
Formal Verification for
ZK Circuits

Yanju Chen & Junrui Liu
University of California, Santa Barbara

& Veridise Inc.

Contents

Highest Security Guarantee
Interactive Theorem Proving

Overview
Verification Techniques Spectrum

Motivations, Challenges
01

Formal Verification for Core Library Circuits 02

Plans & Next Steps

03Formal Verification for Application Circuits

04

Automated Methods
Symbolic Execution, Abstract Interpretation

Overview

Verification Techniques Spectrum

Testing

Static Analysis

Formal Verification

Guarantee

Human Efforts

Pros: Highest Guarantee
Cons: More Human/Expert Efforts

Pros: Less Human Efforts
Cons: Less Guarantee

Why?
⬣ - Application Security
⬣ - Library Reusability
⬣ - ...

Challenges?
⬣ - Scalability
⬣ - Coverage
⬣ - Extensibility
⬣ - ...

What?
⬣ - Functional Correctness
⬣ - Uniqueness Property
⬣ - ...

ZK Circuit Verification

Smart
Contracts

Application Circuits

Core ZK Libraries & Building Blocks

Core Library Circuits (Manual)
⬣ - A tiny but critical and frequently used set of circuit building blocks (e.g., circomlib)
⬣ - Formal verification using interactive theorem proving
⬣ - This will provide the highest guarantee, but requires manual/expert efforts

Application Circuits (Automated / Semi-Automated)
⬣ - Majority of the application circuits belong to this category
⬣ - Automatically translating program into machine checkable formula
⬣ - Abstract level static analysis to over-approximate the range of each variable/wire

ZK Circuit Verification: Current Roadmap

Functional Correctness
"Do the constraints correctly represent user intent?"

"𝑦 should be sampled from array 𝑥"

Example Circom Snippet
Written by User

Query/Specification

𝑦 = 𝑥 0 || 𝑦 = 𝑥 1 || 𝑦 = 𝑥[2]

pragma circom 2.0.0;

template test() {
signal input x[3], j;
signal output y;
signal i0, i1, i2;
signal y0, y1, y2;

i0 <-- j==0? 1:0;
i0 * (j-0) === 0;
i0 * (i0-1) === 0;

i1 <-- j==1? 1:0;
i1 * (j-1) === 0;
i1 * (i1-1) === 0;

i2 <-- j==2? 1:0;
i2 * (j-2) === 0;
i2 * (i2-1) === 0;

i0+i1+i2 === 1;

y0 <== i0*x[0];
y1 <== i1*x[1];
y2 <== i2*x[2];

y <== y0 + y1 + y2;
}

component main = test();

pragma circom 2.0.0;

template test() {
signal input x[3], j;
signal output y;
signal i0, i1, i2;
signal y0, y1, y2;

i0 <-- j==0? 1:0;
i0 * (j-0) === 0;

i1 <-- j==1? 1:0;
i1 * (j-1) === 0;

i2 <-- j==2? 1:0;
i2 * (j-2) === 0;

y0 <== i0*x[0];
y1 <== i1*x[1];
y2 <== i2*x[2];

y <== y0 + y1 + y2;
}

component main = test();

Formal Verification for
Core Library Circuits
(Junrui)

Formal Verification for
Application Circuits

Vulnerability/Bug Detection in Application Circuits

Application Circuits
⬣ - Large (>5000 LOC, millions of constraints)
⬣ - Contains non-library constraints

What to Verify / Sources of Bugs
⬣ - Functional Correctness
⬣ "I think what I wrote is all I want! ... no?"
⬣ - Uniqueness Property
⬣ "I think I've already included all range checks! ...probably?"

Automated Verification Techniques
⬣ - Symbolic Execution
⬣ - Abstract Interpretation
⬣ - ...

Picus is based on symbolic execution.
(https://github.com/chyanju/Picus)

Automated Verification of Functional Correctness

ITP

Core Library Circuits (Verified Components)

Developer

Application Circuits

Automated
Verification

(Fully Verified)

Specifications
(User Intent)

https://github.com/chyanju/Picus

An interpreter follows the program, assuming symbolic values for inputs rather than obtaining actual inputs as
normal execution of the program would.

Example:

Symbolic Execution

Interpreter Symbolic Evaluator Solver

Symbolic Compilation
(e.g.,)

Program Symbolic Input

Constraints

Solution

Auto-Generated SMT Constraints

Query/Specification

𝑦 = 𝑥 0 || 𝑦 = 𝑥 1 || 𝑦 = 𝑥[2]

"𝑦 should be sampled from array 𝑥"

(Verified)
Constraint Solver

Weak Verification (IO Uniqueness)
⬣ - This tests if, given the input variables in a QAP, the output

variables have uniquely determined values.
⬣ - Example: 𝑥[1], 𝑥[2], 𝑥[3] and 𝑗 are fixed, 𝑦 is queried.

Witness Uniqueness
⬣ - This tests if all the witness variables that appear in all equations,

and not just input and output variables, collectively are uniquely
determined.

⬣ - Example: 𝑥[1], 𝑥[2], 𝑥[3] and 𝑗 are fixed, 𝑖?, 𝑦? and 𝑦 are queried.

Strong Uniqueness
⬣ - This tests if the QAP is exactly equivalent to a formal

mathematical specification.
⬣ - (Similar to function correctness)

Uniqueness Property
ref: https://0xparc.org/blog/ecne

https://0xparc.org/blog/ecne

Related Work: Ecne (https://github.com/franklynwang/EcneProject)
⬣ - Ecne is based on a worklist + fixed point algorithm
⬣ - Needs manually devised inference rule for deducing uniqueness
⬣ - Applies well to circuits within inference scope
⬣ - Specialized for weak (witness) verification

Picus (https://github.com/chyanju/Picus)
⬣ - Picus is based on symbolic execution
⬣ - Supports customized specifications/queries besides weak (witness) uniqueness property
⬣ - Automated verification, less manual efforts required, incorporates optimizations from existing solvers

Problems & Existing Challenges
⬣ - Scalability: Difficult Constraints
⬣ - Coverage: Unsupported Cases
⬣ - Extensibility: New Emerging Language Interfaces
⬣ - ...

Automated Verification of Uniqueness Property

https://github.com/franklynwang/EcneProject
https://github.com/chyanju/Picus

Abstract Interpretation with Interval Analysis
⬣ - Obtain constraint annotations from user or static analysis

Unified Intermediate Representation for ZK Constraint Verification (Domain-Specific IR)
⬣ - CirC
⬣ - Vamp IR
⬣ - ...

Prime Field Theory for Existing Solvers
⬣ - Based on Gröbner bases solvers
⬣ - Based on Integer theory with annotated range intervals
⬣ - ...

Potential Approaches for ZK Circuit Verification

y = x;
z = x - y;

Constraint Partially Annotated Constraint

y = x;
z = x - y;

𝒙 ∈ [𝟏, 𝟑]

Interval Analysis
y = x;
z = x - y;

𝒙 ∈ 𝟏, 𝟑
𝒚 ∈ 𝟏, 𝟑
𝒛 ∈ −𝟐, 𝟐

Abstract Interpretation

Annotated Constraints Solver

Optimize

Plans & Next Steps

Plans & Next Steps

Smart
Contracts

Application Circuits

Core ZK Libraries & Building Blocks

Core Library Circuits
⬣ - Core circomlib
⬣ - BigInt Arithmetic
⬣ - Elliptic Curve Arithmetic
⬣ - circom-ecdsa / circom-pairing

Application Circuits
⬣ - Application Circuit Benchmarks
⬣ - Constraint Annotation (Manual / Automated Analysis)
⬣ - Incorporation of Verified Core Library into Picus
⬣ - Abstract Interpretation for Uniqueness Analysis

THANKS

