
Adaptive Layer-skipping in Pre-trained LLMs
Xuan Luo, Weizhi Wang, Xifeng Yan

Concept
Vanilla Decoder-only Transformer

Our Idea: FlexiDepth

Uniform Effort: Every token is generated using the same number of
transformer layers
Example: It takes the same effort to generate a token for copying a
string as for solving complex math problems.
Opportunity: Underutilized computation can be reduced by skipping
unnecessary layers.

Adaptive Layer Allocation: FlexiDepth dynamically skips transformer
layers based on the input.
Example: Tokens needing high computation or uncertainty use more
layers, while repetitive tokens or fixed phrases need fewer:

[Prompt] Please calculate the sum of the 8 numbers
in the list: [99, 45, 12, 78, 33, 66, 21, 54]
To calculate the sum of all 8 numbers in
the list, I'll add each number one by one:
99 + 45 = 144
144 + 12 = 156
156 + 78 = 234
234 + 33 = 267
267 + 66 = 333
333 + 21 = 354
354 + 54 = 408

The sum of all 8 numbers in the list is 408.

[Context] The grey sea l was found a t Cruden Bay on
Tuesday. The Scottish SPCA removed the sea l from
beach and took it to the charity's rescue centre ...
Thankfully there were no injuries in this case and we
were able to re lease him re la tive ly quickly.
[Prompt] Where the grey seal was found?
The grey seal was found at Cruden Bay.

[Prompt] Please summarize this paragraph into a
single sentence:
A grey seal was found tangled in netting
at Cruden Bay , rescued
by the Scottish S PCA , and released back
into the water with no injuries.

Layer-skipping patterns (Llama-3-8B-Instruct) for a language task (left) and a math task (right). The light-
to-dark blue gradient represents layer usage from 16 to 32.

Method

To enable adaptive layer-skipping, we convert the latter half of vanilla
decoder layers in a pre-trained LLM into FlexiDepth layers. Each
FlexiDepth layer allows individual tokens to dynamically decide whether to
skip the layer. By stacking multiple FlexiDepth layers, the model can
adaptively allocate different number of layers.

Router: A bottlenecked MLP that generates gating scores to decide if a
token skips the layer.
Adapter: A bottlenecked MLP that aligns skipped hidden states with
processed ones.
Training: Only the router and adapter are trainable; pre-trained LLM
parameters remain frozen.

We introduce two lightweight components to each FlexiDepth layer: a
router and an adapter.

Overall Logic

Let denote the input hidden states. The router
computes their corresponding gating scores as:

For each hidden states , we use a predefined threshold for routing:
.

Left: Full-processing path where hidden states undergo the pre-trained attention and FFN modules. Right:
Skipping path where hidden states bypass the attention module and processed by a lightweight adapter.

where is the output hidden state of this layer. When skipping the
attention module, we still compute its KV Cache for sustained generation.

Loss Function
To balance efficiency and quality, we optimize a skipping loss alongside
the next-token prediction loss. The skipping loss is:

where is the gating score for layer at time step .
The total loss is:

Results

Performance comparison based on Llama-3-8B-Instruct, which consists of 32 layers. Retain % represents
the percentage of average retained benchmark performance.

Percentage of tokens processed by transformer layers 17 to 32. The x-axis represents the layer index, and the
y-axis represents the percentage of tokens processed by the layer.

Copying Summarization Continuation

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.2

0.4

0.6

0.8

1.0
Repetition Addition Product

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.2

0.4

0.6

0.8

1.0

Comparison

Layer-skipping Pattern

open-sourced

