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Verification Technigques Spectrum

4 Human Efforts

Formal Verification

Pros: Highest Guarantee
Cons: More Human/Expert Efforts

Static Analysis

Testing

Pros: Less Human Efforts
Cons: Less Guarantee

»

Guarantee




ZK Circuit Verification

Why?
- Application Security
- Library Reusability

Smart
Contracts
Challenges?

- Scalability

- Covera.gél Application Circuits
- Extensibility

What?

Core ZK Libraries & Building Blocks
- Functional Correctness

- Uniqueness Property



ZK Circuit Verification: Current Roadmap

Core Library Circuits (Manual)
- Atiny but critical and frequently used set of circuit building blocks (e.g., circomlib)

- Formal verification using interactive theorem proving
- This will provide the highest guarantee, but requires manual/expert efforts
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Application Circuits (Automated / Semi-Automated)
- Majority of the application circuits belong to this category
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- Automatically translating program into machine checkable formula
- Abstract level static analysis to over-approximate the range of each variable/wire




Functional Correctness

"Do the constraints correctly represent user intent?"

int z[3];y = z[j] "y should be sampled from array x" a

\

/
pragma circom 2.0.0; ) e

template test() {

template :est() { 5 signal input x[3], J;
signal input x[3], j; si ;

! gnal output y; — — —
signal output y; signal i0, il, i2; y=x[0]]ly =x[1] ||y = x[2]
signal iO, il, i2; signal y0, yl, y2; — -
signal y0, yl, y2; Query/Specification
] ] i0 <-- §==0? 1:0;
i0 <-- j==02? 1:0; i0 * (3-0) === 0;
i0 * (§-0) === 0; i0 * (i0-1) === 0;

il <-- j==12 1:0; il <-- j==1? 1:0;
il * (j-1) === 0; il * (j-1) === 0;
il * (il-1) === 0;
i2 <-- §==2? 1:0;
i2 * (j-2) === 0; i2 <-- §==2? 1:0;
] i2 * (j-2) === 0;
y0 <== i0*x[0]; i2 * (i2-1) === 0;
vyl <== il*x[1];
y2 <== i2*x[2]; i0+il+i2 === 1;
y <==y0 + yl + y2; y0 <== i0*x[0];
} yl <== il*x[1];

y2 <== i2*x[2];

component main = test();
\\ J y <==y0 + yl + y2;
Example Circom Snippet !

Written by User \_component main = test(); |
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Core Library Circuits
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Formal Verification for
Application Circuits
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Vulnerability/Bug Detection in Application Circuits

Application Circuits
- Large (>5000 LOC, millions of constraints)
- Contains non-library constraints

What to Verify / Sources of Bugs
- Functional Correctness
"l think what | wrote is all  want! ... no?" Q{
- Uniqueness Property -
"l think I've already included all range checks! ...probably?" S



Automated Verification of Functional Correctness
v
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:> v Q — — Specifications
B | IG Developer . : . (User Intent)

Core Library Circuits (Verified Components) Application Circuits
L ) Automated
Automated Verification Techniques Verification

- Symbolic Execution
- Abstract Interpretation

B o
Or based bol o
icus is based on symbolic execution. .I:I.

(https://github.com/chyanju/Picus)

(Fully Verified)


https://github.com/chyanju/Picus

Symbolic Execution

An interpreter follows the program, assuming symbolic values for inputs rather than obtaining actual inputs as
normal execution of the program would.

Program  Symbolic Input

Symbolic Compilation

(e.g.,el) Constraints
> —

Interpreter Symbolic Evaluator Solver Solution
Example:
(i Yy =als "y should b led f ¥
int z[3]}y = z[j] y should be sampled from array x" g
/ A [ y=x[0]1ly=x[1]lly=x[2] |

(8& (<= 0 ) (< § 3)) Query/Specification

W ={ (Verified) l
(itex (- (=0 j) x1) (- (=1 j) x2) (- (=2 j) X3))J Constraint Solver

Auto-Generated SMT Constraints




Uniqueness Property

ref: https://Oxparc.org/blog/ecne rinput :1:[1], m[2], :z:[3],j
output y
Weak Verification (IO Uniqueness) i1-(j—0)=0
- This tests if, given the input variables in a QAP, the output ir-(j—1)=0
variables have uniquely determined values. . . L Rics Jiz-(j—2)=0
- Example: x[1], x[2], x[3] and j are fixed, y is queried. int z[3];y = z[j] —— % Sy Ay = 1
Witness Uniqueness A= 2,1 -=[1
- This tests if all the witness variables that appear in all equations, Yo =iz~ 22|
and not just input and output variables, collectively are uniquely ys = i3 - 2[3]
determined. (Y =Y1 T Y2+ Y3

- Example: x[1], x[2], x[3] and j are fixed, iy, y, and y are queried.

Strong Uniqueness
- This tests if the QAP is exactly equivalent to a formal
mathematical specification.
- (Similar to function correctness)


https://0xparc.org/blog/ecne

Automated Verification of Uniqueness Property

Related Work: ) Ecne (https:/github.com/franklynwang/EcneProject)
- Ecne is based on a worklist + fixed point algorithm
- Needs manually devised inference rule for deducing uniqueness
- Applies well to circuits within inference scope
- Specialized for weak (witness) verification

O Picus (https://github.com/chyanju/Picus)
- Picus is based on symbolic execution
- Supports customized specifications/queries besides weak (witness) uniqueness property
- Automated verification, less manual efforts required, incorporates optimizations from existing solvers

Problems & Existing Challenges
- Scalability: Difficult Constraints
- Coverage: Unsupported Cases
- Extensibility: New Emerging Language Interfaces


https://github.com/franklynwang/EcneProject
https://github.com/chyanju/Picus

Potential Approaches for ZK Circuit Verification

Abstract Interpretation with Interval Analysis
- Obtain constraint annotations from user or static analysis

Interval Analysis Abstract Interpretation — Optimize
x ,
y = x; y = X; y = x; €[1,3]
z=x-y; z=x-y; x €3] z=x-y; ZyE[—Z,Z]
Constraint Partially Annotated Constraint Annotated Constraints Solver

Unified Intermediate Representation for ZK Constraint Verification (Domain-Specific IR)
- CirC
-Vamp IR

Prime Field Theory for Existing Solvers
- Based on Grobner bases solvers
- Based on Integer theory with annotated range intervals
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Plans & Next Steps

Core Library Circuits
- Core circomlib
- BigInt Arithmetic
- Elliptic Curve Arithmetic
- circom-ecdsa / circom-pairing

Application Circuits
- Application Circuit Benchmarks
- Constraint Annotation (Manual / Automated Analysis)
- Incorporation of Verified Core Library into ) Picus
- Abstract Interpretation for Uniqueness Analysis

Smart
Contracts

Application Circuits \

o

Core ZK Libraries & Building Blocks \

o



THANKS OBQ.O



