Program Synthesis for
Complex Software Systems

Yanju Chen
Computer Science Department
University of California, Santa Barbara
05/03/2022

Overview

Complex Software Systems
01 Complex Software Systems Around Us

Program Synthesis for Modern Web Browsers
02 Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation!!!
y g p y p

Program Synthesis for Deep Learning Systems

03 Visualization Question Answering Using Introspective Program Synthesis!?]

Conclusions and Proposals
04 Deduction-Powered Neural Program Synthesis: A Multi-Modal Perspective

[1] Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation. Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik. ASPLOS 2022.
[2] Visualization Question Answering Using Introspective Program Synthesis. Yanju Chen, Xifeng Yan, Yu Feng. PLDI 2022.

()1 Complex Software Systems

Complex Software Systems Around Us

¢ Complex Systems

¢ Complex Software Systems Around Us
* Operating Systems
* Modern Web Browsers
* Deep Learning Systems

4 | Complex Software Systems

Complex Systems

organisms cognition weather system

5 | Complex Software Systems

Untitled + | 3 ntitled

<« C % aboutcrash

Your PC ran into a problem and needs to restart. We'r
just collecting some error info, and then we'll restart fc
you.

20% complete

Aw, Snap!

Something went wrong while displaying th
To continue, press Reload or go to anoth

Operating Systems

‘ Modern Web Browsers 0" :

e.g., Servallll ‘ Deep Learning Systems

e.g., Cassiusl? ‘
e.g., LIMED!

[1] Scaling symbolic evaluation for automated verification of systems code with Serval. Nelson, L. et al. SOSP 2019.
[2] Automated Reasoning for Web Page Layout. Panchekha, P. et al. OOPSLA 2016.
[3] "Why Should I Trust You?": Explaining the Predictions of Any Classifier. Ribeiro, M.T. et al. KDD 2016.

Program Synthesis for

Modern Web Browsers

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation!!]

* Motivations * General-Purpose Symbolic Compilation
* Modern Web Browsers ¢ Domain-Specific Symbolic Compilation
e Tree Traversals ¢ Complexity Analysis
* A Motivating Example * Evaluation

* Existing Approaches & Challenges e GRAFTER

* Overview: HECATE * A Case Study: RenderTree

* Attribute Grammar & Traversal Language « FTL

Session Conclusions

[1] Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation. Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik. ASPLOS 2022.

7 | Program Synthesis for Modern Web Browsers

- Motivations -

Modern Web Browsers

¢ Multiple Modules
 Natural Language Specifications (W3C)

e Fault Tolerance

° Legacy COdebaSC C' & chromium.googlesource.com/chromium/src.git/+log
Google Git

chromium / chromium / src.git / HEAD

1c38fec Create an element on navigation to a page without a URL by Dana Fried - 2 minutes ago main

405dd51 Mark ColorType and AlphaType as [Extensible] by Alex Gough - 4 minutes ago

c9a7deb personalization: Extend wallpaper controller for Daily Google Photos by Angus L. M. McLean IV - 4 minutes ago

e36b7091 Add M102 to generate milestone reports.py by Andrew Grieve - 9 minutes ago

c9a3716a Fix use-after-move crash in ResourcedClientimpl by Maksim Ivanov - 10 minutes ago

dd3d836 Safely prevent polling re-entrancy in InteractionSequenceBrowserUtil by Dana Fried - 14 minutes ago

164527e Disable flaky WindowTreeHostWithThrottleTest.* by Chris Cunningham - 17 minutes ago

ea5772b Revert "Migrate PolicyConversionClient to use Value::Dict and Value::List" by Wenbin Zhang - 21 minutes ago

d11b139 [lacros skew tests] Refresh skew tests for M103 by chrome-weblayer-builder - 24 minutes ago
1eAAfRd5_Revert "ITah Managsement]l Onen most recent tab on hackeround" hv Sinan Sahin - 25 minutes ago

8 | Program Synthesis for Modern Web Browsers

- Motivations -

Tree Traversals

&

Compilers Web Browsers Numerical Computations

& nof g -0 " HAO%

Tree traversals are widely used and play important roles.

9 | Program Synthesis for Modern Web Browsers

- Motivations -

A Motivating Example

* Synthesizing A Toy Layout Engine T interface Box{
. 2 input wo,ho: int;
* Two classes, Four Attributes 2 output wi,w,h,h: int;
. 4 3
® Attrlbute Grammar 5 class Inner: Box{ N\
6 children {
7 nx : Optional[Box];
8 fc : Optional[Box];
)
10 rules {
“11 self.w := max(self.wd, fc.wl); |
1 traversal layout { 1 traversal layout { 12 self.wl := max(self.w, nx.wl);
2 case Inner{ 2 case Inner{) 13 self.h := max(self.ho, fc.h1);
3 recur fc; 3 recur fc; 14 self.h1 := self.h + nx.h1;
4 recur nx; 4 recur nx;
) 15 }
5 eval self.w; 5 10;
6 eval self.h; 6 1 f 16 3 J
! s 17 class Leaf: Box{
7 eval self.wil; 7 I; .
’ 18 children {
8 eval self.hil; 8 I3; .
5 o) 19 nx : Optional[Box];
1 case Leaf{ R e e 20}
1 recur nx; 11 recur nx; 2L rules {
12 eval self.w; 12 1) 22 self.w := self.wo;
13 eval self.h; 13 Is; 23 self.wl := max(self.w, nx.wl);
14 eval self.wl; 14 Is; 24 self.h := self.ho;
15 eval self.hi; 15 17 25 self.h1 := self.h + nx.h1;
v concrete 6} symbolic 26}
dependencies in n4's attributes v} rrosrarasl] 7} traversal 27 } class definitions

Attribute Grammar

10 | Program Synthesis for Modern Web Browsers

- Motivations -

Existing Approaches & Challenges

e Automata Based: TreeFuser!!l and GRAFTER[?!

* Deterministic Rewrite Rules (Complex to Maintain)

* Synthesis Based: FTLE!

* Constraints Generated by Domain Experts (Manual and Error-Prone)

* General-Purpose Symbolic Compilation
* Solver-Aided Programming Languages, e.g., 4./ Rosettel*]
» Path Explosions & Complex Constraint System

Program Symbolic Input

Symbolic K Constraints i .
Compilation — Solution
(e.g., 1))

Interpreter Symbolic Evaluator Solver

1] TreeFuser: a framework for analyzing and fusing general recursive tree traversals. Sakka, L. et al. OOPSLA 2017.
] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Sakka, L. et al. PLDI 2019.

] Parallel Schedule Synthesis for Attribute Grammars. Meyerovich, L. et al. PPoPP 2013.

]

[
(2
(3
[4] A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. Torlak, E. et al. PLDI 2014.

Overview: HECATE

* A CEGIS Framework for Tree Traversal Synthesis

* A Domain-Specific Trace Language

* For Disentangling Complex Dependencies in Trees

11 | Program Synthesis for Modern Web Browsers

* For Generating Easy-to-Solve Constraints for Tree Traversal Synthesis

A Tool Called HECATE

* For Expressive, Efficient and Flexible Tree Traversal Synthesis

\

4 domain-specific layer
Symbolic trace language
Interpreter <=
Evaluator
constraints counterexample tree Y
traversal (concrete) 0 . i
Solver » Verifier()—

)

grammar

trees

traversal
symbolic
(sy)

solution

—p>

12 | Program Synthesis for Modern Web Browsers

- Synthesis Using HECATE -

Attribute Grammar & Traversal Language

(interface) = interface (id) { ((tup);)* }
(class) = class (tup) { (children) (rules) }
(children) ::= children { ((tup);)* }
(rules) ::= rules { ((cstmt);)* }
) c= (id):(id)(,(id))* (traversal) ::= traversal (id) { (case)* }
(sel) a= (id)((id))?.(id) (case) = case (id) { ((tstmt);)* }
(expr) = (const) | (sel) | f({expr)*) (recur) ::= recur {(node)

| (expr) {(op) (expr) | fold({expr)+) (iterate) n= iterate { ((tstmt);)”" }

| if (expr) then (expr) else (expr) (parallel) ::= parallel { ((tstmt);)* }
(cstmt) = (sel) := (expr) (eval) ::= eval (cstmt)
(op) n= | = X+ (tstmt) = 1| (recur) | (iterate) | (eval)

f € functions (const) € constants (id) € identifiers (id) € identifiers (node) € nodes
Figure 6: Syntax for attribute grammar £,. Figure 7: Syntax for tree traversal language £;.

* Please refer to the paper for more details.

13 | Program Synthesis for Modern Web Browsers

- Synthesis Using HECATE -

General-Purpose Symbolic Compilation

* Constraint System 1 traversal layout { s class Inner: Box{
2 case Inner{ 6 children {
 Semantic Constraints RS 7 nx : OptionallBox];
s o: ' 8 fc : Optional[Box];
f °> 2
/ (o(none, l» = true) : :2 o hules ¢
V (o(Inner.wl, i) |[= 8({(ny, self.w), 1) A 8({(ny,nx.wl), 1) s u; 1 self.w := max(self.wo, fc.wl);
5) 12 self.wl := max(self.w, nx.wl);
A=6(L(ny, selfwl), 1)) 10 case Leaf{ 15 self.h := max(self.ho, fc.hl);
1 recur nx; o .
V (o(Inner.w,iz) |= 6({(ny, self.wo), i) A 8({(ny, fcwl), i) TR i:) Sl 8= SRl > 1l
A=8(Z (n1, selfw), 1)) - 0y

15 L7

V (a(Inner.hl,1p) |= 8({(ny, self.h),) A 8({(n1,nx.h1),1) BN < /mbolic
A=8({ (ny1, self.h1),1)) v) traversal
V (o(Inner.h,1p))= 6({(nq, self.h0), 1) A §({(ny, fc.h1),1)
A=6({ (nq, self.h), 1))

"all dependencies should have been ready"

"choose one to schedule"

"target attribute has not been scheduled" Number of timesteps grows as example trees
 Auxiliary Constraints become larger, which increases the complexity.

vi.\/ A\ ~o(@n rcan) v (\-o@n). - Every slot should be filled with at most one rule.

ay a¥ag a

Va.\/ /\ ~o(an ro(amw). - Every rule should be used by only one slot.

Ly LFL

14 | Program Synthesis for Modern Web Browsers

- Synthesis Using HECATE -

Domain-Specific Symbolic Compilation

 [Traversal] Given a tree, a traversal defines a total 1_traversal layout {
order relation < over the set of all locations of the tree. : ”j;':gs;:n:jgwt {
3 recur fc;
A o
* [Example] A concrete post-order traversal on the .
example tree yields the following total order of locations: |,
9}
ng.wW < ng.h < ng.wl <ng.hl < ns3.w < ns.h <ns.wl < ns.hl : Ca::ctfa:i; example tree
<ni.w < ni.h <ni.wl <ni.hl <nyw<ny.h <nywl <njy.hl E ::
<nop.w < n().h < no.wl < no.h1 14 b6
. 3
17 }

traversal

We can map a traversal from time domain to relational domain.

Such a traversal can be both concrete or symbolic.

15 | Program Synthesis for Modern Web Browsers

- Synthesis Using HECATE -

Domain-Specific Symbolic Compilation

1 1 traversal layou
* A Symbolic Trace Language e Sk
3 recur fc;
Operation Description 4 recur nx;
(choose [ay,...an]) | choose one from the attributes s u%
(alloc) returns a fresh concrete location -
9}
(read n.a) logs a read from n.a m case LafC
(write n.a) logs a write to n.a A
(assume o(Inner.h, iy) S
(read n;.h0) (read ns.h1) (write ny.h)) MR traversal

[0-1 Integer Linear Programming] Given coefficients a, b and c, the 0-1 ILP problem is to
solve for x as follows:

mianixi s.t. Vai,j.zai’jx_j < b;,

L J
where all entries are integers and in particular x; € {0,1}.

16 | Program Synthesis for Modern Web Browsers

- Synthesis Using HECATE -

Domain-Specific Symbolic Compilation

5 class Inner: Box{
(assume o (Inner.h, ;) ol mer
1 7 nx : Optional[Box];
(read n;.h0) (read ns.h1) (write n;.h)) R
. s}
Constraint System 0 rules {
11 self.w := max(self.w@, fc.wl);
° Dependency COHStraintS 12 self.wl := max(self.w, nx.wl);

13 self.h := max(self.ho, fc.hl);
self.h1 := self.h + nx.hl;

Z k[n1.ho, ty] 15}

to<t 16 } 7 class definitions

= o(Inner.ho, i) + o(Inner.h,11), (read for n,.ho)

o(Inner.h, ;) <

o(Inner.h,1p) < Z k[n3.h1, ty] "n,.h0 should have been scheduled somewhere ' ":;’::s;inifz“t {

fo<t before the current corresponding location” s recur fc;
= o(Leaf.h1,4) + o(Leaf.h1, i5) S

5 05

+ o(Leaf.h1,15) + o(Leaf.h1,17), (read for n3.h1) A

7 L2

.« 1 . 8 135

 Validity Constraints Constraints are not talking about t anymore, but s 3

about domain-specific relations now. - Ca::ctfa:i;

12 Ig;

vi. Z o(a1) <1, - Every slot should be filled with at most one rule. .o

a 15 L7

RN symbolic

Va. Z o(a,1) =1. - Every rule should be used by only one slot. GIRMN traversal

L

17 | Program Synthesis for Modern Web Browsers

- Synthesis Using HECATE -)
Complexity Analysis

I(assume o(Inner.h, 1)

(read my.h0) (read n3z.hl) (write nq.h))

start time chain

l

general-purpose domain-specific

18 | Program Synthesis for Modern Web Browsers

Evaluation

e Research Questions

* RQ1. Performance: What is the performance of synthesized traversals, compared to those generated
by state-of-the-art traversal synthesizers?

* RQ2. Expressiveness: Is HECATE's tree language expressive enough? In particular, can it express
prevailing tree traversal synthesis problems and solve them?

* RQ3. Flexibility: Can HECATE be extended to explore traversals of different design choices?

* RQ4. Efficiency: What is the benefit of the domain-specific encoding compared to general-purpose
encoding?

19 | Program Synthesis for Modern Web Browsers

- Evaluation -

Comparison against Grafterl!]

* GRAFTER
* Static Dependence Analysis

* Access Automata
Table 2: Comparison between GRAFTER, HECATE and HEcATEC

* Benchmarks (Adapted from GRAFTER) (with general-purpose encoding). The table shows total syn-

* Five Real-World Representative Problem thesis time (synthesis + verification) in second.
* Binary Search Tree
 Fast Multipole Method Benchmark | # of Rules | GRAFTER | HECATE | HECATE®
* Piecewise Functions BinaryTree 16 2.6 1.1 3.2
 Abstract Syntax Tree FMM 14 7.6 1.0 1.6
. L t Rendering T Piecewise 12 12.6 2.1 3.1
oo ooouE oo AST 136 1517 20.6 734
RenderTree 50 62.0 4.1 10.1

[1] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Sakka, L. et al. PLDI 2019.

20 | Program Synthesis for Modern Web Browsers

- Evaluation -

A Case Study: RenderTree

. A TOtal Of Flve Rendering Passes A Grartir ® Hecatel B HecateV & HecateP
1. Resolving Flexible Widths 100 T

Resolving Relative Widths

Computing Heights

<

~

W
]
1

0.50 +

Propagating Font Styles
Finalizing Element Positions

AR

Normalized Running Time
S
o
wn
|
I

* Variants of Different Synthesizers
* GRAFTER 0.00 | : | :

1.00E+06 1.00E+07 1.00E+08 1.00E+09

* HEecATE L: Sequential, Linked List S

° V. 1
HECATE ™ : Sequential, Vector Figure 11: Running time of fused traversals compared to the
e HEicaTe ” : Parallel, Vector unfused baseline.

With minimal efforts, Hecate can effectively explore traversals of different design choices.

21 | Program Synthesis for Modern Web Browsers
- Evaluation -

Synthesizing Layout Engine in FTL[1}

e FTL
* Specialized for Layout Engine

* Prolog Style Declarative Language for Partial Schedules

* Benchmarks (Adapted from FTL) ~
* (CSS-float

) | Name | # of Rules | =
* CSS-margin

CSS-float 192 g 150 - i
e (CSS-full CSS-margin 178 £ Lo
CSS-full 244
50
o L— I

CSS-float CSS-margin CSS-full

Figure 15: Comparison against FTL: benchmark statistics
(left) and results (right).

Running time (s)

[1] Parallel Schedule Synthesis for Attribute Grammars. Meyerovich, L. et al. PPoPP 2013.

22 | Program Synthesis for Modern Web Browsers

Session Conclusions

* HECATE: A Novel Framework for Tree Traversal Synthesis
* Domain-Specific Symbolic Compilation

* Performance, Expressiveness, Flexibility and Efficiency

O https://github.com/chyanju/Hecate

https://github.com/chyanju/Hecate

Program Synthesis for

Deep Learning Systems

Visualization Question Answering Using Introspective Program Synthesis!!]

* Deep Learning Systems * Introspective Program Synthesis

* VQA: A Motivating Example * Abstract Program Synthesis with Noisy Specification

* Existing Approaches & Challenges * Optimal Program Synthesis for Explanation Refinement
e Observations * Evaluation

e Overview: POE * Performance

¢ A Walkthrough of POE e Ablation Study

e System Workflow in POE * Effectiveness

¢ Explainability
. Discussions & Session Conclusions

[1] Visualization Question Answering Using Introspective Program Synthesis. Yanju Chen, Xifeng Yan, Yu Feng. PLDI 2022.

- Motivations -

Deep Learning Systems

* Data-Driven
» "Black Box"
* Deep & Large-Scale

o
RS
S CHLHH WK 2%

Q< QRSREAONN
P S H XS S
WO R NN R \
N NIREDGLH \\\\\\\»
LU ’\ 7o X S ..;’ \4'[' ;l:§ {‘ “"f
Caie O —\ N /
.r RIS — ‘ AN
(R SO
oo =S S
KR \" EXETAN
RS /’;).\§-
X7

N 255 :
,’ N S 205 7 , l\
LK SR / 7
-— . ‘///lll'f"l;‘}‘ ‘.’Q& //;'
v.::';mv‘\;\\\\}::w//
,/:,O\ S ‘\\\\
N2 L SNV
X "”'“{{

7

%

X
<y
O
NS
N
T\\
)

N
o)
RN
T‘\\

Wb
N R IALRL
WO R %
BRI
ER0A
>

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

24 | Program Synthesis for Deep Learning Systems

VGG-19 34-layer plain 34-layer residual
image image image
pool, /2
3x3 conv, 128 7x7 conv, 64, /2 X7 conv, 64, /2
pool, /2 pool, /2 pool, /2
v
3x3 conv, 256 3x3 conv, 64 3x3 conv, 64
[33conv,256 | [33conves | [
2 2
[33conv,256 | [3dconves | [3adconv,64
2 2 2
[3a3conv,256 | [33convea | 333 conv, 64
2
[33conve4 | 33 cony, 64 |
2 2
3x3 conv, 64 33 cony, 64|
| sy
pool, /2 3x3conv,128,/2 | 3x3cony, 128,/2 |
2 2
3x3 conv, 512 333 conv, 128 33 conv, 128
L2
3x3 conv, 512 3x3 conv, 128 3x3 conv, 128
2 2 2

3x3 cony, 128

3x3 conv, 512
A 2

[
[
[
[3xaconv, 128
[
[
[

v L,
33 conv, 512 33 conv, 128 33 cony, 128
v
3x3 conv, 128
¥
33 cony, 128
33 cony, 128
pool, /2 [3x3conv,256,/2 |
[33conys512 | [33conv,256 |
3x3 conv, 512 333 conv, 256 33 conv, 256
[3352 | [3aconv,256 | [3aconv,256 |
¥ A2 ¥
333 conv, 512 333 conv, 256 33 conv, 256
[33conv,256 | [3aconv,256 |
v
[33conv,256 | [3x3conv, 256 |
¥ ¥y
[3aconv,256 | [33conv,256 |
A2
[3aconv,256 | [3acony, 256
A2 ¥
333 conv, 256 33 conv, 256
[33conv,256 | [3x3conv, 256
¥ ¥
[33conv,256 | [3x3conv, 256
¥ Y
pool, /2 [3x3cony,512,/2 | [3x3cony,512,/2 |
L7 L2
[33conv,512 | [3a@conv,512 |
k28—
[33cony,512 | [33conv,512 |
v
[33cony,512 | [3dconvs2 |
v
[33conv,512 | [33conv,512 |
[33cony,512 | [33cony,512 |
v y—
fc 4096 avg pool avg pool
2 ¥
[fc 4096] [fc 1000] [fc 1000]

25 | Program Synthesis for Deep Learning Systems

- Motivations -

VQA: A Motivating Example

(Visualization Question Answering)

* Given a stacked bar chart that represents opinions for future Yisualization -
economic growth for different countries, a user describes her oz v
. . . . China emain the same
query based on the visualization in natural language: Tunisi = woen

us.
Mexico
Egypt
India

1
1
\ Which country's economy will get most worse
1
1
1

1 Turkey
over next 12 months? : Britain
! Russia
1 2
S Germany
8 Jordan
Pakistan
* A Visualization Question Answering (VQA) task is to Spain
design an algorithm that automatically finds the answer to a F’ﬁ:‘;
natural language query based on a given visualization. Lapanon
Poland
Japan
Czech Rep.

Greece

26 | Program Synthesis for Deep Learning Systems

- Motivations -

Existing Approaches & Challenges

* Pipelined System: VisQAl
* The first one that specializes for VQA tasks
* Errors propagate between different system modules
* Fully Supervised Machine Learning: SmBoP!?l, NL2code!]
* Requires manual annotated logic forms / programs as supervised training data
* Targeted at Table Question Answering (TQA) / code generation tasks
* Weakly Supervised Machine Learning: TAPAS!*]
* Requires only question-answer pairs for training — easy to collect corpus

* Targeted at TQA tasks

Answering Questions about Charts and Generating Visual Explanations. Kim, D.H. et al. CHI 2020.
SmBoP: Semi-autoregressive Bottom-up Semantic Parsing. Rubin, O. et al. NAACL 2021.

A Syntactic Neural Model for General-Purpose Code Generation. Yin, P. et al. ACL 2017.

TaPas: Weakly Supervised Table Parsing via Pre-training. Herzig,]. et al. ACL 2020.

[1
[2
[3
[4

[ARy il iy i Ry S|

27 | Program Synthesis for Deep Learning Systems

- Motivations -

Observations

opinion

* For mainstream weakly supervised approaches that el
. Brazil J ZI

directly output VQA answers, they are: e | =) cnina B 2 5

- 5 . us. Japan 18 33 49

* non-trivial for human beings to understand, and — Us. = —— ”s

percentage

* hard to fix if there's error in model reasoning/answer.
Figure 4. Example tables showing how one can derive simi-
lar programs to get conflicting outputs.

* Can we synthesize the hidden reasoning procedures to R ettt) Query
explain the model's predictions? So that we can: |

I
E Which country has highest Improve value? 1
* help human beings understand the model behavior, and __ S L

* fix potential model reasoning issues. “Brazil’, “Japan’”, “China’, “U.S?
razil”, “Japan”, ina”, U.S”, ...

. . . project(aggregate(I, null, max, ¢), ["Country"])
* In this work, we investigate such a new problem

Settlng Where: project(aggregate(I, null, o, o), ["Country"l)
* not all the predictions are correct, and

* predictions may conflict with each other.

28 | Program Synthesis for Deep Learning Systems

Overview: POE

* Fixing Deep Learning Model's (Noisy) Outputs via Introspective Program Synthesis
* Search Space Induction via Abstract Program Synthesis

* Finding Best Consistent Programs via Optimal Program Synthesis

Answers Explanations

» Abstract Synthesis

<inference> <synthesis> l

Deep Learning Model Optimal Synthesis

<repair> + <interpretation>

! |

Specification Refined Explanation + Refined Answer

In the context of this work, we use programs and explanations interchangeably.

29 | Program Synthesis for Deep Learning Systems

- Synthesis Using POE -

A Walkthrough of POE

Visualization ----———— - _______ . Data .-----oe . P S S € Explanation#1
I 1
1 1 1 | :
:) M Improve ! ! 1 y TO = pivot (T, "opinion", "%") :
| L I Remain the same : : Brazi Improve 84—Dblue 1 1 |
isi 1
: Tunisia Sl : : Brazil Remain the same 12 orange | Tl = select(TO, , egmax, null) :
us. 1 1 ,
: . | ! Brazil Worsen 5 red ! I e :
| Mexico | ! 1 I T2 = project(TI, f{"Country']) ;
" Egypt | | China Improve 83_ blue : I !
! d 1
: India : : China Remain the same 9 orange : L e EE R
|
! Turkey : | China Worsen 2 red X
1 Britain D S - - - - == - - -
| Aussia : : Tunisia Improve 75 blue : A e Query
g 1 1 . 1
'€ Gomany | » | 3 i Which countryq economy will get/most worse| |
o 1 1 g 1 1
(&) Jord ?
! e ! ! | sopen nprove WTowe | | i over next 12 months? !
| Pakistan ; i : , : : |
: Spain : : Japan Remain the same ’ 49 “orange P NGl il ; 7 ——————————————————
| France I , | Japan Worsen "33 red : =
| i , .
I taly ' : Czech Rep[Improve 13 blue : e QEXplanatlon# 2
1 Lebanon 1 1 - 1 ! .
1 1 1 | Czech Rep. | Remain the same 27 orange | | ! 1
1 Poland 1 1 1 TO0 = n opi ion" gy 1
1 Japen 1 | | Czech Rep. | Worsen 60 red i : ’ 1
| 1 1 1 I
| Czech Rep. ! ! Greece Improve 9 blue | loT1 o= select (T m eqmax, null) :
: Greece I | Greece Remain the same orange | | :/ !
1 == .
: 189 1 : Greece Worsen 81 red : : T2 = project(T1, ‘ n :
| 1 1
1 1 1 ! 1

Figure 2. A motivating example on data of opinions for future economic growth for different countries. Left: A visualization
of stacked bar chart for illustrating the data distribution; Middle: The corresponding table format of the data; Right: Example
checking semantic consistency between three parties: data, query and explanation. Explanation#1 doesn’t fit since no keyword
in the query shares similar meaning with Improve in the data and Improve in the explanation; Explanation#2 satisfies semantic
consistency.

30 | Program Synthesis for Deep Learning Systems

- Synthesis UsiriiPOE 2 Data oo :

A Walkthrough of POE

1
1
| |
: Brazil Improve 84 blue :
: Brazil Remain the same 12 orange i
. : Brazil Worsen 5 red :
* Original TAPAS Outputs: | china |Improve 8 bue !
: China Remain the same 9 orange :
: China Worsen 2 red :
. ST T T T T T T T T T T T T T T T T T J isi mprove 5/ blue 1
(0.78, Brazil), (0.67, Japan), (0.55, Greece), ... | eQuerY TR e
i Which country's economy will get most worse 1 I I
| over next 12 months? : | !
0 : i Japan Improve 16 blue :
* POE's Abstract Program Synthesis Outputs: ~ "~~~ 7T | Japan |Remainthesame 49 oange |
: Japan Worsen 33 red :
: Czech Rep. | Improve 13 blue :
1 project(select(pivot(T, o, <>) , ©, ©, <>) , <>) 1 Czech Rep. | Remain the same 27 orange :
q : Czech Rep. | Worsen 60 red !
2 project(select(T, ¢, o,), ©¢) ! !
1 Greece Improve 9 blue 1
SRR : Greece Remain the same 10 orange :
: Greece Worsen 81 red :
| 1
R . L L L S L. & 1
* POE's Optimal Program Synthesis Outputs:
(Table) ::= project((Table), (ColList))
: : | select((Table), (BoolOp), {Collnt), {ConstVal))
project(select(pivot(| pivot((Table), {Collnt), (Collnt))
T, "opinion", "%"), "Improve", egmax, null), ["Country"]) | aggregate((Table), (ColList), (AggrOp), {Collnt))
(AggrOp) == count | min | max | sum | mean
project(select(pivot((BoolOpy == <|<=|==|>=]|>|!=|eqmax | eqmin
T, "opinion", "%"), "Worsen", egmax, null), ["Country"]) (Table) € tables, (ConstVal) € constants

(ColInt) € columns, (ColList) € columns™

Figure 3. Syntax of a toy DSL for data wrangling.

31 | Program Synthesis for Deep Learning Systems

- Synthesis Using POE -

System Workflow in POE

> TTTTTTTTTETTTITTTTITTS \
DSL Visualization ‘0 Question

I
1
I
I
1
1
1
I
1
I
1
I
1
1
I
I
I
1

Optimal Synthesis

l

Optimal Explanation

\ Abstract Search Spaces
--------- el T
Deep Learning Model —> Abstract Synthesis Interpreter

_,Q Answer k i

g Optimal Answer

32 | Program Synthesis for Deep Learning Systems

- Synthesis Using POE - ; .
Introspective Program Synthesis

Given:

1. avisualization question answering task 7 = (I, Q) where [is the visualization and Q is
the question in natural language,

2. a domain-specific language L = (V, 2, R, S) and
3. a weakly supervised deep learning model 7 that predicts top-k answers A = 7(I, Q),

the goal of introspective program synthesis is to find a complete program P such that S = Pand
P optimizes the following objectives O:

P* = arg max J7,(P)
P

= arg max Z 0, -0(I, 0, A, P),
P o0

where P* is the optimal program, J is a cumulative term of weighted objectives 0 € O .

33 | Program Synthesis for Deep Learning Systems

- Synthesis Using POE -
Abstract Pr ogram SyntheSlS with Noisy Specification

opinion

[) Intuition: NarrOW down program SearCh Space M Improve [l Remain the same [l Worsen Country lmprove Worsen Remain the same
Brazil 84 5 12

to such a sweet spot that: _
=) China 83 2 9
* respects the model outputs, and Japan 18 33 49
4:)Jercer:it(;ge us. 52 20 26

e promote synthesis efficiency.
Model Outputs: “Brazil”, “Japan”, “China”, “U.S”

Abstract Synthesis Breakdown:

coarse granularity fine o

NG P I:> feasible for all examples
; A ‘\\ //I “l /A\\\ '\A,'/'-‘\
/, ‘ \\\\ // :’ “I ‘ \‘N* M ':—\\'\‘é/l 27N
g > A | 4 4 \‘: :' ’_ f};'y___‘_/,' ‘\\k,‘k_A/':\"V\/‘.'\é/' project (o)
R I B € QO =) feasible for all examples
Figure 6. Different granularities that affect the algorithm project(aggregate(I, null, ¢p, ¢1), ["Country"l)
search space. An input-output pair is denoted by a triangle. E> feasible for "Brazil", "Japan", "China"

project(aggregate(I, null, max, ¢1), ["Country"l)
I:> feasible for "Brazil", "Japan"

34 | Program Synthesis for Deep Learning Systems

- Synthesi.s Using POE - .
Optlmal Pr ogram SyntheSIS for Explanation Refinement

Czech Rep. | Remain the same 27 orange

* The above constraints apply to holes within the
same abstract programs.

3 n n "
Czech Rep. | Worsen 60 red ion", "&")

Greece Improve 9 blue
Greece Remain the same

T2 = project(Tl,)

Greece Worsen 81 red

* Intuition: Maximize consistency between Data s BN TSRS ©Explanation#1

explanation, visualization and query. s 2SR 1| 7m0 = pivot(r, "opinion”, "8") i

. Hard Constralnts i Brazil orange : i = select(TO, "Improve", egmax, null) i

| ::"" | | | T2 = project (T1, fCountry"}) :

. . ina mprove I |

* There is exactly one terminal that maps to a hole. ' |Gt Rerr)nainthesa . ! S A

* There is exactly one abstract program that is chosen. | e :::VZ N U A O Query

* Each hole belongs to exactly one abstract program. | | | Whichlcountrysleconomy will get|most worse|

: Japan Improve 16 blue ! : over next 12 months? :

* Each visualization unit (cell value) can map to at | | Japan |Remain thesame 49 orange | ! T e '
most one linguistic unit in the query. | | Japan | Worsen 3B red | ,

g q y : Czech Rep. ’ Improve 13 blue : -= OExplanatlon#2

I
I
I
I
o.{tHorsen), eamax, muin) |
|
|
I
|
|

project(select(pivot(T, ©g, ©¢1), ©2, ©3, ©4), ©5)

35 | Program Synthesis for Deep Learning Systems

- Synthesi.s Using POE - .
Optlmal Pr ogram SynthESIS for Explanation Refinement

* NSYN: Near-Synonym Linguistic Engine

* A linguistic engine that determines whether two linguistic units are near-synonyms
(semantically similar)

NSyN(“high”, “highest”) > NSyn(“high”, “low”)

* Soft Constraints / Objective Function

Z Z(l — NSyN(w, 1)) - x% |+

wevV,, teV;

More common abstract programs are preferred.

Two units mapped should be as similar as possible

36 | Program Synthesis for Deep Learning Systems

Evaluation

e Research Questions
* RQ1. Performance: How does POE compare against state-of-the-art tools on visualization queries?
* RQ2. Effectiveness: Can POE rectify wrong answers proposed by other tools?

* RQ3. Explainability: Does POE synthesize explanations that well capture the question intentions
and make sense to human end-users?

* RQ4. Ablation: How significant is the benefit of abstract synthesis and optimal alignment?

* Benchmarks
* 629 Visualization Question Answering Tasks from VisQAl[!]

* Real-World Data Sources
* Non-Trivial Questions from Real Users

* Wide Coverage of Question Types

[1] Answering Questions about Charts and Generating Visual Explanations. Kim, D.H. et al. CHI 2020.

37 | Program Synthesis for Deep Learning Systems

- Evaluation - o] .
Performance
POE(top-1) 370 (59%) @ POE(top-5)
TaPas
POE(top-3) . VisQA
Comparison against TAPAS!! and VisQA[?! portop-5) - +>2 4
200 250 300 350 400 450
° VISQA +8% #solved
e POE (tOp—l)Z +239 Figure 7. Performance comparison between the original

pipeline from VisQA (baseline), TAPAs and PoE.
* POE (top-3): +27%

POE can greatly boost performance of weakly supervised models.
* POE (top-5): +28%

Table 1. Comparison on number of benchmarks solved by
different tools across different types of questions.

1 1 . VisQA P

® StatS Of leferent QueStIOHS Types question type | total (ba;iglgine) TaPAs (togi)
. . 183 101 98 | 123

* Retrieval retrieval | oo || (55%) | (54%) | (67%)
: comparison 87 >0 0 71

* Comparison 14%) | 7% | (0%) | (82%)
~oaresntion | 2% 92 119 | 161

 Aggregation ggreg “0%) || (6%) | (47%) | (64%)
8 106 31 12 15

(17%) (29%) (11%) | (14%)
* Other - 629 274 229 | 370

(100%) | (44%) | (36%) | (59%)

POE is effective across different types of benchmarks.

1] TaPas: Weakly Supervised Table Parsing via Pre-training. Herzig, J. et al. ACL 2020.
2] Answering Questions about Charts and Generating Visual Explanations. Kim, D.H. et al. CHI 2020.

e Total

[
[

- Evaluation -

Ablation Study

e Variants of POE

» Pog?: only performs optimal synthesis on the full search space

38 | Program Synthesis for Deep Learning Systems

* PoE?: only performs abstract synthesis followed by an enumerative search to pick the first concrete program

Table 2. Comparison between TAPAs and different ablated
variants of POE.

variant | TaPas | Poe | Poe™ | Pog?

solved 229 370 194 357
delta (%) | (+0%) | (+23%) | (-5%) | (+21%)
#timeout - 36 586 38

Both procedures are necessary for the system.

39 | Program Synthesis for Deep Learning Systems

- Evaluation -

Effectiveness

* We measure Flip Rate of POE over TAPAS

* This measures percentage of benchmarks that POE gets right but TAPAS gets wrong.

- (é - |ISUCC(A) N FAIL(B)|
B’ |FAIL(B)|

POE can "fix" 39% of the benchmarks that TAPAS fails.

POE is effective in fixing wrong predictions of weakly supervised models.

40 | Program Synthesis for Deep Learning Systems

- Evaluation -

Explainability: A User Study

* We carry out a small user study on a comparison of the usability and explainability between
TAPAS and POE.

» Task1 (Usability): Ask a question regarding the given visualization and evaluate which tool returns
the accurate desired answers.

» Task2 (Explainability): Inspect the returned answer together with the explanation generated by POE,
and tell whether the answer is well explained and aligns with the user intent.

As a result, the participants indicate in our results that POE is

demonstrating better usability and explainability than TAPASs.

41 | Program Synthesis for Deep Learning Systems

Discussions & Session Conclusions

* Discussions

* Incomprehensive Questions

* "What is highestt change in income?" — typo
* "In which year investors of all age groups took bigger risks?" — "bigger" should be "biggest"

e Limitation of NLP Modules

* "How many countries in Asia will have their economy improved based on majority votes?" — requires a knowledge base
backend for inferring the implication of "countries in Asia"

* "How many teams are in the Central Division?" — requires alignment with entities from the visualization to the range of
"Central Division"

* Conclusions

O https://github.com/chyanju/Poe

https://github.com/chyanju/Poe

()4 Conclusions and Proposals

Deduction-Powered Neural Program Synthesis: A Multi-Modal Perspective

e Lessons Learned
¢ Deduction-Powered Program Synthesis
* Neural Program Synthesis

* Multi-Modal Program Synthesis
e Proposals

43 | Conclusions and Proposals

- Lessons Learned -

Deduction-Powered Program Synthesis

MARSH/TRINITY(2)/CONCORDI!
* Light-Weight SMT-Based Deduction + Partial Evaluation

* Conflict-Driven Learning

HECATE!*!

* Domain-Specific Symbolic Compilation
NGST2b]

* Trace Compatibility Checking with Concolic Execution and Bidirectional Reasoning
POE!]

* Abstract Program Synthesis

* Optimal Program Synthesis

[1] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.

(2] Trinity: An Extensible Synthesis Framework for Data Science. Martins R. et al. VLDB 2019.

[3] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020.

[4] Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation. Chen Y. et al. ASPLOS 2022.

[5] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Mariano B. et al. OOPSLA 2022.
[6]

5
6] Visualization Question Answering Using Introspective Program Synthesis. Chen Y. et al. PLDI 2022.

44 | Conclusions and Proposals

- Lessons Learned -

Neural Program Synthesis

* MARrs!

* Hybrid Neural Sequence Modeling of Programs
* CONCORD!Z]

* Deduction-Guided Reinforcement Learning

o NGST2B
* Cognate Grammar Network (CGN)

1] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.

[
[2] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020.
[3] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Mariano B. et al. OOPSLA 2022.

45 | Conclusions and Proposals

- Lessons Learned -

Multi-Modal Program Synthesis

* MARsH
* 10 Example, Natural Language Description
* Multi-Layer Specification
 Pogl
* Neural Outputs, Natural Language Query, Visualization

e Triangle Alignment Constraints

* CONCORD!
* IO Example, Programs

* Importance Weighting

[1] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.
[2] Visualization Question Answering Using Introspective Program Synthesis. Chen Y. et al. PLDI 2022.
[3] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020.

46 | Conclusions and Proposals

Proposals

* Deduction-Powered Neural Program Synthesis: A Multi-Modal Perspective

* Boosting Program Synthesis by Incorporation of:

* Deduction-Powered Program Synthesis

e More Customized and Precise: HECATE[!], NGST2[2!

* E.g., Incrementality, Modularity, etc.
* Neural Program Synthesis

* More Semantic- and Syntactic- Aware: CONCORD[3], NGST2

* E.g., Fault Localization Networks, Meta Program Synthesis, etc.
* Multi-Modal Program Synthesis

e More Robust and Reliable: MARS[4l, POE[S], CONCORD

* E.g., User Interactions/Mistakes, Partial Annotations/Sketches, etc.

]
] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Mariano B. et al. OOPSLA 2022.
] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020.
] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.

] Visualization Question Answering Using Introspective Program Synthesis. Chen Y. et al. PLDI 2022.

References and Related Works

[1] Scaling symbolic evaluation for automated verification of systems code with Serval. Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang. SOSP 2019.
[2] Automated Reasoning for Web Page Layout. Pavel Panchekha, Emina Torlak. OOPSLA 2016.

[3] "Why Should I Trust You?": Explaining the Predictions of Any Classifier. Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. KDD 2016.

[4] TreeFuser: a framework for analyzing and fusing general recursive tree traversals. Laith Sakka, Kirshanthan Sundararajah, Milind Kulkarni. OOPSLA 2017.

[5] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, Milind Kulkarni. PLDI 2019.

[6] Parallel Schedule Synthesis for Attribute Grammars. Leo Meyerovich, Matthew Torok, Eric Atkinson, Rastislav Bodik. PPoPP 2013.

[7] A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. Emina Torlak, Rastislav Bodik. PLDI 2014.

[8] Answering Questions about Charts and Generating Visual Explanations. Dae Hyun Kim, Enamul Hoque, Maneesh Agrawala. CHI 2020.

[9] SmBoP: Semi-autoregressive Bottom-up Semantic Parsing. Ohad Rubin, Jonathan Berant. NAACL 2021.

[10] A Syntactic Neural Model for General-Purpose Code Generation. Pengcheng Yin, Graham Neubig. ACL 2017.

[11] TaPas: Weakly Supervised Table Parsing via Pre-training. Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Miiller, Francesco Piccinno, Julian Martin Eisenschlos. ACL 2020.

[12] Trinity: An Extensible Synthesis Framework for Data Science. Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, Isil Dillig. VLDB 2019.

[13] Maximal Multi-Layer Specification Synthesis. Yanju Chen, Ruben Martins, Yu Feng. FSE 2019.

[14] Program Synthesis Using Deduction-Guided Reinforcement Learning. Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, Yu Feng. CAV 2020.

[15] Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation. Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik. ASPLOS 2022.

[16] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, Isil Dillig. OOPSLA 2022.

[17] Visualization Question Answering Using Introspective Program Synthesis. Yanju Chen, Xifeng Yan, Yu Feng. PLDI 2022.

