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• Complex Systems
• Complex Software Systems Around Us

• Operating Systems
• Modern Web Browsers
• Deep Learning Systems



Complex Systems
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organisms cognition weather system



Complex Software Systems Around Us
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Operating Systems

Modern Web Browsers
Deep Learning Systemse.g., Serval[1]

e.g., Cassius[2]

e.g., LIME[3]

[1] Scaling symbolic evaluation for automated verification of systems code with Serval. Nelson, L. et al. SOSP 2019.
[2] Automated Reasoning for Web Page Layout. Panchekha, P. et al. OOPSLA 2016.
[3] "Why Should I Trust You?": Explaining the Predictions of Any Classifier. Ribeiro, M.T. et al. KDD 2016.
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Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation[1]
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Modern Web Browsers
- Motivations -

• Multiple Modules

• Natural Language Specifications (W3C)

• Fault Tolerance

• Legacy Codebase

• ...
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Tree Traversals
- Motivations -
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Compilers Web Browsers Numerical Computations

Tree traversals are widely used and play important roles.



A Motivating Example
- Motivations -

class definitions
symbolic 
traversal

example tree

concrete 
traversaldependencies in 𝑛!'s attributes

Attribute Grammar

• Synthesizing A Toy Layout Engine
• Two classes, Four Attributes
• Attribute Grammar
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Existing Approaches & Challenges
- Motivations -

• Automata Based: TreeFuser[1] and GRAFTER[2]

• Deterministic Rewrite Rules (Complex to Maintain)

• Synthesis Based: FTL[3]

• Constraints Generated by Domain Experts (Manual and Error-Prone)

• General-Purpose Symbolic Compilation
• Solver-Aided Programming Languages, e.g.,       Rosette[4]

• Path Explosions & Complex Constraint System

[1] TreeFuser: a framework for analyzing and fusing general recursive tree traversals. Sakka, L. et al. OOPSLA 2017.
[2] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Sakka, L. et al. PLDI 2019.
[3] Parallel Schedule Synthesis for Attribute Grammars. Meyerovich, L. et al. PPoPP 2013.
[4] A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. Torlak, E. et al. PLDI 2014. 

Interpreter Symbolic Evaluator Solver

Symbolic
Compilation

(e.g.,       )

Program Symbolic Input

Constraints
Solution

10 | Program Synthesis for Modern Web Browsers



Overview: HECATE

• A CEGIS Framework for Tree Traversal Synthesis

• A Domain-Specific Trace Language
• For Disentangling Complex Dependencies in Trees
• For Generating Easy-to-Solve Constraints for Tree Traversal Synthesis

• A Tool Called HECATE

• For Expressive, Efficient and Flexible Tree Traversal Synthesis

traversal (concrete)

trees

grammar

traversal
(symbolic)

Interpreter

Verifier

counterexample tree

solution

Symbolic
Evaluator

Solver

constraints

trace language
domain-specific layer
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Attribute Grammar & Traversal Language
- Synthesis Using HECATE -

* Please refer to the paper for more details.
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General-Purpose Symbolic Compilation
- Synthesis Using HECATE -
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• Constraint System
• Semantic Constraints

• Auxiliary Constraints

- Every slot should be filled with at most one rule.

- Every rule should be used by only one slot.

"choose one to schedule"
"all dependencies should have been ready"

"target attribute has not been scheduled" Number of timesteps grows as example trees 
become larger, which increases the complexity.

symbolic 
traversal

class definitions

example tree



Domain-Specific Symbolic Compilation
- Synthesis Using HECATE -
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• [Traversal] Given a tree, a traversal defines a total 
order relation ≺ over the set of all locations of the tree.

• [Example] A concrete post-order traversal on the 
example tree yields the following total order of locations:

We can map a traversal from time domain to relational domain.

Such a traversal can be both concrete or symbolic.

example tree

concrete 
traversalsymbolic 

traversal



Domain-Specific Symbolic Compilation
- Synthesis Using HECATE -
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• A Symbolic Trace Language

• [0-1 Integer Linear Programming] Given coefficients 𝑎, 𝑏 and 𝑐, the 0-1 ILP problem is to 
solve for 𝑥 as follows:

where all entries are integers and in particular 𝑥! ∈ {0,1}.

symbolic 
traversal

example tree



Domain-Specific Symbolic Compilation
- Synthesis Using HECATE -
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• Constraint System
• Dependency Constraints

• Validity Constraints

- Every slot should be filled with at most one rule.

- Every rule should be used by only one slot.

"𝒏𝟏.h0 should have been scheduled somewhere 
before the current corresponding location"

Constraints are not talking about 𝒕 anymore, but 
about domain-specific relations now.

symbolic 
traversal

class definitions

example tree



Complexity Analysis
- Synthesis Using HECATE -
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Evaluation
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• Research Questions

• RQ1. Performance: What is the performance of synthesized traversals, compared to those generated 
by state-of-the-art traversal synthesizers?

• RQ2. Expressiveness: Is HECATE's tree language expressive enough? In particular, can it express 
prevailing tree traversal synthesis problems and solve them?

• RQ3. Flexibility: Can HECATE be extended to explore traversals of different design choices?

• RQ4. Efficiency: What is the benefit of the domain-specific encoding compared to general-purpose 
encoding?



Comparison against Grafter[1]
- Evaluation -
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• GRAFTER

• Static Dependence Analysis
• Access Automata

• Benchmarks (Adapted from GRAFTER)
• Five Real-World Representative Problem

• Binary Search Tree
• Fast Multipole Method
• Piecewise Functions
• Abstract Syntax Tree

• Layout Rendering Tree

[1] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Sakka, L. et al. PLDI 2019.



A Case Study: RenderTree
- Evaluation -
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• A Total of Five Rendering Passes
1. Resolving Flexible Widths
2. Resolving Relative Widths
3. Computing Heights
4. Propagating Font Styles
5. Finalizing Element Positions

• Variants of Different Synthesizers
• GRAFTER

• HECATE 𝕃: Sequential, Linked List
• HECATE 𝕍 : Sequential, Vector
• HECATE ℙ : Parallel, Vector

With minimal efforts, Hecate can effectively explore traversals of different design choices.



Synthesizing Layout Engine in FTL[1]
- Evaluation -
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• FTL
• Specialized for Layout Engine
• Prolog Style Declarative Language for Partial Schedules

• Benchmarks (Adapted from FTL)
• CSS-float
• CSS-margin
• CSS-full

[1] Parallel Schedule Synthesis for Attribute Grammars. Meyerovich, L. et al. PPoPP 2013.



Session Conclusions
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• HECATE: A Novel Framework for Tree Traversal Synthesis

• Domain-Specific Symbolic Compilation

• Performance, Expressiveness, Flexibility and Efficiency

Hecate is open-sourced and publicly available.

https://github.com/chyanju/Hecate

https://github.com/chyanju/Hecate
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Program Synthesis for

[1] Visualization Question Answering Using Introspective Program Synthesis. Yanju Chen, Xifeng Yan, Yu Feng. PLDI 2022.

Visualization Question Answering Using Introspective Program Synthesis[1]

• Deep Learning Systems
• VQA: A Motivating Example
• Existing Approaches & Challenges
• Observations
• Overview: POE

• A Walkthrough of POE

• System Workflow in POE

• Introspective Program Synthesis
• Abstract Program Synthesis with Noisy Specification
• Optimal Program Synthesis for Explanation Refinement
• Evaluation

• Performance
• Ablation Study
• Effectiveness
• Explainability

• Discussions & Session Conclusions



Deep Learning Systems
- Motivations -

• Data-Driven

• "Black Box"

• Deep & Large-Scale

• ...

24 | Program Synthesis for Deep Learning Systems



VQA:  A Motivating Example
- Motivations -

• Given a stacked bar chart that represents opinions for future 
economic growth for different countries, a user describes her 
query based on the visualization in natural language:

• A Visualization Question Answering (VQA) task is to 
design an algorithm that automatically finds the answer to a 
natural language query based on a given visualization.

25 | Program Synthesis for Deep Learning Systems

(Visualization Question Answering)



Existing Approaches & Challenges
- Motivations -

• Pipelined System: VisQA[1]

• The first one that specializes for VQA tasks

• Errors propagate between different system modules

• Fully Supervised Machine Learning: SmBoP[2], NL2code[3]

• Requires manual annotated logic forms / programs as supervised training data

• Targeted at Table Question Answering (TQA) / code generation tasks

• Weakly Supervised Machine Learning: TAPAS[4]

• Requires only question-answer pairs for training – easy to collect corpus

• Targeted at TQA tasks

26 | Program Synthesis for Deep Learning Systems

[1] Answering Questions about Charts and Generating Visual Explanations. Kim, D.H. et al. CHI 2020.
[2] SmBoP: Semi-autoregressive Bottom-up Semantic Parsing. Rubin, O. et al. NAACL 2021.
[3] A Syntactic Neural Model for General-Purpose Code Generation. Yin, P. et al. ACL 2017.
[4] TaPas: Weakly Supervised Table Parsing via Pre-training. Herzig, J. et al. ACL 2020.



Observations
- Motivations -

• For mainstream weakly supervised approaches that 
directly output VQA answers, they are:
• non-trivial for human beings to understand, and

• hard to fix if there's error in model reasoning/answer.

• Can we synthesize the hidden reasoning procedures to 
explain the model's predictions? So that we can:
• help human beings understand the model behavior, and

• fix potential model reasoning issues.

• In this work, we investigate such a new problem 
setting where:
• not all the predictions are correct, and

• predictions may conflict with each other.

27 | Program Synthesis for Deep Learning Systems



Overview: POE

• Fixing Deep Learning Model's (Noisy) Outputs via Introspective Program Synthesis
• Search Space Induction via Abstract Program Synthesis

• Finding Best Consistent Programs via Optimal Program Synthesis

28 | Program Synthesis for Deep Learning Systems

In the context of this work, we use programs and explanations interchangeably.

Deep Learning Model

Abstract Synthesis

Optimal Synthesis

Answers Explanations

Refined Explanation + Refined AnswerSpecification

<inference> <synthesis>

<repair> + <interpretation>



A Walkthrough of POE
- Synthesis Using POE -
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A Walkthrough of POE
- Synthesis Using POE -

• Original TAPAS Outputs:

• POE's Abstract Program Synthesis Outputs:

• POE's Optimal Program Synthesis Outputs:

30 | Program Synthesis for Deep Learning Systems



System Workflow in POE
- Synthesis Using POE -

31 | Program Synthesis for Deep Learning Systems



Introspective Program Synthesis
- Synthesis Using POE -

Given:

1. a visualization question answering task                    where 𝐼 is the visualization and 𝑄 is 
the question in natural language,

2. a domain-specific language                            and

3. a weakly supervised deep learning model 𝜋 that predicts top-𝑘 answers                       ,

the goal of introspective program synthesis is to find a complete program 𝑃 such that              and 
𝑃 optimizes the following objectives     :

where 𝑃∗ is the optimal program, 𝐽 is a cumulative term of weighted objectives             .

32 | Program Synthesis for Deep Learning Systems



Abstract Program Synthesis with Noisy Specification
- Synthesis Using POE -

• Intuition: Narrow down program search space 
to such a sweet spot that:

• respects the model outputs, and

• promote synthesis efficiency.

33 | Program Synthesis for Deep Learning Systems

feasible for all examples

Model Outputs:

Abstract Synthesis Breakdown:

feasible for all examples

feasible for "Brazil", "Japan", "China"

feasible for "Brazil", "Japan"



Optimal Program Synthesis for Explanation Refinement
- Synthesis Using POE -

• Intuition: Maximize consistency between 
explanation, visualization and query.

• Hard Constraints
• There is exactly one terminal that maps to a hole.

• There is exactly one abstract program that is chosen.

• Each hole belongs to exactly one abstract program.

• Each visualization unit (cell value) can map to at 
most one linguistic unit in the query.

• The above constraints apply to holes within the 
same abstract programs.

34 | Program Synthesis for Deep Learning Systems



Optimal Program Synthesis for Explanation Refinement
- Synthesis Using POE -

• NSYN: Near-Synonym Linguistic Engine

• A linguistic engine that determines whether two linguistic units are near-synonyms 
(semantically similar)

• Soft Constraints / Objective Function

35 | Program Synthesis for Deep Learning Systems

Two units mapped should be as similar as possible More common abstract programs are preferred.



Evaluation
• Research Questions

• RQ1. Performance: How does POE compare against state-of-the-art tools on visualization queries?

• RQ2. Effectiveness: Can POE rectify wrong answers proposed by other tools?

• RQ3. Explainability: Does POE synthesize explanations that well capture the question intentions 
and make sense to human end-users?

• RQ4. Ablation: How significant is the benefit of abstract synthesis and optimal alignment?

• Benchmarks
• 629 Visualization Question Answering Tasks from VisQA[1]

• Real-World Data Sources
• Non-Trivial Questions from Real Users

• Wide Coverage of Question Types

36 | Program Synthesis for Deep Learning Systems

[1] Answering Questions about Charts and Generating Visual Explanations. Kim, D.H. et al. CHI 2020.



Performance
- Evaluation -

• Comparison against TAPAS[1] and VisQA[2]

• VisQA: +8%

• POE (top-1): +23%

• POE (top-3): +27%

• POE (top-5): +28%

• Stats of Different Questions Types

• Retrieval

• Comparison

• Aggregation

• Other

• Total

37 | Program Synthesis for Deep Learning Systems

POE can greatly boost performance of weakly supervised models.

POE is effective across different types of benchmarks.

[1] TaPas: Weakly Supervised Table Parsing via Pre-training. Herzig, J. et al. ACL 2020.
[2] Answering Questions about Charts and Generating Visual Explanations. Kim, D.H. et al. CHI 2020.



Ablation Study
- Evaluation -

• Variants of POE

• : only performs optimal synthesis on the full search space

• : only performs abstract synthesis followed by an enumerative search to pick the first concrete program

38 | Program Synthesis for Deep Learning Systems

Both procedures are necessary for the system.



Effectiveness
- Evaluation -

• We measure Flip Rate of POE over TAPAS

• This measures percentage of benchmarks that POE gets right but TAPAS gets wrong.

39 | Program Synthesis for Deep Learning Systems

POE is effective in fixing wrong predictions of weakly supervised models.  

POE can "fix" 39% of the benchmarks that TAPAS fails.



Explainability: A User Study
- Evaluation -

• We carry out a small user study on a comparison of the usability and explainability between 
TAPAS and POE.

• Task1 (Usability): Ask a question regarding the given visualization and evaluate which tool returns 
the accurate desired answers.

• Task2 (Explainability): Inspect the returned answer together with the explanation generated by POE, 
and tell whether the answer is well explained and aligns with the user intent.

40 | Program Synthesis for Deep Learning Systems

As a result, the participants indicate in our results that POE is 
demonstrating better usability and explainability than TAPAS.



Discussions & Session Conclusions
• Discussions

• Incomprehensive Questions

• "What is highestt change in income?" – typo

• "In which year investors of all age groups took bigger risks?" – "bigger" should be "biggest"

• Limitation of NLP Modules

• "How many countries in Asia will have their economy improved based on majority votes?" – requires a knowledge base 
backend for inferring the implication of "countries in Asia"

• "How many teams are in the Central Division?" – requires alignment with entities from the visualization to the range of 
"Central Division"

• Conclusions

41 | Program Synthesis for Deep Learning Systems

Poe is open-sourced and publicly available.

https://github.com/chyanju/Poe

https://github.com/chyanju/Poe


Conclusions and Proposals
Deduction-Powered Neural Program Synthesis: A Multi-Modal Perspective
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• Lessons Learned

• Deduction-Powered Program Synthesis
• Neural Program Synthesis
• Multi-Modal Program Synthesis

• Proposals



Deduction-Powered Program Synthesis
- Lessons Learned -

• MARS[1]/TRINITY[2]/CONCORD[3]

• Light-Weight SMT-Based Deduction + Partial Evaluation

• Conflict-Driven Learning

• HECATE[4]

• Domain-Specific Symbolic Compilation

• NGST2[5]

• Trace Compatibility Checking with Concolic Execution and Bidirectional Reasoning

• POE[6]

• Abstract Program Synthesis

• Optimal Program Synthesis

43 | Conclusions and Proposals

[1] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.
[2] Trinity: An Extensible Synthesis Framework for Data Science. Martins R. et al. VLDB 2019.
[3] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020.
[4] Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation. Chen Y. et al. ASPLOS 2022.
[5] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Mariano B. et al. OOPSLA 2022.
[6] Visualization Question Answering Using Introspective Program Synthesis. Chen Y. et al. PLDI 2022.



Neural Program Synthesis
- Lessons Learned -

• MARS[1]

• Hybrid Neural Sequence Modeling of Programs

• CONCORD[2]

• Deduction-Guided Reinforcement Learning

• NGST2[3]

• Cognate Grammar Network (CGN)

44 | Conclusions and Proposals

[1] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.
[2] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020. 
[3] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Mariano B. et al. OOPSLA 2022.



Multi-Modal Program Synthesis
- Lessons Learned -

• MARS[1]

• IO Example, Natural Language Description

• Multi-Layer Specification

• POE[2]

• Neural Outputs, Natural Language Query, Visualization

• Triangle Alignment Constraints

............ and

• CONCORD[3]

• IO Example, Programs

• Importance Weighting

45 | Conclusions and Proposals

[1] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.
[2] Visualization Question Answering Using Introspective Program Synthesis. Chen Y. et al. PLDI 2022.
[3] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020. 



Proposals
• Deduction-Powered Neural Program Synthesis: A Multi-Modal Perspective

• Boosting Program Synthesis by Incorporation of:

• Deduction-Powered Program Synthesis

• More Customized and Precise: HECATE[1], NGST2[2]

• E.g., Incrementality, Modularity, etc.

• Neural Program Synthesis

• More Semantic- and Syntactic- Aware: CONCORD[3], NGST2

• E.g., Fault Localization Networks, Meta Program Synthesis, etc.

• Multi-Modal Program Synthesis

• More Robust and Reliable: MARS[4], POE[5], CONCORD

• E.g., User Interactions/Mistakes, Partial Annotations/Sketches, etc.
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[1] Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation. Chen Y. et al. ASPLOS 2022. 
[2] Automated Transpilation of Imperative to Functional Code Using Neural-Guided Program Synthesis. Mariano B. et al. OOPSLA 2022.
[3] Program Synthesis Using Deduction-Guided Reinforcement Learning. Chen Y. et al. CAV 2020.
[4] Maximal Multi-Layer Specification Synthesis. Chen Y. et al. FSE 2019.
[5] Visualization Question Answering Using Introspective Program Synthesis. Chen Y. et al. PLDI 2022.
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