis on two real datasets: i) Facebook dataset (FB-GT) with
1,432 individuals, and ii) Taiwan Youth Project (TYP) data-
set with 2,844 students,1 as shown in Fig. 1. In FB-GT, each
user is examined by mental health professionals and is
labeled with an Internet addiction (IAD) score between 0 to
100. A larger score indicates a more severe Internet addic-
tion.2 In Fig. 1a, Patient Network and Normal Network repre-
sent the numbers of D-SGs the IAD patients and the normal
individuals participate in, respectively. The ratio (y-axis) is
the number of D-SGs (of each category) divided by the
square of the network size of FB-GT. Fig. 1a shows that the
Patient Network has a much higher D-SG ratio as compared
to the Normal Network, implying the possible correlation of
D-SGs with Internet addiction.

Further, we illustrate the impact of D-SGs with D ¼ 4 in
the TYP dataset in Fig. 1b, where each of the 2,844 students
in TYP is labeled with mental status scores for three conse-
cutive years (grades 7 to 9). The screened mental status
include depression (measured with standard psychological
questionnaires [17]) and happiness (obtained with a 4-point
Likert scale). We plot the ratios of students who report to be
happy or very happy as Happiness Ratio and the ratio of stu-
dents who have scores above mild depression as Depression
Ratio in Fig. 1b. Please note that a higher Happiness Ratio or a
lowerDepression Ratio indicates a better result, i.e., more stu-
dents are happy, or fewer students are suffering from
depression, respectively.

In Fig. 1b, after the number of the D-SGs each student
participates in increases, Happiness Ratio decreases and
Depression Ratio increases significantly, indicating that more
students are unhappy and suffering from depression. In
contrast, after the number of D-SGs decreases, more stu-
dents report to be happy and fewer suffer from depression.
The above analysis manifests that the number of D-SGs each
individual participates in is closely related to mental well-
being. In Section 6, we conduct an evaluation study with
812 participants to validate that a network intervention that
reduces the number of D-SGs may improve the individuals’
mental health status.

To reduce the negative repercussions of small dense sub-
groups, network intervention is widely adopted in Psychol-
ogy to reduce the number of small dense subgroups in the
network [12], [13]. Network intervention for reducing small
dense subgroups is usually carried out with the addition of
new members (mental health professionals) and new links
(from the mental health professionals to patients) to the net-
work, such that multiple small dense subgroups become a
large dense group. In this way, more people in the large
group are linked together and can provide social support to
help the mental disorder patients [10], [18].

Currently, the network intervention is performed manu-
ally. However, given a number of new members to be
added, manually deciding the target patients to create links
for reducing the number of small dense groups is very time-
consuming and error-prone because there is an overwhelm-
ingly large number of combinations. Moreover, simply
assigning therapists to the large dense subgroups may not
work well for mental health treatment because research
shows that small dense subgroup, instead of large ones,
seriously affects individuals’ mental status [12], [13]. There-
fore, in this paper, we formulate a new research problem,
namely Small Subgroup Maximum Reduction Problem (SSMP),
to address this important issue for network intervention.
The proposed SSMP aims to intervene a network G by add-
ing at most s new vertices (mental health professionals) and
at most b edges (social links) to reduce the largest number
of D-SGs in G. With SSMP, mental health professionals are
able to help the patients more effectively and efficiently.

The importance of the proposed new research problem is
three-fold. i) As small dense subgroups may have negative
impacts on individuals’ mental well-being, we propose to
quantify how an individual is associated with small dense
subgroups with a new notion, D-SGs. ii) We analyze two
real datasets to illustrate the correlation between D-SGs and
the mental status of the individuals. Our evaluation study
(in Section 6) also show that reducing the number of D-SGs
is positively correlated to an individual’s well-being. iii) In
order to improve the mental well-being of the individuals,
network intervention is the current practice adopted by
mental health professionals to modify individuals’ social
network by including new members and new friendships.
However, as the number of individuals is large, manually
deciding the number of members and friendships to include
into the social network is very time-consuming and over-
whelming for mental health professionals. Therefore, a sys-
tem that can automatically recommend how to intervene
the individuals’ social network is very helpful to the mental
health professionals. Therefore, in this paper, we propose a

Fig. 1. Data analysis results.

1. This dataset is derived from a longitudinal panel study entitled
The Taiwan Youth Project (TYP) with eight annual surveys, conducted
by the Institute of Sociology, Academia Sinica, Taiwan. This dataset is
publicly accessible at: http://www.typ.sinica.edu.tw/E/?q=node/6.

2. Our results are statistically significant with a p-value of less than
0.01.
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new research problem, named Small Subgroup Maximum
Reduction Problem (SSMP), to address this important need
for network intervention.

Efficiently processing SSMP is very challenging because
we need to examine different combinations of vertices to
reduce the maximum number of D-SGs while adding at
most b edges and s vertices. In fact, as will be proved in Sec-
tion 2, SSMP is NP-Hard. Although the general SSMP is
NP-Hard, we observe that a special case of SSMP with
D ¼ 3 is still tractable. Therefore, we propose a linear-time
algorithm, namely 3-SMMTG, to obtain the optimal solution
to SSMP with D ¼ 3. We then apply our insights in 3-
SMMTG to the general case and propose a 1

2 ð1� 1
eÞ-approxi-

mation algorithm for the general SSMP.
The contributions are summarized as follows.

� Based on Psychology, we propose the notion of D-SG
to quantify small dense subgroups. We formulate a
new research problem, Small Subgroup Maximum
Reduction Problem (SSMP) to intervene the social net-
work of patients to reduce the number of D-SGs in
the network. To our best knowledge, this is the first
work that studies the network intervention in an
algorithmic aspect.

� We analyze the NP-Hardness of SSMP and propose a
1
2 ð1� 1

eÞ-approximation algorithm, i.e., ESGR, for the
general SSMP. We also propose a linear-time algo-
rithm, namely 3-SMMTG, to find the optimal solu-
tion for SSMP with D ¼ 3.

� We conduct a 8-week evaluation study with 812 par-
ticipants to validate the proposed SSMP and ESGR.
The results show that the participants with the net-
work intervention recommended by ESGR have sig-
nificant improvements on Internet addiction and
depression, as compared to those individuals with-
out any intervention.

� We also perform extensive experiments on 7 real
datasets to evaluate the proposed algorithms. The
results show that our proposed algorithms outper-
form the other baselines in terms of solution quality
and efficiency.

The paper is organized as follows. Section 2 formulates the
problem and analyzes the hardness. Section 3 reviews the
works relevant to this paper. Section 4 proposes algorithm
3-SMMTG for SSMPwithD ¼ 3. Section 5 proposes algorithm
ESGR and analyzes its approximation ratio. Section 6 details
the evaluation study, and Section 7 presents the experimental
results. Section 8 concludes this paper.

2 PROBLEM FORMULATION AND ANALYSIS

In this paper, we consider a social network of individuals
G ¼ ðV;EÞ, where V is the set of individuals, and E is the
set of edges representing their friendships, i.e., an edge
ðu; vÞ exists if two individuals u and v are friends.

With the definition of D-SG in hand (defined in Defini-
tion 1), we define dðU; Y Þ as the number of D-SGs in the sub-
group induced by the vertex subset U � V and edge subset
Y � E. Moreover, for a triangle t ¼ fu; v; wg, we say t covers
each of the vertices u, v, and w. Since a D-SG is inherently a
triangle, when a D-SG covers a vertex u, it implies that u is

one of the three vertices forming the underlying triangle of
the D-SG. Given two integers s (called seed constraint) and b
(called budget constraint), in this paper, we formulate and
study the new research problem of maximizing the reduc-
tion of D-SGs in G by adding at most s vertices and b edges
into G. The vertices can be viewed as mental health profes-
sionals in Psychology, and the edges added into G are
regarded as the new friendships created by the mental
health professionals to intervene the network. Please note
that we only focus on the connections between the mental
health professionals and the patients in our problem formu-
lation. The new connections between patients may also be
good for the treatment. However, in a real therapy, the new
friendships between patients are difficult to control, because
the mental health professionals cannot force the patients to
build friendships with other patients.

Specifically, let A and F denote the set of vertices and
edges added to G, and let G0 ¼ ðV [A;E [ F Þ denote the
intervened graph after including A and F , the research
problem is formulated as follows.

Problem: Small Subgroup Maximum Reduction Problem
(SSMP).

Given: Graph G ¼ ðV;EÞ, integers b, s, and D.
Find: To find an intervened simple graph G0 ¼ ðV [A;

E [ F Þ, where A and F are the sets of new vertices and edges
added to G, such that i) G � G0, i.e., the individuals and
friendships existed in G must remain in G0, ii) jAj � s, i.e., at
most s vertices are added into V , iii) jF j � b, i.e., at most b
edges are created, and iv) u 2 V and v 2 A hold, 8ðu; vÞ 2 F ,
i.e., for any new edge ðu; vÞ 2 F , one endpoint must be an
individual originally existed in V , and the other endpoint
must be a newly added vertex inA.

Objective: To maximize the reduction of D-SGs. That is, to
maximize dðV;EÞ � dðV;E [ F Þ.

Note that the objective function is to maximize dðV;EÞ�
dðV;E [ F Þ instead of dðV;EÞ � dðV [A;E [ F Þ. This is
because the D-SGs brought by adding the mental health pro-
fessionals do not result in the negative repercussions. For
brevity, in the following, we denote rðV;E;F Þ ¼ dðV;EÞ�
dðV;E [ F Þ so the objective function of the SSMP problem is
tomaximize rðV;E;F Þ.

In the problem formulation of SSMP, s is the maximum
number of new vertices that can be added to the social net-
work, i.e., at most s mental health professional can join the
social network to create new friendships with the individu-
als, while b is the maximum number of new edges (the new
friendship links created by connecting a mental health pro-
fessional to an individual) that can be added to intervene
the social network.

We incorporate these two parameters into the problem
formulation of SSMP is to allow a more flexible configura-
tion of the network intervention. In real-world intervention
scenarios, the number of mental health professionals that
can participate in the intervention may vary, due to their
availability, expertise, and the subjects’ properties. There-
fore, the parameter s is included to consider the limited
number of mental health professionals that can join the net-
work intervention.

On the other hand, the mental health professionals may
have limited time and resource to intervene the network
(i.e., to build friendships with the individuals in the
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network), and may not be able to build new friendships
with a very large number of individuals. Therefore, the
problem formulation of SSMP includes the parameter b to
set an upperbound on the number of edges that can be
added into the network.

Efficiently processing SSMP is very challenging because
we need to consider different combinations of vertices to
maximize rðV;E; F Þ while satisfying the budget constraint b
and the seed constraint s simultaneously. The following
example shows that a trivial approach cannot obtain a good
solution. Given a social network G ¼ ðV;EÞ in Fig. 2, where
V ¼ fv1; . . . ; v12g represents the patients (vertices a1 and a2
are not patients, i.e., not included in V ), and the subgraph
induced by vi; i 2 ½1; 12� has 8 3-SGs, i.e., dðV;EÞ ¼ 8.
Assume that a mental health professional would like to add
herself to intervene the network by building at most 3 links
from herself in order to break the small dense subgroups,
i.e., solving an SSMP instance with D ¼ 3, s ¼ 1 and b ¼ 3.
One simple approach is to greedily select 3 patients who
participate in the maximum numbers of 3-SGs (i.e., v1, v3,
v4) and link them with the mental health professional
(denoted as a2), as shown in the left rectangle in Fig. 2.
However, the patients (except the mental health profes-
sional) in the intervened network still have 4 3-SGs, and
rðV;E; F Þ ¼ dðV;EÞ � dðV;E [ F Þ ¼ 8� 4 ¼ 4 in this case. A
better approach is to link fv1; v5; v8g to the professional
(denoted as a1 here), as shown in the dashed rectangle in
Fig. 2. This intervention is much better, i.e., only 1 3-SG left
for all the patients. In other words, rðV;E; F Þ ¼ 8� 1 ¼ 7,
which is also the optimal solution to this SSMP instance. In
the following, we analyze the hardness of the proposed
SSMP problem.

We prove the NP-Hardness of SSMP with the reduction
from the Zero D-SG Edge Intervention (ZEI) problem, which
is NP-Complete. Specifically, the ZEI problem is formulated
as follows.

Problem: Zero D-SG Edge Intervention (ZEI).
Given: Graph GR ¼ ðVR;ERÞ, an integer D, a new vertex

a =2 V , and an integer k.
Decide: To decide whether there exists a set of k vertices

K ¼ fv1; ::; vkg in VR, such that after GR is intervened by the
set F of k new edges, i.e., F ¼ fða; viÞj8vi 2 Kg, dðVR; ER [
F Þ ¼ 0 holds.

Please note that dðVR;ER [ F Þ ¼ 0 implies that the set of
vertices K cover all the D-SGs in GR (i.e., each D-SG must
include at least one vi 2 K). This is because if there exists a
D-SG not including any vertex in K, this D-SG must remain
in the intervened graph ðVR [ fag; ER [ F Þ , and thus
dðVR;ER [ F Þmust be nonzero.

In the following, we first prove that the above ZEI prob-
lem is NP-Complete in Theorem 1. Then, by leveraging the
hardness result of ZEI, we further prove that the proposed
SSMP problem is NP-Hard in Theorem 2.

Theorem 1. ZEI is NP-Complete.

Proof. We prove this theorem in the Appendix A, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TKDE.2019.2949294. tu

Theorem 2. SSMP is NP-Hard.

Proof. Now, we turn our attention to the NP-Hardness of
SSMP. Given an instance of ZEI with input graph
GR ¼ ðVR;ERÞ, bD, new vertex a =2 VR, and an integer k, we
create an instance of SSMP with input graph G ¼ ðV;EÞ
by setting V ¼ VR, E ¼ ER, s ¼ 1, D ¼ bD, and budget
b ¼ k. We first prove the necessary condition. If GR con-
tains k vertices such that dðVR;ER [ F Þ equals zero, there
must exist a group with the same set of vertices that satis-
fies the budget constraint b for the SSMP instance. We
then prove the sufficient condition. If i) SSMP contains a
group of k verticesH and ii) after we connect all the verti-
ces in H to the new vertex in A (jAj ¼ 1 due to s ¼ 1) to
form the new edge set F , the intervened graph
ðV [A;E [ F Þ has dðV;E [ F Þ ¼ 0, then ZEI must contain
a solution with size exactly k as well. This proves the suf-
ficient condition, and the theorem follows. tu

3 RELATED WORKS

According to the literature in Psychology, the existence of
small dense subgroups should be avoided in some cases [19],
[20]. The negative repercussions of the patients forming small
dense subgroups are also discussed extensively [6], [7], [8],
[9]. For example, the existence of small dense subgroups dete-
riorates the effectiveness of group therapy [19]. Moreover,
research indicates that if children form a small dense sub-
group in the class, they are more likely to bully other children
who do not belong to their small dense subgroup. Reports
also indicate that in the small dense network, peoplewith psy-
chosis frequently experience difficulties in developing and
maintaining social relationships [21]. Therefore, to help
reduce the number of small dense groups in the social net-
work, in this paper, we study the network intervention from
the algorithmic aspects to effectively minimize the number of
small dense subgroups.

Extracting dense subgraphs or communities from social
networks has been studied extensively. Different density
measures have been proposed, such as diameter [2], density
[3], and clique with its variations [4]. In addition, extracting
densely connected communities and overlapping communi-
ties from social networks [1], [22] and identifying dense sub-
graphs while satisfying requirements in different dimensions
[23], [24] have also been studied extensively. For example, Big-
Clam (Cluster Affiliation Model for Big Networks) [1] finds
overlapping communities from social networks. Although the
above research covers various applications, they focus mainly
on extracting dense groups from social networks with differ-
ent size. In contrast, to address the negative repercussions
brought by small dense subgroups, this paper explores a new

Fig. 2. Illustrative example.
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research problem that aims to intervene the social network to
reduce the number of small dense subgroups. Therefore, the
algorithms in previous works cannot be applied to solve the
proposed SSMPhere.

Lin et al. [25] recruit a set of 698 students to analyze the
correlations between social network structures and their
health wellness states, e.g., heart rate, stress, happiness, pos-
itive attitude, and self-assessed health. Based on the analy-
sis, the authors extract a set of features, and demonstrate
that by employing machine learning techniques, they are
able to predict the health behavior and wellness states of
the users with high accuracy. Dhand et al. [26] analyze the
personal ego network of the neurology patients and discuss
the relationship between the patient’s ego network and their
illnesses. By analyzing users’ tweets, including users’ tex-
tual, visual, social attributes, and social interaction data, Lin
et al. [27] propose a hybrid model that integrates the factor
graph model with Convolution Neural Network to detect a
user’s stress level. Also, Fraga et al. [28] analyze the user
activities and interactions on Reddit to discuss the patterns
of the posts on Reddit communities related to mental disor-
ders. They observe that for the Reddit communities, i.e.,
Depression, SuicideWatch, Anxiety, and Bipolar, the inter-
action patterns are similar. Moreover, larger discussion
trees are usually formed by the posts asking for help. For
eating disorder, Wang et al. [29] analyze the interaction pat-
terns of the communication network on Twitter of a set of
self-identified eating disorder patients. They discover two
eating disorder related communities: a community that
reinforces the disordered behavior and a community that
helps them recover. The authors also discuss the interaction
patterns between the two communities and the characteris-
tics of the individual’s behavior. Finally, Shuai et al. [30]
extract a set of behavioral and social network structural fea-
tures from users’ online social network data and propose a
new multi-source learning framework to identify individu-
als who are addicting to online social networks effectively.

The works mentioned above discuss and identify differ-
ent social network structural factors that influence individu-
als’ mental well-being, and models have been proposed to
detect the potential mental disorder patients based on dif-
ferent social network features. Our work, which employs
the network intervention strategy to modify the individuals’
social network structure to improve their well-being, can be
viewed as the next step toward helping those individuals
with mental disorders.

Employing Computer Science techniques to help mental
disorder patients has just started but is gaining more research
attention. O’Leary et al. [31] conduct a two-week experiment
with 40 people to discuss the effectiveness of talk therapy for
mental disorder patients, under two different talk therapy set-
tings: guided chats and unguided chats. They conclude that
guided chats usually offer solutions to problems, while
unguided chats can help experience sharing, and these
insights can help design peer support chat systems.Moreover,
Murnane et al. [32] study the social relations and interactions
of 22 individuals with bipolar disorder and discuss the design
implications for personal informatics systems. On the other
hand, to help those with social network addiction, Shuai et al.
[33] propose a new algorithm, based on behavioral therapy, to
substitute addictive newsfeeds in a user’s Facebookwith some

less addictive and more supportive newsfeeds, which is able
to significantly reduce the users’ addictive scores. Finally,
Wilder et al. [34] discuss the relationship between social influ-
ence and obesity. They formulate a problem to optimize the
social influence among the users. Although the above works
aim at helping the people with mental disorder by employing
techniques in Computer Science, they are different from
the proposed research problem in this paper, and their
approaches cannot be applied to our scenario directly. This is
because they do not consider the important factor of small
dense subgroups, and their algorithms are not designed to
improve the well-being of the individuals under the concept
of small dense subgroups.

4 ALGORITHM FOR SSMP WITH D ¼ 3

Although the general SSMP is NP-Hard, after carefully
examining the problem, we observe that a special case of
SSMP is indeed polynomial-time solvable, i.e., a polyno-
mial-time algorithm exists that can obtain the optimal solu-
tion for SSMP with D ¼ 3. In the following, we first propose
a polynomial-time algorithm for the special case of SSMP
with D ¼ 3 in Section 4.1. Then, we improve the algorithm
to linear-time with a specially designed data structure,
Ratio-Shifting Array (RSA), in Appendix C, available in the
online supplemental material.

Please note that SSMP with D � 2 is trivial. For D ¼ 2, the
graph only contains a set of independent D-SGs (which are
triangles), and these D-SGs are not overlapping or con-
nected. In this case, the optimal solution is to randomly pick
b vertices each from a unique D-SG and to link the b vertices
to any vertex in A (the set of new vertices)3. On the other
hand, for D ¼ 1 or D ¼ 0, no D-SG exists because for any ver-
tex v in a triangle, degðvÞ � 2 must hold, and D-SGs are
inherently triangles.

For the ease of presentation, we assume that the input
graph is preprocessed offline according to the given D to
remove redundant vertices that will never contribute to the
number of D-SGs. That is, the input graph G is preprocessed
to construct bG by removing all the vertices which are i) not
covered by any triangle or ii) with degrees greater thanD. The
preprocessing strategy does not change the optimal solution
due to the following two reasons: i) If a vertex is not covered
by any triangle, linking it to a vertex in A does not reduce
D-SGs. ii) If a vertex v has degree greater than D, any triangle
covering v is not a D-SG by definition. Therefore, linking v to
any vertex inA does not reduceD-SGs aswell.

4.1 Algorithm Design

We denote degGðvÞ the original degree of vertex v in G, and
denote degbGðvÞ the degree of v in the preprocessed graph bG.
Let cv denote the cost of v 2 bG where cv ¼ D� degGðvÞ þ 1.
By definition, if the degree of a vertex covered by a D-SG
exceeds D, the D-SG no longer exists. Therefore, cv can be
viewed as the number of edge additions required for v to
eliminate the D-SGs covering v. Given a subset of vertices
S � bG, we denote nDðv� SÞ the number of D-SGs covering

3. If there are fewer than b D-SGs in G, say d D-SGs, then picking d
vertices each from a unique D-SG and linking them to a vertex in A is
the optimal solution.
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the vertex v 2 bG but not covering any vertex in S. Moreover,
nDðSÞ is the number of D-SGs covering all the vertices in S.
Table 1 summarizes the notations used in this section.

The proposed algorithm, namely 3-SMMTG, works as
follows. Given the preprocessed graph bG, we first employ
an effective pruning strategy, namely Cost Pruning, which
partitions bV into two parts: V and the rest bV �V. Each ver-
tex v in V satisfies both i) cv � b and ii) cv � s. The pseudo-
code of 3-SMMTG is listed in Algorithm 1, where line 1 of
Algorithm 1 generates bG from G, and line 2 performs Cost
Pruning on bV to construct V.

In the subsequent steps, this algorithm only needs to
examine the vertices in V and can safely skip the vertices in
bV �V to effectively reduce the computation time. The proof
of the Cost Pruning strategy will be detailed later.

The core of the algorithm is to construct the b-Max Set S
where S � V, such that the total cost of the vertices in S is
smaller than b, i.e.,

P
u2S cu < b, and the vertices in S are

covered by the maximum number of D-SGs. The definition
of b-Max Set is as follows.

Definition 2 (b-Max Set). Given the parameters b and D, the
b-Max Set S is the set of vertices in V such that

P
u2S cu � b,

and S is covered by the maximum number of D-SGs in G.

To construct the b-Max Set, 3-SMMTG first creates a set S
and iteratively includes new vertices into S (line 3 of Algo-
rithm 1). Later we will prove that the constructed S is indeed
the b-Max Set. At the beginning, S is an empty set. Then, S is
expanded by iteratively selecting vertices from V into S. To
guide the algorithm for an effective exploration, 3-SMMTG
adopts the notion of cost ratio for each vertex in respect to S.
Given a vertex v 2 V, the cost ratio of v in respect to S is

defined as nDðv�SÞ
cv

, where nDðv� SÞ is the number of D-SGs
covering v but not covering any vertex in S, and cv is the cost
of v. At each iteration (line 4 of Algorithm 1), 3-SMMTG
extracts the vertex v with the maximum cost ratio among the
vertices in V (line 5 of Algorithm 1). 3-SMMTG moves v into
S if

P
u2S cu þ cv � b holds, otherwise v is truncated and

3-SMMTG enters another iteration (lines 6 to 8 of Algorithm
1). The iterations repeat until the total cost of the vertices in S
is at least b, i.e.,

P
v2S cv � b.

After findingS, we constructA as a setwithmaxv2Scv verti-
ces. Please note that jAj ¼ maxv2Scv � s because S � V and
any vertex u 2 V satisfies cu � s after Cost Pruning. AfterA is
constructed, for each vertex v in S, the algorithm links v to
exactly cv vertices inA, i.e., a1, a2, ..., acv , and creates exactly cv
edges ðv; a1Þ, ðv; a2Þ, ..., ðv; acvÞ inF for each v. Finally, the algo-
rithm returns the graph G0 ¼ ðV [A;E [ F Þ. These steps are
shown in lines 11 to 13 ofAlgorithm 1.

Fig. 3 presents a step-by-step example for 3-SMMTG.Here,
we have b ¼ 4, D ¼ 3, and s ¼ 1. Specifically, 3-SMMTG first
preprocesses G, performs Cost Pruning (as stated in Lemma

1), and initializes the sets (lines 1 to 3 of Algorithm 1). The pro-
posed Cost Pruning removes v5; v6; v7; v9; v12, and we have
V ¼ fv1; v2; v3; v4; v8; v10; v11; v13; v14; v15g.

3-SMMTG then finds the set S from Fig. 3a as follows. At
the beginning, S is empty and the U ¼ V. In the first iteration,
3-SMMTG picks vertex v1 into S, because v1 incurs the maxi-

mum cost ratio (line 5 of Algorithm 1), i.e., nDðv1�SÞ
cv1

¼ 3
1 ¼ 3.

Next, v1 is moved into S (lines 6 and 7 of Algorithm 1). Now,
S ¼ fv1g, and

P
u2S cu ¼ 1. Then, v1 is removed fromU (line 8

of Algorithm 1). The vertex in S is shown as the dark vertex in
Fig. 3b.

In the second iteration, the algorithm selects v8, with
nDðv8�SÞ

cv8
¼ 2 (line 5 of Algorithm 1). Please note that v8; v11;

v13; v15 all have the same cost ratio, i.e., 2, and the algorithms
breaks the tie arbitrarily by selecting v8. Afterward, v8 is
moved into S (lines 6 and 7 of Algorithm 1). Now, S ¼
fv1; v8g, and

P
u2S cu ¼ 2 < b ¼ 4. Next, v8 is removed from

U (line 8 of Algorithm 1). The dark vertices in Fig. 3c show the
vertices inS after the second iteration.

In the third iteration, the algorithm selects v13, with
nDðv13�SÞ

cv13
¼ 2, and removes v13 from U . Now, S ¼ fv1; v8; v13g,

and
P

u2S cu ¼ 3 < b ¼ 4. The dark vertices in Fig. 3d show
the vertices in S after this iteration.

Finally, 3-SMMTG chooses v2 (line 5 of the Algorithm 1)

with nDðv2�SÞ
cv2

¼ 1
1 ¼ 1. After this step, S ¼ fv1; v8; v13; v2g, and

TABLE 1
Summary of Notations Used by 3-SMMTG

Term Description Term Description

cv cv ¼ D� degGðvÞ þ 1 bG Graph after preprocessing
V Vertex set after Cost Pruning nDðv� SÞ Num. of D-SGs covering v but not S
nDðSÞ Num. of D-SGs covering S rðV;E; F Þ dðV;EÞ � dðV;E [ F Þ
A New vertex set F New edge set

Fig. 3. Step-by-step example of 3-SMMTG.
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P
u2S cu ¼ 4 � b. Therefore, 3-SMMTG stops including new

vertices into S (line 4 of Algorithm 1). The dark vertices in
Fig. 3e are the vertices in S after this iteration.

After finding the set S, the algorithm constructs the set A
accordingly. As maxv2Scv ¼ 1, 3-SMMTG creates one vertex
in A, namely a1 (line 11 of Algorithm 1). In the next step, the
algorithm creates new edges linking from the vertices in S to
A (line 12 of Algorithm 1). Specifically, for vertices v1, v2, v8,
and v13, their costs are all 1. Therefore, one edge is created by
linking each of fv1; v2; v8; v13g to a1. Finally, the algorithm out-
puts the intervened graph (line 13 of Algorithm 1). The result-
ing intervened graph is shown in Fig. 3f and it reduces 8
D-SGs, which is the optimal solution to this instance.

Now, we consider the pruning strategy mentioned above,
i.e., Cost Pruning, which is able to significantly reduce the
number of vertices that need to be considered. Specifically,
the Cost Pruning strategy is elaborated in Lemma 1.

Lemma 1 (Cost Pruning). For any vertex v 2 bG, v can be
pruned if cv > b or cv > s.

Proof. If cv > b, we do not have to consider linking v to any
vertex in A because even if we link all the b new edges to v
(i.e., linking b edges from v to b vertices in A), the degree
of v will still be smaller than Dþ 1, indicating that no
D-SGs disappears.

Similarly, if cv > s, there will not be enough new ver-
tices to allow vertex v to have degree greater than D,
implying that increasing the degree of v cannot reduce
any D-SG. Therefore, such vertices can be skipped (but
cannot be removed from G because the edges linking
from them are still meaningful). tu

Algorithm 1. 3-SMMTG

Input: Graph G ¼ ðV;EÞwith parameters b, s (D ¼ 3)
Output: Graph G0 ¼ ðV [A;E [ F Þwith maximized rðV;E; F Þ
1: Process G to bG ¼ ð bV ; bEÞ, which contains only D-SGs
2: Perform Cost Pruning on bV to obtain V

3: S  ? ; A ? ; F  ? ; U  V;
4: while

P
u2S cu < b do

5: Select v 2 U that maximizes nDðv�SÞ
cv

(ties can be broken
arbitrarily)

6: if
P

u2S cu þ cv � b then
7: S  S [ fvg
8: U  U n fvg
9: if U ¼ ? then
10: Break;
11: Construct Awithmaxu2Scu vertices
12: For each vertex v in S, link v to cv vertices fa1; a2; . . . ; acvg � A

and create the corresponding edges ðv; a1Þ; . . . ; ðv; acv Þ in F
13: return G0 ¼ ðV [A;E [ F Þ

4.2 Analysis of 3-SMMTG

In the following, we prove that 3-SMMTG obtains the optimal
solution for SSMPwithD ¼ 3 and analyze its time complexity.
We first prove that given a b-Max Set as defined in Definition
2, we can always maximize rðV;E;F Þ. Then, we show that
there are only 4 different cost ratios when D ¼ 3 and prove
that the set S obtained by 3-SMMTG satisfies Definition 2, i.e.,
S is a b-Max Set. Finally, Theorem 3 proves that 3-SMMTG
obtains the optimal solution in polynomial time.

Specifically, given a b-Max Set S, the following lemma
shows that we can obtain the minimum dðV;E [ F Þ to maxi-
mize rðV;E; F Þ.
Lemma 2. For an instance of SSMP with parameters b and s, if

b-Max Set S � V is obtained, the optimal solution of the SSMP
instance can be obtained.

Proof. Given a b-Max Set S � V, we can find G0 ¼ ðV [A;
E [ F Þ such that degG0 ðvÞ > D, 8v 2 S, where the new ver-
tex setA and the new edge set F are constructed as follows.
The vertex set A includes exactly maxu2Scu vertices. For
each v in S, we link v to each vertex in fa1; a2; . . . ; acvg � A
and create the edges fðv; a1Þ; ðv; a2Þ; . . . ; ðv; acvÞg in F . This
procedure ensures that the degree of each vertex in S is
greater thanD.

Since the set S is covered by the largest number of
D-SGs in G (S is the set of vertices that maximize nDðSÞ),
making the degree of all the vertices in S be greater than
D reduces the largest number of D-SGs, i.e., minimizes
dðV;E [ F Þ. This is because dðV;E [ F Þ ¼ dðV;EÞ � nDðSÞ.
We prove this with contradiction. If there exists another
set T 6¼ S such that making the degrees of all the vertices
in T be greater than D results in a smaller dðV;E [ F Þ,
then nDðSÞ < nDðT Þ must hold. Since S maximizes nDðSÞ
and S satisfies

P
v2S cv � b,

P
v2T cv > b holds. Therefore,

the budget b is not sufficiently large for intervening all
vertices in T to have degrees greater than D. This leads to
a contradiction. Therefore, such T does not exist, and
making the degrees of all the vertices in S be greater than
D minimizes dðV;E [ F Þ, which implies that rðV;E; F Þ is
maximized. The lemma follows. tu
From the direct result of Lemma 2, we only describe how

to find b-Max Set S in the following, because the optimal
solution of SSMP can be obtained easily if the b-Max Set S is
found. Now we prove that the proposed 3-SMMTG can
indeed obtain the b-Max Set S in polynomial time. We first
analyze the cost ratios in Lemma 3.

Lemma 3. For any vertex v 2 V, the cost ratio of vmust be either

0.5, 1, 2, or 3. That is, n
Dðv�SÞ
cv
2 f0:5; 1; 2; 3g holds.

Proof. Since D ¼ 3, the maximum number of triangles cover-
ing any vertex is 3. When a vertex v is covered by 3 or 2 tri-
angles, v’s degree can only be 3, indicating that cv ¼ D�
degGðvÞ þ 1 ¼ 1 holds. At the same time, the cost ratio of v
is 3 (covered by 3 triangles) or 2 (covered by 2 triangles).
For another case, when a vertex v is covered by 1 triangle,
the degree of v can be 2 (cv ¼ 2) or 3 (cv ¼ 1). Therefore, the
cost ratio is either 0.5 or 1 in this case. tu
Now, we prove that the set S obtained by 3-SMMTG is

indeed a b-Max Set.

Lemma 4. The set S obtained by 3-SMMTG is a b-Max Set.

Proof. Lemma 3 shows that there are only 4 different cost
ratios. Here, we categorize them into 4 different types of
triangle structures, as shown in Fig. 4. Figs. 4a and 4b
illustrate the vertex (black) with cost ratio 3 (type-1) and 2
(type-2), respectively. Fig. 4c shows the vertex with cost
ratio 1 (type-3) and Fig. 4d shows the vertex with cost
ratio 0.5 (type-4).
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Since D ¼ 3, the maximum degree of each vertex is 3,
indicating that the 4 structures of Fig. 4 do not share any
vertex with other types. If all vertices in S are not
included in a structure, we say that structure is an un-
selected structure (all vertices in that structure are not
selected into S).

Here, we consider the different scenarios when
selecting different numbers of vertices in a structure
into S. Recall that all structures are independent to
each other, so we can consider each structure indepen-
dently. If we select a vertex in a type-1 structure into
S, this makes its neighbors’ cost ratios be 1. Therefore,
after a vertex in type-1 structure is selected into S, its
neighbors can only be selected into S if there is no
remaining vertices in type-2 structures. Moreover, if
there are two type-1 vertices included in S, the remain-
ing vertices must have cost ratio 0, and thus these ver-
tices do not need to be considered in the future. If we
select a vertex in a type-2, type-3, or type-4 structure
into S, the cost ratios of the vertex’s neighbors becomes
0. Therefore, these neighbors do not need to be consid-
ered in the future.

We prove this lemma with an induction on b. When
b ¼ 1, 3-SMMTG picks the vertex with the maximum cost
ratio into the empty S. This operation maximizes nDðSÞ.
We then assume that when b ¼ k� 1, the statement of
the lemma holds.

When b ¼ k, we need to prove that the algorithm is
able to maximize nDðSÞ where

P
u2S cu � k. In the algo-

rithm, we assume that we can find S that maximizes
nDðSÞ with

P
u2S cu � k� 1. As the triangle structures

are independent, the vertices we select into S do not
affect the cost ratios of the other vertices in other triangle
structures. Since only the vertices with cost ratio 0.5 can
have the cost 2, if vertex v’s cost ratio is maximum, then
its cost cv must be minimum. This is because when
D ¼ 3, only the vertices with cost ratio 0.5 can have cost
equal to 2, which is the maximum cost (the cost can only
be 1 or 2 in this case), and 0.5 is the minimum cost ratio
when D ¼ 3. Therefore, all the vertices which have been
selected into S have smaller or equal cost to the vertices
that are not yet selected into S.

In the following, let vmax denote the vertexwith themax-
imum cost ratio in V n S. If vmax is in the structures that do
not include any vertices in S, and cvmax < k�P

u2S cu,
selecting vmax into S maximizes nDðSÞ because the cost
ratio of vmax is not affected by the vertices inS.

If vmax is in the structures that include some vertices in
S, and cvmax < k�P

u2S cu, the maximum cost ratio will
be 1 and the cost cvmax is equal to 1. From the observation
above, we know that all the type-2 structures must cover
the vertices in S. Thus selecting vmax into S maximizes
nDðSÞ.

If vmax has cost cvmax > k�P
u2S cu, S already incurs

the maximum nDðSÞ because there is no other vertex in
V n S that can be selected into S according to the cost
ratio property mentioned above, where the property
states that if the vertex v’s cost ratio is maximum, its cost
cv must be minimum. This implies that cvmax is the mini-
mum cost among the vertices’ costs in V n S. Therefore,
no other vertex in V n S can be selected into S. In

summary, when b ¼ k, the statement of the lemma holds.
The lemma follows. tu
The following theorem summarizes the above theoretical

results and analyzes the time complexity of the proposed 3-
SMMTG algorithm. We further improve the time complex-
ity of the proposed 3-SMMTG to linear time, i.e., OðjV jÞ time,
with a specially designed data structure, Ratio-Shifting
Array, in Appendix C, available in the online supplemental
material.

Theorem 3. 3-SMMTG obtains the optimal solution to SSMP
with D ¼ 3 in OðjV j2Þ time.

Proof. Lemma 2 states that if the b-Max Set S is obtained, the
optimal solution can be constructed. From Lemma 3, we
know that 3-SMMTG can obtain b-Max Set, i.e., S. There-
fore, 3-SMMTG obtains the optimal solution to SSMP
with D=3.

We now analyze the time complexity. We consider the
input graph G ¼ ðV;EÞ already preprocessed offline such
that G contains only feasible D-SGs. First, the algorithm
spends OðjV jÞ time to perform Cost Pruning. Since we
can select at most jV j vertices, the while loop from lines 4
to 10 in Algorithm 1 performs at most jV j iterations.
Inside the while loop, it needs degGðvÞ � 3 ¼ Oð1Þ time to
update the cost ratios and OðjV jÞ time to find the vertex
with the maximum cost ratio. Therefore, the time com-
plexity for the while loop is OðjV j2Þ. For the construction
of G0 (more precisely, A and F ) in lines 11 to 12, the algo-
rithm constructs at most 2 new vertices in A and adds at
most b new edges. Since the cost of each vertex in V is at
most 2 when D ¼ 3, b is at most 2 	 jV j. The running time
for constructing G0 is OðjV jÞ. The overall time complexity
of 3-SSMTG is OðjV j2Þ. tu
The bottleneck of the na€ıve implementation of 3-SMMTG

is the extraction of the vertex with the maximum cost ratio,
which takes OðjV jÞ time for each extraction. However, as
there are only 4 different cost ratios as stated in Lemma 3,
we propose a specially designed data structure, named
Ratio-Shifting Array (RSA) to reduce the time of each extrac-
tion from OðjV jÞ to Oð1Þ. With RSA, we are able to improve
the performance of 3-SMMTG and reduce the time complex-
ity to OðjV jÞ. Please refer to Appendix C, available in the
online supplemental material, for the details of the pro-
posed Ratio-Shifting Array.

5 APPROXIMATION ALGORITHM

FOR GENERAL SSMP

In this section, we propose an approximation algorithm for
the general SSMP, namely ESGR, which is an efficient algo-
rithm that achieves an approximation ratio of 1

2 	 ð1� 1
eÞ. We

detail the algorithm design of ESGR and formally prove its

Fig. 4. Four different cost ratios.
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approximation ratio. To boost the performance of ESGR, we
also propose effective pruning strategies to avoid unneces-
sary examinations of vertices. Table 2 summarizes the nota-
tions used in this section.

5.1 Algorithm Description of ESGR

The basic idea of ESGR is similar to the greedy approach in
3-SMMTG. However, simply employing such a greedy
approach cannot achieve a guaranteed performance bound
for the general SSMP. We illustrate with an example below.
In Fig. 5a, given D ¼ 10, b ¼ 4, and s ¼ 4. Vertices v1 and v2
are considered to be selected into S. The cost of v1 is b (i.e.,
4), and v1 is covered by ðb� 2Þ D-SGs; v2 has cost 1 and is
covered by exactly 1 D-SG. The 3-SMMTG algorithm picks
v2 into S first because v2 has a larger cost ratio, i.e., 11. In the
next iteration, 3-SMMTG finds that the budget runs out and
it cannot select v1 into S (the total cost of v1 and v2 is 5).
Therefore, 3-SMMTG stops selecting any other vertex into
S. However, the optimal solution is to select v1 into S, which
is covered by 2 D-SGs. In this case, the approximation ratio
is 1

b�2, which is unbounded because b can be set as any arbi-
trary positive integer.

In fact, the above example manifests that if there exists a
vertex with a high cost and is covered by many D-SGs, then
this vertex will have a low priority when the greedy
approach selects vertices according to their cost ratios.
However, if such a vertex is selected, it is indeed covered by
more D-SGs. To address the problem mentioned above, we
devise algorithm ESGR by considering the existence of such
vertices and prove that ESGR is a constant-ratio approxima-
tion algorithm to SSMP, i.e., the approximation ratio is
1
2 	 ð1� 1

eÞ.
Specifically, ESGR first finds the set S by iteratively

selecting the vertex with the maximum cost ratio into S,
similar to 3-SMMTG. That is, the set S is empty initially
(line 3 of Algorithm 2). In each iteration, to find the suitable
vertex for S, ESGR identifies the vertex v0 =2 S with the maxi-
mum cost ratio and moves it into S if

P
u2S cu þ cv0 � b

holds (lines 5 to 7 of Algorithm 2). The procedure repeats
while the sum of the vertex costs in S is less than b, i.e.,P

u2S cu < b. ESGR regards S as the first candidate set. In
addition, to effectively consider those vertices that come
with high costs and are covered by many D-SGs at the same
time, ESGR generates the second candidate set as follows
(line 11 of Algorithm 2). The second candidate set is the set
containing only one single vertex, i.e., fvmaxg, where
vmax ¼ argmaxv2V nDðvÞ. ESGR then extracts the candidate
set that is covered by more D-SGs from the two candidate
sets to construct the output graph G0 (lines 12 to 16 of Algo-
rithm 2). As will be proved, the identification of the second
candidate set is a crucial step to achieve the guaranteed

performance bound. The pseudocode of ESGR is presented
in Algorithm 2.

Algorithm 2. ESGR

Input: Graph G ¼ ðV;EÞwith parameters b, s, D
Output: Graph G0 ¼ ðV [A;E [ F Þwith maximized rðV;E; F Þ
1: Process G to bG ¼ ð bV ; bEÞ, which contains only D-SGs
2: Perform Cost Pruning on bV to obtain V

3: S  ? ; A ? ; F  ? ; U  V;
4: while

P
u2S cu < b do

5: Find v0 2 U that maximizes nDðv0�SÞ
cv0

(ties can be broken
arbitrarily)

6: if
P

u2S cu þ cv0 � b then
7: S  S [ fv0g
8: U  U n fv0g
9: if U ¼ ? then
10: Break;
11: Select vmax 2 V that maximizes nDðfvmaxgÞ
12: if nDðfvmaxgÞ > nDðSÞ then
13: S  fvmaxg
14: Construct Awithmaxu2Scu vertices
15: For each vertex v in S, link v to cv vertices fa1; a2; . . . ; acvg � A

and create the edges ðv; a1Þ; ðv; a2Þ; :::ðv; acvÞ inF
16: return G0 ¼ ðV [A;E [ F Þ

Figs. 5b, 5c, 5d, 5e, 5f, and 5g present a step-by-step
example of ESGR with D ¼ 5, s ¼ 2, and b ¼ 6. ESGR first
preprocesses G into bG, performs the Cost Pruning, and initi-
alizes the sets (lines 1 to 3 of Algorithm 2). After Cost Prun-
ing, v1; v2; v5; v6; v10; v11; v12; v14 are pruned off, and we have
V ¼ fv3; v4; v7; v8; v9; v13g.

ESGR starts to construct the first candidate set (lines 4 to
10). ESGR extracts the vertex with the maximum cost ratio
in each iteration into S. ESGR first moves v4 into S since v4
has the maximum cost ratio (i.e., 5) (line 5 of Algorithm 2).
Next, U is updated (line 8 of Algorithm 2). After this itera-
tion, the vertex selected in S is shown as the dark vertex in
Fig. 5c. In the second iteration, ESGR selects v8 since v8 has
the maximum cost ratio (i.e., 2) (line 5 of Algorithm 2).
Now, S ¼ fv4; v8g, and the total cost of S is

P
v2S cv ¼ 2 � b.

The dark vertices in Fig. 5d show the vertices in S after this
iteration.

In the subsequent two iterations, ESGR selects v7, and v13
because they incur the maximum cost ratios, (line 5 of the
Algorithm 2), i.e., 1. Here, since v7 and v13 all have the same
cost ratio, the tie is broken by ESGR arbitrarily. Then, the algo-
rithm updates U by removing v7 and v13 from it (line 8 of
Algorithm 2). The vertices in S after these two iterations are
shown in Figs. 5e and 5f, respectively. Now, S ¼ fv4; v8;
v7; v13g, and the total cost of S is

P
v2S cv ¼ 6 � b. ESGR stops

moving vertices into S (line 4 of Algorithm 2). For the second
candidate set, ESGR finds that vertex v4 is covered by the

TABLE 2
Summary of Notations Used by ESGR

Term Description Term Description

vi The ith vertex selected into S iðviÞ The iteration that the ith vertex is selected into S
Uk V n fv1; v2; . . . ; vkg nDðS� Si�1Þ Num. of D-SGs covering S but not Si�1
v1S The first vertex in S selected by ESGR in

iteration iðv1SÞ but not added to S
#ðv1SÞ Num. of vertices selected to S before v1S
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maximum number of D-SGs. Therefore, ESGR sets fv4g as the
second candidate set (line 11 ofAlgorithm 2).

Finally, ESGR compares the two candidate sets and
extracts the one that is covered by more D-SGs. Since the
first candidate set S is covered by 10 D-SGs (whereas the
second candidate set fv4g is covered by 5 D-SGs), ESGR
selects S ¼ fv4; v8; v7; v13g to construct the output graph G0

(lines 12 to 13 of Algorithm 2). The construction of G0 is the
same as that in 3-SMMTG (lines 14 to 16 of Algorithm 2).
Fig. 5g presents the resulting G0.

5.2 Analysis of Approximation Ratio for ESGR

In the following, we analyze the approximation ratio of ESGR.
Please note that Lemma 2 in Section 4 indicates that if we find
a b-Max Set S, we are able to obtain the optimal solution for
SSMP. That is, the number of D-SGs that can be reduced in the
optimal solution is equal to nDðSÞ, i.e., the number of D-SGs
covering the b-Max Set S. In other words, based on Lemma 2,
the ratio of nDðSÞ to nDðSÞ equals the approximation ratio.
Therefore, in our proofs below, we focus on deriving the

guaranteed ratio of n
DðSÞ

nDðSÞ.
Given a b-Max Set S, at each iteration, let v0 be the vertex to

be added to S (i.e., the vertex that satisfies
P

u2S cu þ cvi � b
in line 6 of Algorithm 2). Moreover, we denote iðv0Þ the itera-
tion of the while loop in line 4 of Algorithm 2 such that v0 is
added into S.

Let v1S be the first vertex that belongs to S which is
selected by ESGR in iteration iðv1SÞ, but is not added to S
due to the budget constraint. That is, iðv1SÞ is the first itera-
tion such that: i) v1S 2 S, ii) v1S incurs the maximum cost ratio
in iteration iðv1SÞ, and iii)

P
u2S cu þ cv1

S
> b at iteration iðv1SÞ.

Let #ðv1SÞ denote the number of vertices that have been
selected into S before v1S is considered. Please note that if
the vertex v1S does not exist, it implies that S � S. If S ¼ S,
then ESGR obtains the optimal solution. If S 
 S, it indicates
that ESGR obtains a solution better than the optimal solu-
tion, which is a contradiction. Therefore, in our analysis, we
can assume that v1S always exists. Moreover, to better ana-
lyze the algorithm, let i ¼ iðv0Þ, we also denote Si the set of
vertices selected through iteration 1 to iteration iðv0Þ, and let
Ui ¼ V n Si. In other words, Si [ Ui ¼ V always holds.

In the following, we first derive the relationship between
the numbers of D-SGs covering Si and Si�1.

Lemma 5. For any iteration before iteration iðv1SÞ, nDðSiÞ�
nDðSi�1Þ � cv0

b 	 nDðSÞ � cv0
b 	 nDðSi�1Þ must hold for 1 � i �

#ðv1SÞ þ 1.

Proof. Let nDðS� Si�1Þ be the number of D-SGs which cover
S but do not cover Si�1. We observe that nDðS� Si�1Þ is at

least nDðSÞ � nDðSi�1Þ. The reason is as follows. Let X
denote the set of D-SGs covering S, and let Y denote the
set of D-SGs covering Si�1. jXj � jX \ Y j � jXj � jY jmust
hold. Please note that, if there exist vertices discarded
from U before choosing v0, then they are not in S (by defi-
nition of v1S). Since v0 is the vertex v with the maximum
cost ratio among the vertices in Ui�1 such that the total
cost of Si�1 [ fvg is at most b, we have that, for each ver-
tex in S n Si�1, its cost ratio is smaller than or equal to the

cost ratio of v0, i.e.,n
Dðv0�Si�1Þ

cv0
.

Therefore, the cost ratios of the vertices in S n Si�1 are
at most nDðv0�Si�1Þ

cv0
. Since the total cost of S is at most b,P

u2SnSi�1 cu �
P

u2S cu � b holds, and nDðS n Si�1Þ is at

most b 	 nDðv0�Si�1Þcv0
, which is greater than or equal to

nDððS n Si�1Þ � Si�1Þ.
Since nDðS� Si�1Þ ¼ nDððS n Si�1Þ � Si�1Þ, we have

b 	 nDðv0�Si�1Þcv0
� nDððS n Si�1Þ � Si�1Þ because the cost ratios

of the vertices in S n Si�1 are at most n
Dðv0�Si�1Þ

cv0
, and the total

cost of S n Si�1 is at most b. Moreover, nDððS n Si�1Þ�
Si�1Þ ¼ nDðS� Si�1Þ � nDðSÞ � nDðSi�1Þ as described in

the beginning of this proof.
Please note that nDðvi � Si�1Þ ¼ nDðSiÞ � nDðSi�1Þ

holds. By substituting nDðvi � Si�1ÞwithnDðSiÞ � nDðSi�1Þ,
we have b 	 nDðSiÞ�nDðSi�1Þcv0

� nDðSÞ � nDðSi�1Þ. Then, we

multiply both sides with
cv0
b and we have nDðSiÞ�

nDðSi�1Þ � cv0
b 	 nDðSÞ � cv0

b 	 nDðSi�1Þ. tu
Then, we derive the relationship between nDðSiÞ and

nDðSÞ in the following lemma.

Lemma 6. For any iteration before iteration iðv1SÞ, nDðSiÞ � ½1�Qi
k¼1ðb�cvkb Þ� 	 nDðSÞ must hold for 1 � i � #ðv1SÞ þ 1.

Proof. We prove this lemma by induction. After the first ver-
tex v1 is selected intoS, i.e., S1 ¼ fv1g, nDðS1Þ ¼ nDðv1 � ?Þ,
i.e., the number of D-SGs covering S1 is equal to the number
of D-SGs covering v1. We need to prove that nDðv1 � ?Þ �
cv1
b 	 nDðSÞ. This is true because the cost ratio nDðv1�?Þ

cv1
for v1 is

maximum over all the vertices in V and the maximum cost

is atmost the budget b.
Assume that when the (i-1)th vertex vi�1 is considered,

the lemma holds. Now, we show that the lemma holds
when the ith vertex vi is considered. First, we add
ðnDðSi�1Þ � nDðSi�1ÞÞ to nDðSiÞ to make it more obvious to
apply Lemma 5. Therefore, nDðSiÞ ¼ nDðSiÞ þ ðnDðSi�1Þ�
nDðSi�1ÞÞ ¼ ðnDðSiÞ � nDðSi�1ÞÞ þ nDðSi�1Þ. From the
above equation and Lemma 5, we have nDðSiÞ � cvi

b 	
nDðSÞ � cvi

b 	 nDðSi�1Þ þ nDðSi�1Þ ¼ cvi
b 	 nDðSÞ þ b�cvi

b 	
nDðSi�1Þ.

Fig. 5. Step-by-step example of ESGR.
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Moreover, from the induction assumption, we have

nDðSiÞ � cvi
b 	 nDðSÞ þ b�cvi

b 	 ½1�
Qi�1

k¼1ðb�cvkb Þ� 	 nDðSÞ ¼ nDðSÞ�
b�cvi

b 	 ½
Qi�1

k¼1ðb�cvkb Þ� 	 nDðSÞ ¼ ½1�Qi
k¼1ðb�cvkb Þ� 	 nDðSÞ. The

lemma follows. tu
Theorem 4. Given a b-Max Set S and the S obtained by ESGR,

nDðSÞ
nDðSÞ ¼ 1

2 	 ð1� 1
eÞ, i.e., ESGR is a 1

2 	 ð1� 1
eÞ-approximation

algorithm to SSMP.

Proof. Assume that ESGR is at iteration iðv1SÞ, from Lemma 6,

we have nDðS#ðv1
S
Þþ1Þ � ½1�

Q#ðv1
S
Þþ 1k¼1ðb�cvkb Þ� 	 nDðSÞ ¼

½1�Q#ðv1
S
Þþ1

k¼1 ð1� cvk
b Þ� 	 nDðSÞ. Since adding v1S to S#ðv1

S
Þ vio-

lates the constraint b,
P

v2S
#ðv1

S
Þ
cv þ cv1

S
> b holds. We have

nDðS#ðv1
S
Þþ1Þ � ½1�

Q#ðv1
S
Þþ1

k¼1 ð1� cvkP
v2S

#ðv1
S
Þþ1

cvÞÞ� 	 n
DðSÞ.

Next, recall that for any positive real numbers c1; c2;
. . . ; cn where

Pn
i¼1 ci ¼ C, the function ð1�Qn

i¼1ð1� ci
CÞÞ is

minimum when c1 ¼ c2 ¼ ::: ¼ cn ¼ C
n. Therefore, we

derive the following inequality: nDðS#ðv1
S
Þþ1Þ � ½1� ð1�

1
#ðv1

S
Þþ1Þ

#ðv1
S
Þþ1� 	 nDðSÞ � ð1� 1

eÞ 	 nDðSÞ. As nDðS#ðv1
S
Þþ1Þ ¼

nDðS#ðv1
S
ÞÞ þ nDðv1S � S#ðv1

S
ÞÞ holds, from the above inequal-

ity, we have nDðS#ðv1
S
ÞÞ þ nDðv1S � S#ðv1

S
ÞÞ � ð1� 1

eÞ 	 nDðSÞ.
Then,we observe that nDðv1S � S#ðv1

S
ÞÞ is atmost themax-

imum number of the D-SGs covering a single vertex v 2 V.

In other words, the number of D-SGs covering the second
candidate set fvmaxg, i.e., nDðfvmaxgÞ in ESGR is at least

nDðv1S � S#ðv1
S
ÞÞ. Therefore, nDðS#ðv1

S
ÞÞ þ nDðfvmaxgÞ � ð1�

1
eÞ 	 nDðSÞ. From the inequality above, either nDðS#ðv1

S
ÞÞ (i.e.,

the number of D-SGs covering the first candidate set) or

nDðfvmaxgÞ (i.e., the number of D-SGs covering the second

candidate set) is at least 1
2 	 ð1� 1

eÞ 	 nDðSÞ, indicating that

ESGR is a 1
2 	 ð1� 1

eÞ-approximation algorithm to SSMP.

The theorem follows. tu
Theorem 5. The time complexity of ESGR is minfOðjV j2Þ;

Oðb 	 jV jÞg.
Proof. We prove this theorem in the Appendix B, available

in the online supplemental material. tu
To further boost the efficiency of ESGR, we propose two

new pruning methods, named Triangle Pruning (TP) and
Subset Pruning (SP), which are able to remove redundant
vertices from V. Please refer to Appendix D, available in the
online supplemental material, for the details.

6 RESULTS OF EVALUATION STUDY

In the following, we first detail the setup of this evaluation
study, then introduce mixed effect model, a statistical tech-
nique to quantify the difference between the control and
experimental groups, to evaluate the long-term intervention
effect quantitatively, and then presents the results of this
evaluation study.

6.1 Setup

This evaluation study aims at illustrating the utility and fea-
sibility of the proposed network intervention algorithm in

real-world scenarios. We have recruited 1,020 volunteers,
and after removing unqualified volunteers, there are 812
volunteers (referred to as participants hereafter) who com-
pleted this study. The study spanned 8 weeks, i.e., from
June 2019 to August 2019. The recruited 812 volunteers
include 408 males and 404 females, and their ages range
from 20 to 35 years old. Most of the participants are univer-
sity students and staffs in a national university in Taiwan,
who form a social network with 812 vertices, 2,827 edges,
and 1,348 4-SGs before the study begins. This 8-week study
includes 8 weekly measurements of psychological outcomes
among the 812 participants, and one additional pre-test out-
come (measured before the study begins), resulting in 7,308
data points in this study. Two self-reported standard psy-
chological questionnaires for Internet Addiction and Depres-
sion [35], [36] are adopted as the indicators of the health
outcomes. The outcome of each questionnaire is an integer
score to measure the severity of the disorder, and a higher
score implies that the individual is suffering from more
severe symptoms.

To evaluate the effectiveness of the network intervention
recommended by the proposed ESGR algorithm, we ran-
domly selected 406 participants who form 674 4-SGs as the
experimental group (Exp), i.e., the network intervention is per-
formed on this group, based on the recommendation of ESGR,
to minimize the number of D-SGs. The other 406 participants,
who form 670 of 4-SGs were considered the control group
(Ctrl), i.e., no intervention is carried out on this group. It is
worth noting that the suggestion for D ¼ 4 is merely for the
current experimental group. Mental health professionals may
suggest different D values for different scenarios and net-
works. In this evaluation study, we invited 9 mental health
professionals to join the network intervention, who are from
Taipei City Government Community Mental Health Center,
National Taipei University of Nursing and Health Science,
National Taiwan University, National Tsing Hua University,
etc. In other words, s ¼ 9 in this study. Themental health pro-
fessionals suggested to set b ¼ 90 by considering their time
and workload. We employed our proposed ESGR algorithm
to identify b ¼ 90 users in the experimental group to add
edges to the mental health professionals (i.e., adding 90 new
edges) to reduce the number of 4-SGs in the intervened
network.

Following the recommendations from the proposed ESGR
algorithm with s ¼ 9 and b ¼ 90, the mental health professio-
nals built 90 friendship links with the participants selected by
ESGR (these 90 selected participants are referred to as recipi-
ents) and helped the recipients organize social activities for
the rest of the participants in the experimental group. Those
activities include online chatting and face-to-face hangouts.
To validate the effectiveness of the network intervention, the
mental health professionals only provided guidance and help
to those recipients, but did not participate in the social activi-
ties directly. Also, the mental health professionals did not
have any interaction with the participants other than the
recipients.

6.2 Mixed Effect Model and Evaluation Criteria

American Psychological Association [37] provides general
guidelines to systematically evaluate the efficacy of a
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psychological intervention. The criteria for evaluating inter-
vention suggest that attention should be paid to a number of
issues, including the intervention goal, participant selection,
and long-term consequences of the intervention.

Specifically, for participant selection, we randomly assigned
our research subjects into the control group and the experi-
mental group. Then, for intervention goal, we setup our goal to
improve the mental well-being of the experimental group
with network intervention. Therefore, during this experimen-
tal period of 8 weeks, each participant was asked to fill in two
mental health questionnaires weekly, to let us understand the
changes of each participant’s mental status. Finally, for long-
term consequences of intervention, we adopted the mixed effect
model [38], [39], [40], a statistical technique to quantify the dif-
ference between the control and experimental groups, to eval-
uate the long-term intervention effect quantitatively.

The mixed effect model (also called multilevel model)
allows researchers to systematically account for the depen-
dency among repeated measurements in the same subjects
and for the dependency among subjects nested in the same
experimental groups [38], [39], [40]. The method is widely
used in psychology and sociology, especially for psycholog-
ical or network intervention for long-term behavioral
change (e.g., [14], [41], [42]). Therefore, in our evaluation
study, we adopt the mixed effect model, which incorporates
the time variable and its interaction with intervention to
allow us better describing the trajectory of changes in a sub-
ject’s mental state over time and to delineate possible long-
term effect of the intervention.

6.3 Results of Evaluation Study

In Fig. 6, the bars before and after refer to the average
scores of the mental health outcomes before and after inter-
vention, respectively.

In Fig. 6a, we first compare the ratios of the participants
whose scores (scores of Internet addiction and depression
from the standard psychological questionnaires) are above
the cut-off points for each mental disorder, i.e., the ratios of
participants who are considered to have at least mild or
moderate symptoms of each type of mental disorder, before

and after the network intervention organized by ESGR is
performed. A larger ratio implies that more participants are
suffering from mental disorders. The cut-off points are
selected according to the suggestions of the psychological
scales [35], [36] and the mental health professionals4. To bet-
ter demonstrate the effectiveness of the network interven-
tion organized by ESGR, we plot the results of both the
experimental group (Exp) and control group (Ctrl). Please
note that the control group was not involved in any kind of
network intervention, i.e., there is no D-SG reduction for
them.

The results in Fig. 6a manifest that the ratios drop signifi-
cantly after the intervention for the experimental group,
indicating that the mental well-being of a large number of
participants indeed improves after intervention. In contrast,
the ratios of the control group do not have any significant
change. To further demonstrate the effectiveness of the pro-
posed SSMP and ESGR, we also present the distributions of
the participants with different severity levels before and
after the network intervention organized by ESGR. In
Fig. 6b, three types of bars, i.e., Normal, Mild, and Moder-

ate, present the numbers of participants with different
severity of symptoms for each mental disorder in the experi-
mental group. Please note that there is no participant with
severity level higher then Moderate in this study. Fig. 6b
shows that the numbers of participants belonging to Normal
increase and the numbers of participants belonging to Mod-
erate decrease after intervention for both mental disorders.
This indicates that many participants who originally had
mild or moderate symptoms become better after the inter-
vention organized with ESGR.

We then analyze the results based on the gender of the
participants. Fig. 6c shows the ratios of the male and female
participants in the experimental group whose scores are
above the cut-off points for each mental disorder, and
Fig. 6d presents the score reduction of the experimental
group after intervention. The results indicate that after the
intervention organized by ESGR, the ratios for both male
and female participants, as well as the scores, drop signifi-
cantly, indicating that the mental well-being of both female
and male participants are significantly improved after inter-
vention. Moreover, the reduction of the ratios and scores for
males is more significant as compared to those for females.
A possible reason behind this is that females are more likely
to be depressed than males [43], [44]. Therefore, the reduc-
tion of the ratios for the female participants are not as much
as that for males. However, the network intervention orga-
nized by ESGR still effectively help improve the female par-
ticipants’ well-being.

Furthermore, we also evaluate the effectiveness of the
intervention recommended by ESGR with mixed effect
modeling [38], [39], [40], a statistical technique to examine if
the experimental and control groups are statistically differ-
ent. Mixed effect modeling employs techniques similar to
regressions. In the following, we first formulate the model
to include important variables, and then fit the model with
the data obtained in our evaluation study. The estimates
(i.e., parameters) obtained after fitting the model can help

Fig. 6. Evaluation study results.

4. The cut-off points of Internet addiction and depression are 40 out
of 100 points and 10 out of 45 points, respectively.
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us compare and understand the differences between the
two groups. The detailed formulation of the mixed model
and the results are presented in Appendix E, available in
the online supplemental material. In summary, the model
fitting results show that by employing ESGR for network
intervention, the participants in the experimental group
have significant improvements against Internet addiction
and depression, as compared to the control group. This vali-
dates the problem formulation of SSMP and the algorithm
design of ESGR proposed in this paper. Please refer to
Appendix E, available in the online supplemental material,
for the details.

7 EXPERIMENTAL RESULTS

We conduct experiments on 7 real datasets to evaluate the
proposed algorithms. First four datasets, ego-FB [45], FB-GT
[24], ego-Twitter [45], and ego-Gplus [45], are social network
datasets from Facebook, Twitter, and Google Plus. The ego-
FB dataset contains 4K vertices and 44K edges, FB-GT con-
tains 1.4K vertices and 14K edges, ego-Twitter contains 81K
vertices and 1.7M edges, and ego-Gplus contains 100K verti-
ces and 13.6M edges. Moreover, the fifth dataset, DBLP [46],
is a co-author network with 317K vertices and 1M edges,
and the sixth dataset, Pokec [47], is a social network with
1.6M vertices and 30M edges. Finally, the seventh dataset is
the Youtube [46] social network with 1.1M vertices and 3M
edges. The datasets are summarized in Table 3.

Since no algorithm has been proposed for SSMP, we
compare our proposed 3-SMMTG and ESGR with three
baseline algorithms: Brute-Force (BF), Random (RND), and
BigClam (BC) [22]. BF finds the optimal solution of SSMP by
enumerating all possible combinations of vertices satisfying
the budget and seed constraints. RND randomly selects s
vertices to form the set bS. Then, RND treats bS as the b-Max
Set and constructs the corresponding output graph with the
steps similar to ESGR. That is, RND first constructs the set A
with max

u2bScu vertices, and for each v 2 bS, it links v to each

vertex in fa1; . . . ; acvg � A and creates corresponding edges.
BC is a large-scale community detection method. After find-
ing all communities in the network with BC, we iteratively
pick one vertex from each community randomly and add
the selected vertex into the set bS until jbSj ¼ s. BC then treats
bS as the b-Max Set and constructs the corresponding output
graph with the steps similar to ESGR (as described above
for RND). BC is implemented as a baseline because our pur-
pose is to reduce the number of small dense subgroups in a
social network. Since BC is able to find a set of dense com-
munities, if we connect different members in different

communities, we may have high chance to reduce the num-
ber of dense subgroups. The algorithms are implemented
with C++ on an HP DL580 server with Quadcore Intel
X5450 3.0 GHz CPUs and 1 TB RAM. The perprocessing
step introduced earlier in this paper is performed offline.

7.1 Evaluations of 3-SMMTG for SSMP with D ¼ 3

Sensitivity Tests on Large Graphs. Figs. 7a and 7b report the
results of 3-SMMTG on Pokec (jV j ¼ 1:6M), DBLP (jV j ¼
317K), and Youtube (jV j ¼ 1:1M) to help understand the
behavior of 3-SMMTG in different datasets. Figs. 7a and 7b
compare the computation time and objective values in
different datasets with different s, where s is the number of
new vertices that can be added to the network. As s
increases, the computation time and objective values
increase because more vertices in V can be considered mov-
ing into V. Youtube incurs the largest objective values as
shown in Fig. 7b, because it has a smaller average degree
than the other datasets, i.e., the average degree of Youtube
is 5.4, whereas Pokec and DBLP have average degrees 37.5
and 6.3, respectively. As a consequence, more vertices
remain unpruned in Youtube after the Cost Pruning, and
more vertices imply a larger number of D-SGs in the graph.
In this case, 3-SMMTG is able to achieve a larger objective
value because it obtains the optimal solutions and thus is
able to reduce the maximum number of D-SGs.

Comparisons with Other Baselines. We also compare the
proposed 3-SMMTG with other baseline approaches. Since
the brute-force approach, BF, is unable to return a solution
in 24 hours when the graph contains more than 500 vertices,
we randomly sample the Youtube dataset to generate small
networks with different sizes. Figs. 7c and 7d compare 3-

SMMTG with BF, RND, and ESGR, i.e., the approximation
algorithm for the general SSMP, with different sample sizes.
Fig. 7c shows that even on very small graphs, BF still incurs
unacceptable computation time to find the optimal solution.
In contrast, 3-SMMTG and ESGR are very efficient because
they are equipped with effective pruning strategies to avoid
examining redundant vertices. In particular, 3-SMMTG is
able to obtain the optimal solution very efficiently, and thus
it has a smaller computation time as compared to ESGR.

Fig. 7. Evaluations of 3-SMMTG.

TABLE 3
Summary of Datasets

Dataset jV j jEj CC Diam

ego-FB 4K 44K 0.6 8
FB-GT 1.4K 14K 0.7 7
ego-Twitter 81K 1.7M 0.56 7
ego-Gplus 100K 13.6M 0.49 6
DBLP 317K 1M 0.63 21
Pokec 1.6M 30M 0.11 11
Youtube 1.1M 3M 2.7 24
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Fig. 7d demonstrates that 3-SMMTG and ESGR are able to
obtain high-quality solutions. As proved in Section 4, the
proposed 3-SMMTG can find the optimal solution and thus
3-SMMTG has the objective values exactly the same as those
of BF when the sample size does not exceed 500 (BF cannot
return a solution within 24 hours when the sample size is
larger than 500). Moreover, although ESGR is an approxima-
tion algorithm, it is able to find the optimal solutions in all
these test cases because ESGR extracts the set S exactly the
same as that of 3-SMMTG. In contrast, RND and BC perform
poorly because they cannot effectively reduce the number
of D-SGs.

7.2 Evaluations of ESGR for General SSMP

Sensitivity Tests on Large Graphs. Fig. 8 shows the results
of the proposed ESGR on different datasets, e.g., Pokec
(jV j ¼ 1:6M) and ego-Gplus (jV j ¼ 100K). Fig. 8a shows
that as s increases, the computation time increases as well
because fewer vertices are pruned by the Cost Pruning. As
shown in Fig. 8b, when s becomes larger, the objective val-
ues also increase. This is because for a larger s, there are
more different choices of vertices for maximizing the objec-
tive function. We also evaluate ESGR with different b in
Figs. 8c and 8d. When b increases, there are more edges that

can be connected from the newly added vertices and the
original vertices. ESGR in this case can eliminate more
D-SGs and increase the objective value. Since the average
degree of Pokec (37.5) is much smaller than that of ego-
Gplus (272), ESGR obtains larger objective values in Pokec.
The reason is similar to that for Fig. 7b in Section 7.1.

Comparisons with Other Baselines. We compare the pro-
posed ESGR with other baseline approaches (BF, BC, RND)
in Fig. 9. Since BF does not scale up to large social networks,
we compare ESGR with these baselines on small real data-
sets. As shown in Fig. 9a, even for the small networks, BF
still incurs very large computation time to find the optimal
solution. In contrast, the Cost Pruning equipped by ESGR

effectively avoids the examinations of redundant vertices.
Since BF cannot obtain a solution in 24 hours in ego-Twitter,
the results of BF in ego-Twitter in Figs. 9a and 9b are not
plotted.

Fig. 9b compares the solution quality on different data-
sets. ESGR obtains high-quality solutions. Even if ESGR is a
1
2 ð1� 1

eÞ-approximation algorithm, ESGR is still able to
obtain the optimal solutions in FB-GT and ego-FB (BF does
not return a solution for ego-Tiwtter, and whether ESGR

obtains the optimal solution in ego-Twitter is unknown). In
contrast, RND and BC both perform poorly. Figs. 9c and 9d
report the results of ESGR and other baselines with different
parameters b and D on ego-FB. Fig. 9c indicates that ESGR
outperforms Rand and BC for different b. In Fig. 9d, the
objective values of ESGR increase as D increases because
more D-SGs appears with a larger D.

Effectiveness of Pruning Strategies. Fig. 10a reports the per-
formance of Cost Pruning (CP) in DBLP. The pruning ratio
is the ratio calculated as the number of pruned vertices
divided by the input graph size. A larger pruning ratio
indicates the pruning strategy is more effective. We observe
that when s is smaller, CP is able to prune more redundant
vertices. The reason is that for a vertex v, its cost cv ¼
D� degGðvÞ þ 1. The larger the D is, the larger the cv will
be. Since the Cost Pruning prunes the vertices with costs
greater than s, a larger D implies that more vertices can be
pruned.

Fig. 10b demonstrates the effectiveness of different prun-
ing strategies. ESGR takes much more time when no prun-
ing is employed, indicating that the proposed pruning
strategies are very effective. As SP is more powerful than
TP, it is able to prune more vertices than TP does. However,
the running time of SP increases significantly as D increases.
Fig. 10b shows that when D � 6, CP+SP outperforms CP
+TP. However, when D > 6, the extra computation time of
SP is more significant and thus CP+TP incurs a smaller com-
putation time.

Fig. 8. Sensitivity tests of ESGR on large datasets.

Fig. 9. Comparisons with baselines.

Fig. 10. Comparisons of pruning strategies.
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8 CONCLUSION

In this paper, we first propose the new notion of D-SGs to
quantify the small dense subgroups in social networks.
Then, we formulate a new research problem, SSMP, to
reduce the number of small dense subgroups in the net-
work. For the special case of SSMP with D ¼ 3, we propose
a linear-time algorithm 3-SMMTG to obtain the optimal
solution. For the general SSMP, we propose algorithm
ESGR, which is a 1

2 ð1� 1
eÞ-approximation algorithm. Our 8-

week evaluation study with 812 participants validates the
proposed SSMP and ESGR, i.e., showing that the partici-
pants with the network intervention recommended by
ESGR have significant improvements on Internet addiction
and depression, as compared to those individuals without
any intervention. Moreover, experimental results on real
datasets also show that the proposed algorithms outperform
the baselines in both efficiency and solution quality. In our
future work, we will explore potential approaches to
improve the performance of ESGR and extend SSMP to con-
sider more factors for network intervention.
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