
Attack Synthesis for
Blockchain Security

Yanju Chen

UCSB S22 CS292C



Contents

Ethereum Virtual Machine, 
Smart Contracts, Solidity, Remix IDE

A Quick Glance into Blockchain
Bitcoins, Ethereum, 

Decentralized Apps & Finances
01

Programming for Ethereum 02

Eurus: Precise Attack Synthesis for DApps

03Attacks on Decentralized Apps

04YUL, Symbolic Compilation,
Attack DSL & Specification

Example#1: Unstoppable
Example#2: Puppet



A Quick Glance into Blockchain
What is a blockchain and how does it work? We will briefly 
discuss its underlying mechanism and example applications 
built using blockchain technologies.



A blockchain is a globally shared, transactional database. If you want to change something in the database, you have 
to create a so-called transaction which has to be accepted by all others.

• The word transaction implies that the change you want to make (assume you want to change two values at the 
same time) is either not done at all or completely applied. 

• Furthermore, while your transaction is being applied to the database, no other transaction can alter it.
• A transaction is always cryptographically signed by the sender (creator). This makes it straightforward to guard 

access to specific modifications of the database.

What is a blockchain?



https://medium.com/@essentia1/50-examples-of-how-blockchains-are-taking-over-the-world-4276bf488a4b

A Quick Glance into Blockchain
• Government
• Waste Management
• Identification
• Border Control
• Healthcare
• Enterprise
• Medical
• Music
• Carbon Offsets
• Supply Chains
• Diamonds
• Real Estate
• Fishing Industry
• Fine Art
• Public Utilities
• LGBT Rights
• ...

https://medium.com/@essentia1/50-examples-of-how-blockchains-are-taking-over-the-world-4276bf488a4b


https://zkga.me/

Blockchain for Gaming: Dark Forest

https://zkga.me/


Read more at: https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html#blockchain-basics

How does a blockchain work?

https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html


Today's Blockchains



Decentralized finance (DeFi) is an emerging financial technology based on secure distributed ledgers similar to those 
used by cryptocurrencies. The system removes the control banks and institutions have on money, financial products, 
and financial services. Some of the key attractions of DeFi for many consumers are:

• It eliminates the fees that banks and other financial companies charge for using their services.
• You hold your money in a secure digital wallet instead of keeping it in a bank.
• Anyone with an internet connection can use it without needing approval.
• You can transfer funds in seconds and minutes.

Decentralized Applications (DApps) & Decentralized Finance (DeFi) 



Programming for Ethereum
How do we write programs that run on blockchain? We will 
discuss one of the programming languages for writing smart 
contracts called Solidity, which targets the Ethereum blockchain. 
In particular, we will discuss the following topics:

• Ethereum Virtual Machine (EVM)
• The Solidity Programming Language with Examples
• Remix IDE



The Ethereum Virtual Machine or EVM is the runtime environment for smart contracts in Ethereum. It is not 
only sandboxed but actually completely isolated, which means that code running inside the EVM has no 
access to network, filesystem or other processes. Smart contracts even have limited access to other smart 
contracts.

EVM Official Docs: https://ethereum.org/en/developers/docs/evm/
Solidity EVM Intro: https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html#index-6

Ethereum Virtual Machine (EVM): Overview

https://ethereum.org/en/developers/docs/evm/
https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html


Accounts
There are two kinds of accounts in Ethereum which share the same address space: External accounts that are 
controlled by public-private key pairs (i.e. humans) and contract accounts which are controlled by the code 
stored together with the account.

Transaction
A transaction is a message that is sent from one account to another account (which might be the same or 
empty, see below). It can include binary data (which is called “payload”) and Ether.

Gas
Upon creation, each transaction is charged with a certain amount of gas, whose purpose is to limit the amount 
of work that is needed to execute the transaction and to pay for this execution at the same time. While the 
EVM executes the transaction, the gas is gradually depleted according to specific rules.

EVM Official Docs: https://ethereum.org/en/developers/docs/evm/
Solidity EVM Intro: https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html#index-6

Ethereum Virtual Machine (EVM): Key Notions

https://ethereum.org/en/developers/docs/evm/
https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html


Solidity is an object-oriented, high-level language for implementing smart contracts. Smart 
contracts are programs which govern the behaviour of accounts within the Ethereum state.

Read more at: https://solidity-by-example.org/

Smart Contracts and the Solidity Programming Language (1)

A Simple Contract Variables

https://solidity-by-example.org/


Read more at: https://solidity-by-example.org/

Smart Contracts and the Solidity Programming Language (2)
Mappings Arrays

https://solidity-by-example.org/


Remix IDE: https://remix.ethereum.org/
Read more at: https://solidity-by-example.org/

Smart Contracts and the Solidity Programming Language (3)

A Simple Wallet

Try it on Remix IDE

https://remix.ethereum.org/
https://solidity-by-example.org/


Attacks on Decentralized Apps
How do common attacks on DApps look like? We will discuss 
the following two examples:

• Example #1: Unstoppable
• Example #2: Puppet

We will also discuss the following topics:

• Decentralized Apps (DApps)
• Uniswap
• Flash Loan



Blockchain-based decentralized finance protocols (I.e., DeFi) have attracted a recent 
surge in popularity and value stored exceeding 13 billion USD. The currently most popular 
DeFi platforms are based on the Ethereum blockchain and its system of smart contracts, 
which regularly gives nascence to new applications, mirrored and inspired by the 
traditional centralized finance system. 

Examples include asset exchanges, margin trading, lending/borrowing platforms, and 
derivatives. DeFi, moreover, can surprise with novel use-cases such as constant product 
market maker exchanges and flash loans — instant loans where the lender bears no risk 
that the borrower does not repay the loan. 

With the rapid growth of the DeFi ecosystem, security issues are also emerging. For 
instance, in Oct 2021, Indexed Finance has lost over $16 million worth of users’ assets 
after a hacker exploited a vulnerability in the protocol’s smart contracts.

Why do we care about security of DApps?



• Ronin Network – $625 million
• PolyNetwork – $600 million
• Cream Finance – $130 million (October)
• Badger – $120 million
• Liquid – $94 million
• EasyFi – $81 million
• bZx – $55 million
• Uranium Finance – $50 million
• Cream Finance – $37 million (February)
• Alpha Homora – $37 million
• Vee Finance – $35 million
• Meerkat Finance – $31 million
• Spartan – $30 million
• Cream Finance – $29 million (August)
• pNetwork – $12 million
• Rari Capital – $11 million

Source: https://therecord.media/more-than-625-million-stolen-in-defi-hack-of-ronin-network/

An Incomplete List of DeFi Attacks Reported

https://therecord.media/more-than-625-million-stolen-in-defi-hack-of-ronin-network/


A hacker has stolen an estimated $55 million worth of cryptocurrency assets from bZx, a 
decentralized finance (DeFi) platform that allows users to borrow, loan, and speculate on 
cryptocurrency price variations.

See more at:
https://peckshield.medium.com/bzx-hack-full-disclosure-with-detailed-profit-analysis-
e6b1fa9b18fc

The bZx Hack

https://peckshield.medium.com/bzx-hack-full-disclosure-with-detailed-profit-analysis-e6b1fa9b18fc


There's a lending pool with a million DVT tokens in balance, offering flash loans for free. 

If only there was a way to attack and stop the pool from offering flash loans. You start 
with 100 DVT tokens in balance.

See original challenge here:
https://www.damnvulnerabledefi.xyz/challenges/1.html

Example#1: Unstoppable

https://www.damnvulnerabledefi.xyz/challenges/1.html


Example#1: Unstoppable

Lender Contract

Receiver Contract



Say something...

Example#1: Unstoppable – A Solution Attack



There's a huge lending pool borrowing Damn Valuable Tokens (DVTs), where you first 
need to deposit twice the borrow amount in ETH as collateral. The pool currently has 
100000 DVTs in liquidity.

There's a DVT market opened in an Uniswap v1 exchange, currently with 10 ETH and 10 
DVT in liquidity.

Starting with 25 ETH and 1000 DVTs in balance, you must steal all tokens from the 
lending pool.

See original challenge here:
https://www.damnvulnerabledefi.xyz/v1/challenges/8.html

Example#2: Puppet

https://www.damnvulnerabledefi.xyz/v1/challenges/8.html


Example#2: Puppet Lender Contract



Uniswap is a completely different type of exchange that‘s fully decentralized – meaning it 
isn’t owned and operated by a single entity – and uses a relatively new type of trading 
model called an automated liquidity protocol.

Read more at: https://www.coindesk.com/business/2021/02/04/what-is-uniswap-a-
complete-beginners-guide/

Uniswap: A Cryptocurrency Exchange

https://www.coindesk.com/business/2021/02/04/what-is-uniswap-a-complete-beginners-guide/


Example#2: Puppet – A Solution Attack



Eurus: Precise Attack Synthesis 
for Decentralized Apps
Eurus is our ongoing project that aims at synthesizing attacks 
for decentralized apps. We discuss how Eurus works by:

• Eurus' DSL and Specification Design for Attack Synthesis
• Eurus' Symbolic Virtual Machine

We will also discuss the following topics:

• Symbolic Compilation Using Rosette
• Ethereum Virtual Machine (EVM)
• The YUL Intermediate Language



Sophisticated interactions. DeFi apps often consist of multiple smart contracts that interact 
with each other, e.g., the notorious attack on bZx. Since the search space goes beyond 
the capability of existing tools, how to analyze the complicated interactions between 
smart contracts and effectively reduce the search space is the first challenge. 

Semantic gap. Existing tools mainly express exploits at the function level (e.g., Solar) or 
EVM bytecode level (e.g., Oyente), which dramatically increases the search space and 
complexity of attack synthesis. However, we note that there is a huge semantic gap 
between raw transactions observed on Ethereum and high-level DeFi semantics that are 
defined in DeFi apps. For example, on Ethereum, we can only observe the field values of 
these (external or internal) transactions, such as from, to, and input. However, we cannot 
get the high-level DeFi semantics such as “there exists an account that trades 861.95 
USDC for 0.5 Ether in the USDC-Ether pool using the Uniswap V2 protocol”. This high-
level DeFi semantic is critical to reduce the search space of synthesis since the attack 
usually involves the trade of tokens.

What are the challenges for DApp attack synthesis?



To use Eurus, a security analyst expresses a target vulnerability query (e.g., reachability or price manipulation via pre-
and post conditions). 

Eurus first constructs a symbolic attack program with holes that represent unknown function calls. Then it leverages 
Rosette to enumerate all possible ways of instantiating these holes and finally checks whether there exists a 
candidate that satisfies the query.

Eurus: An Overview

Symbolic Ethereum Virtual Machine #0

Symbolic Blockchain 
Account Manager

Smart Contracts

Specifications

IRs (e.g., YUL)
Symbolic Ethereum Virtual Machine #1

Symbolic Ethereum Virtual Machine #2

...

Eurus

Verification

Synthesis



A Crash Course: Symbolic Compilation

Interpreter Symbolic Evaluator Solver

Symbolic
Compilation

(e.g.,       )

Program Symbolic Input

Constraints
Solution

vc: 
(&& (<= 0 j) (< j 3))

y: 
(ite* 
(⊢ (= 0 j) 1) 
(⊢ (= 1 j) 2) 
(⊢ (= 2 j) 3)

)



Yul (previously also called JULIA or IULIA) is an intermediate language that can be compiled to bytecode for different 
backends. The design of Yul tries to achieve several goals:

• Programs written in Yul should be readable, even if the code is generated by a compiler from Solidity or another 
high-level language.

• Control flow should be easy to understand to help in manual inspection, formal verification and optimization.
• The translation from Yul to bytecode should be as straightforward as possible.
• Yul should be suitable for whole-program optimization.

Symbolic Compilation of YUL Programs

Example YUL Code Snippet



Memory/Storage Model
• Modeling memory as a vector (symbolic, builtin with Rosette)
• Modeling storage as a hash (symbolic, need to create one)
• Scalability issues

Hashing Mechanism
• Modeling keccak256 hashing (or do we really need it?)
• Differences between hashing of function (callcode) and hashing of access path (address)

EVM Calldata & Dispatching
• Calldata is an instance of memory that provide necessary info for a call
• A call is then dispatched to its corresponding function in a contract according to its callcode
• Coordinating with the Symbolic Blockchain Account Mananger

Building A Symbolic Ethereum Virtual Machine (EVM)



Example YUL Program Snippet of PuppetPool



The [V]Specification Language



• Build and support the [V] specification language
• Improve the scalability of symbolic hashing utilities
• Automatic generation and pruning of sketch using

Eurus: A Demo and Future (Ongoing) Work

Eurus is open-sourced and under active 
development. Try it on Github: 

⬣https://github.com/Veridise/Eurus

https://github.com/Veridise/Eurus


Conclusions
• A Quick Glance into Blockchain
• Programming for Ethereum
• Attacks on Decentralized Apps
• Eurus: Precise Attack Synthesis for DApps



THANKS 
Eurus is open-sourced and under active 

development. Try it on Github: 
https://github.com/Veridise/Eurus

https://github.com/Veridise/Eurus

