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Generative vs. Discriminative

A Large Graphical Model



Generative Models

• We have some data {(d,c)} of paired

• observations d

• hidden classes c

• A generative model place probabilities over both 
observed data and the hidden stuff:

𝑃 𝑐, 𝑑

• Classic Generative Models:

• n-gram Models, Naïve Bayes Classifiers, Hidden 
Markov Models, etc.
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Discriminative Models

• We have some data {(d,c)} of paired

• observations d

• hidden classes c

• A discriminative model take the observed data as 
given, and put a probability over hidden structure 
given the observed data.

𝑃 𝑐 𝑑

• Classic Discriminative Models:

• Logistic Regression, Conditional Random Fields, 
SVMs(not directly probabilistic), etc.
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A Comparison

Discriminative Models

𝑷(𝒄|𝒅) 𝐜𝟎 𝐜𝟏

𝐝𝟎 0.5 0.5

𝐝𝟏 0.3 0.7

1. Generative vs. Discriminative

Generative Models

𝑷(𝒄, 𝒅) 𝐜𝟎 𝐜𝟏

𝐝𝟎 0.2 0.2

𝐝𝟏 0.18 0.42

c

d1 d 2 d 3

Naïve Bayes 

c

d1 d2 d3

Generative

Logistic Regression

Discriminative

𝑝 𝑐, 𝑑 = 𝑝 𝑑 𝑐 𝑝(𝑐) 𝑝 𝑐, 𝑑 = 𝑝 𝑐 𝑑 𝑝 𝑑

Bayes’ Theorem
𝒑 𝒅 𝒄 𝒑 𝒄 = 𝒑 𝒄 𝒅 𝒑(𝒅)
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Another Comparison

• Even with exactly the 
same features, changing 
from joint to conditional 
estimation increases 
performance

• That is, we use the same 
smoothing, and the same 
word-class features, we 
just change the numbers 
(parameters) 

1. Generative vs. Discriminative

Training Set

Objective Accuracy

Generative 86.8

Discriminative 98.5

Test Set

Objective Accuracy

Generative 73.6

Discriminative 76.1

Klein and Manning 2002, using Senseval-1 Data
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So, why Generative?

• Better Inference Algorithm

• EM vs. GD

• Modular Learning, New Classes & Missing Data

• Better Accuracy on Future Data

• Make Explicit Claims about the Process that 
Underlies A Data

• Generate Synthetic Data Sets (Sampling)
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Pinyin Recognition

• Given a Pinyin sequence D={kai, fang, ri}, find out 
the most possible Chinese characters.

1. Generative vs. Discriminative

𝑐1, 𝑐2, 𝑐3 = argmax
𝑐1,𝑐2,𝑐3

𝑝(𝑐1, 𝑐2, 𝑐3|𝑑1, 𝑑2, 𝑑3)

𝑝 𝑐1, 𝑐2, 𝑐3 𝑑1, 𝑑2, 𝑑3 =
𝑝 𝑑1, 𝑑2, 𝑑3 𝑐1, 𝑐2, 𝑐3 𝑝(𝑐1, 𝑐2, 𝑐3)

𝑝(𝑑1, 𝑑2, 𝑑3)

𝑝 𝑑1, 𝑑2, 𝑑3 𝑐1, 𝑐2, 𝑐3 𝑝(𝑐1, 𝑐2, 𝑐3)

𝑝 𝑑1, 𝑑2, 𝑑3 𝑐1, 𝑐2, 𝑐3 = 𝑝 𝑑1 𝑐1 𝑝 𝑑2 𝑐2 𝑝(𝑑3|𝑐3)

𝑝 𝑐1, 𝑐2, 𝑐3 = 𝑝 𝑐3 𝑐2 𝑝 𝑐2 𝑐1 𝑝(𝑐1)

𝑐1, 𝑐2, 𝑐3 = argmax
𝑐1,𝑐2,𝑐3

𝑝 𝑑1 𝑐1 𝑝 𝑑2 𝑐2 𝑝(𝑑3|𝑐3) ∙ 𝑝 𝑐3 𝑐2 𝑝 𝑐2 𝑐1 𝑝(𝑐1)
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Feature-Based Models

A Grain stain of  Bacillus anthracis



Features

• Features f are 

• elementary pieces of evidence that link aspects of 
what we observe d with a category c that we want to 
predict

• A feature is a function with a bounded real value.

• 𝑓: 𝐶 × 𝐷 → ℝ

• In NLP uses, usually a feature specifies an indicator 
function – a yes/no Boolean matching function.

• Each feature picks out a data subset and suggests a 
label for it.
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Minesweeper: An Example

• 8x8 Map of Minesweeper

• Size of Data Set D: 64

• Labels C={0:safe, 1:unsafe}

• 𝑓1 = [𝑐 = 0 ∧ 𝑑 𝑖𝑛 𝑐𝑜𝑟𝑛𝑒𝑟]

• 𝑓2 = [𝑐 = 1 ∧ 𝑠𝑢𝑚𝑎. ≥ 8]
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Minesweeper: An Example

• 𝑓1 = [𝑐 = 0 ∧ 𝑑 𝑖𝑛 𝑐𝑜𝑟𝑛𝑒𝑟]

2. Feature-Based Models

0 0 1 1 1 1 1 1

0 1

1 1

1 1

1 1

0 1

1 1

1 1 1 1 1 1 1 1
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Minesweeper: An Example

• 𝑓2 = [𝑐 = 1 ∧ 𝑠𝑢𝑚𝑎. ≥ 8]

2. Feature-Based Models

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
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Feature Expectations

• Empirical Expectation of A Feature

• ෨𝐸 𝑓𝑖 = σ(𝑐,𝑑)∈𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝐶,𝐷) 𝑓𝑖(𝑐, 𝑑)

• Model Expectation of A Feature

• 𝐸 𝑓𝑖 = σ(𝑐,𝑑)∈(𝐶,𝐷) 𝑝(𝑐, 𝑑)𝑓𝑖(𝑐, 𝑑)
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Example: Text Categorization

(Zhang and Oles 2001)

• Features are presence of each word in a document and 
the document class (they do feature selection to use 
reliable indicator words)

• Tests on classic Reuters data set (and others)
• Naïve Bayes: 77.0% F1

• Linear regression: 86.0%

• Logistic regression: 86.4%

• Support vector machine: 86.5%

• Paper emphasizes the importance of regularization 
(smoothing) for successful use of discriminative 
methods (not used in much early NLP/IR work)
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Other Examples

• Sentence boundary detection (Mikheev 2000)

• Is a period end of sentence or abbreviation?

• Sentiment analysis (Pang and Lee 2002)

• Word unigrams, bigrams, POS counts, …

• PP attachment (Ratnaparkhi 1998)

• Attach to verb or noun? Features of head noun, 
preposition, etc.

• Parsing decisions in  general (Ratnaparkhi 1997; Johnson et al. 
1999, etc.)

2. Feature-Based Models 18



Feature-Based Linear Classifiers

• Linear classifiers at classification time:

• Linear function from feature sets {fi} to classes {c}.

• Assign a weight i to each feature fi.

• We consider each class for an observed datum d

• For a pair (c,d), features vote with their weights:

vote(c) = ifi(c,d)

• Choose the class c which maximizes ifi(c,d)

2. Feature-Based Models 19



Feature-Based Linear Classifiers

• Make a probabilistic model from the linear 
combination, we usually get:

• Why exponentiate it?

• One of the reason is for better calculation when doing 
Maximum Likelihood Estimation.

• And there are others…

• Is this good enough?

2. Feature-Based Models

Makes votes positive

Normalizes votes

20

𝑷 𝒄 𝒅, 𝝀 =
𝐞𝐱𝐩 σ𝒊 𝝀𝒊𝒇𝒊(𝒄, 𝒅)

σ𝒄′ 𝐞𝐱𝐩 σ𝒊 𝝀𝒊𝒇𝒊(𝒄′, 𝒅)



Softmax Function & Exponential Family

Golgi-stained Neurons in Human Hippocampal Tissue



The Softmax Function

• The distribution is in fact a Softmax function.

• a generalization of the logistic function

• usually used in multiclass classification

• And it is also called normalized exponential.

3. Softmax Function & Exponential Family

Makes votes positive

Normalizes votes

𝜇k =
exp(𝜂𝑘)

1 + σ𝑗 exp(𝜂𝑗)

22

𝑷 𝒄 𝒅, 𝝀 =
𝐞𝐱𝐩 σ𝒊 𝝀𝒊𝒇𝒊(𝒄, 𝒅)

σ𝒄′ 𝐞𝐱𝐩 σ𝒊 𝝀𝒊𝒇𝒊(𝒄′, 𝒅)



The Exponential Family

• A Broad Class of Distributions

• Including

• Bernoulli Distribution

• Binomial Distribution

• Poisson Distribution

• Exponential Distribution

• Normal Distribution

• etc.

• Distributions share many properties in common.

3. Softmax Function & Exponential Family 23



The Exponential Family

• Distribution over 𝑥, given parameters 𝜂, is defined 
to be the set of distributions of the form

• 𝑥: scalar of vector, discrete or continuous

• 𝜂: natural parameters

• 𝑔(𝜂): normalizer

• It can take another form:

3. Softmax Function & Exponential Family

𝑝 𝑥 𝜂 = ℎ 𝑥 𝑔 𝜂 exp{𝑛𝑇𝑢 𝑥 }

𝑝 𝑥 𝜂 = (1 + ෍

𝑘=1

𝑀−1

exp(𝜂𝑘))−1exp(𝜂𝑇𝑥)

24



Maximum Entropy Derivation

Maxwell’s Demon



Maxwell’s Demon

• A thought experiment which suggests how Second 
Law of Thermodynamics could hypothetically be 
violated.

4. Maximum Entropy Derivation 26



Entropy: Thermodynamics

• commonly understood as a measure of disorder.

• According to the second law of thermodynamics the 
entropy of an isolated system never decreases; such 
a system will spontaneously proceed towards 
thermodynamic equilibrium, the configuration with 
maximum entropy. 

4. Maximum Entropy Derivation

Rudolf Clausius
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Entropy: Information Theory

• Shannon Entropy

• the Expected Value of the Information Contained in 
Each Message

• Entropy of A Random Variable

• A Conditional Entropy

4. Maximum Entropy Derivation

Claude Shannon

𝐻 𝑥 = − ෍

𝑥

𝑝 𝑥 log 𝑝(𝑥)

𝐻 𝑌 𝑋 = ෍

𝑥∈𝜒

𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥) = 𝐻 𝑥, 𝑦 − 𝐻 𝑥

𝐻 𝑌 𝑋 = − ෍

𝑥,𝑦

𝑝 𝑥, 𝑦 log 𝑝(𝑦|𝑥)
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Principle of Maximum Entropy

• The principle of maximum entropy states that, 
subject to precisely stated prior data (such as a 
proposition that expresses testable information), 
the probability distribution which best represents 
the current state of knowledge is the one with 
largest entropy.

4. Maximum Entropy Derivation

E. T. Jaynes
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Examples

• Rolling A Dice

• Minesweeping

4. Maximum Entropy Derivation

1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6

2/15 2/15 1/3 2/15 2/15 2/15

3/20 3/20 1/3 1/15 3/20 3/20
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Select A Model

• What is the best model under given observations?

• the ones that fit the observations as many as possible

• the ones that represent the current state of knowledge

• Why are those models good?

• The selected distribution is the one that makes the least 
claim to being informed beyond the stated prior data, 
that is to say the one that admits the most ignorance 
beyond the stated prior data.

• A Measure of Uninformativeness

4. Maximum Entropy Derivation 31



Building A Maxent Model

• Feature Expectations

• Empirical Expectation of A Feature

• ෤𝑝 𝑓𝑖 = ෨𝐸 𝑓𝑖 = σ(𝑐,𝑑)∈𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝐶,𝐷) 𝑓𝑖(𝑐, 𝑑)

• Model Expectation of A Feature

• 𝑝 𝑓𝑖 = 𝐸 𝑓𝑖 = σ(𝑐,𝑑)∈(𝐶,𝐷) 𝑝(𝑐, 𝑑)𝑓𝑖(𝑐, 𝑑)

• A Maxent Model Requires:
෤𝑝 𝑓 = 𝑝 𝑓 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓

4. Maximum Entropy Derivation 32



Building A Maxent Model

• Select the model 𝑝∗ with largest entropy from the 
set C whose models meet the requirements.

4. Maximum Entropy Derivation

𝑝∗ = argmax
𝑝∈𝐶

𝐻 𝑝 = argmax
𝑝∈𝐶

− ෍

𝑥,𝑦

𝑝 𝑥, 𝑦 log 𝑝(𝑦|𝑥)

= argmax
𝑝∈𝐶

− ෍

𝑥,𝑦

𝑝(𝑥)𝑝 𝑦|𝑥 log 𝑝(𝑦|𝑥)

= argmax
𝑝∈𝐶

− ෍

𝑥,𝑦

෤𝑝(𝑥)𝑝 𝑦|𝑥 log 𝑝(𝑦|𝑥)

𝑠. 𝑡. 𝑝(𝑦|𝑥) ≥ 0

෍
𝑦

𝑝 𝑦 𝑥 = 1

෍
𝑥,𝑦

෤𝑝 𝑥 𝑝 𝑦 𝑥 𝑓 𝑥, 𝑦 = ෍
𝑥,𝑦

෤𝑝 𝑥, 𝑦 𝑓(𝑥, 𝑦)
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Building A Maxent Model

• It turns out to be a Nonlinear Programming Problem

• Process of Solving Optimization Problem

• Generalized Lagrange Multiplier

• It does not necessarily have a optimal solution.

• The Karush–Kuhn–Tucker Conditions provide necessary 
conditions for a solution to be optimal

4. Maximum Entropy Derivation 34



Generalized Lagrange Multiplier

4. Maximum Entropy Derivation

𝜉 𝑥, Λ, 𝛾 = − ෍

𝑥,𝑦

෤𝑝 𝑥 𝑝 𝑦 𝑥 log 𝑝(𝑦|𝑥)

+ ෍

𝑖

𝜆𝑖[෍

𝑥,𝑦

෤𝑝 𝑥 𝑝 𝑦 𝑥 𝑓𝑖 𝑥, 𝑦 − ෍

𝑥,𝑦

෤𝑝(𝑥, 𝑦)𝑓𝑖(𝑥, 𝑦)]

+𝛾[෍

𝑦

𝑝 𝑦 𝑥 − 1]

𝜕𝜉

𝜕𝑝(𝑦|𝑥)
= − ෤𝑝 𝑥 log 𝑝 𝑦 𝑥 + 1 + ෍

𝑖

𝜆𝑖 ෤𝑝 𝑥 𝑓𝑖 𝑥, 𝑦 + 𝛾 ①

① = 0, we have 𝑝 𝑦 𝑥 = exp ෍

𝑖

𝜆𝑖𝑓𝑖 𝑥, 𝑦 exp[
𝛾

෤𝑝 𝑥
− 1]

𝑠𝑢𝑚𝑚𝑟𝑖𝑧𝑒, 𝑤𝑒 ℎ𝑎𝑣𝑒 exp
𝛾

෤𝑝 𝑥
− 1 =

1

σ𝑦 exp[σ𝑖 𝜆𝑖𝑓𝑖(𝑥, 𝑦)]

②

③
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Generalized Lagrange Multiplier

4. Maximum Entropy Derivation

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 ③ 𝑖𝑛𝑡𝑜 ②

𝑝 𝑦 𝑥 = exp[෍

𝑖

𝜆𝑖𝑓𝑖(𝑥, 𝑦)]
1

σ𝑦 exp[σ𝑖 𝜆𝑖𝑓𝑖(𝑥, 𝑦)]

𝑙𝑒𝑡 𝑍 𝑥 = ෍

𝑦

exp[෍

𝑖

𝜆𝑖𝑓𝑖(𝑥, 𝑦)]

𝑝 𝑦 𝑥 = exp[෍

𝑖

𝜆𝑖𝑓𝑖(𝑥, 𝑦)]
1

𝑍(𝑥)

𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠

𝑝∗ 𝑦 𝑥 = exp[σ𝑖 𝜆𝑖
∗𝑓𝑖(𝑥, 𝑦)]

1

𝑍(𝑥)
∗ c
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The Maxent Models

• The best model under the Principle of Maximum 
Entropy takes the form:

• The Distributions of Exponential Family have a 
normalized exponential form:

• And the Softmax Function takes the form:

4. Maximum Entropy Derivation

𝑝∗ 𝑦 𝑥 = exp[σ𝑖 𝜆𝑖
∗𝑓𝑖(𝑥, 𝑦)]

1

𝑍(𝑥)
∗ c

𝑝 𝑥 𝜂 = (1 + ෍

𝑘=1

𝑀−1

exp(𝜂𝑘))−1exp(𝜂𝑇𝑥)

𝜇k =
exp(𝜂𝑘)

1 + σ𝑗 exp(𝜂𝑗)

They are actually the same!
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Conclusions

Waterfall By M.C. Escher



Generative vs. Discriminative

5. Conclusions

c

d1 d 2 d 3

c

d1 d2 d3
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Feature-Based Models

5. Conclusions 40



Softmax Function

5. Conclusions

A Likelihood Surface
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Exponential Family

5. Conclusions 42



Maximum Entropy Derivation

5. Conclusions

𝑝∗ 𝑦 𝑥 = exp[σ𝑖 𝜆𝑖
∗𝑓𝑖(𝑥, 𝑦)]

1

𝑍(𝑥)
∗ c
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