
Bridging Logical Reasoning
and Machine Learning
in Program Synthesis

Yanju Chen

Computer Science Department
University of California, Santa Barbara

12/03/2020

Overview
• Program Synthesis in a Nutshell

• MARS: Encoding Multi-Layer Specifications

• CONCORD: Deduction-Guided Reinforcement Learning

• Related Works & Conclusions

Bridging Logical Reasoning and Machine Learning in Program Synthesis 2

Program Synthesis in a Nutshell
• Problem Formalization

• Related Works

• Program Synthesis with Machine Learning (I)

• A Data Wrangling Example & DSL
• NEO: A Brief Overview

• Observations & Motivations
• Q1: Why logical reasoning?

• Q2: Why machine learning?

• Q3: Why bridging?

Bridging Logical Reasoning and Machine Learning in Program Synthesis 3

Problem Formalization
Program Synthesis in a Nutshell

specifications !

synthesizer

program "

examples

natural languages

logical constraints

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site coll_date SP_A_pos SP_A_neg SP_B_pos SP_B_neg
site1 27/10/2007 0 0 1 0
site2 27/10/2007 0 0 0 1
site3 28/10/2007 2 0 0 0

occurs(unite) ∧
occurs(group_by) ∧

hasChild(group_by, unite) ∧
...

I need to reformat the data so that there is
just one row per site visit (i.e. in a given site
name and date combo) with columns for total
found by species and the fish status (i.e.
speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

Find a program $ that satisfies all the specifications %.

neural deductive ...

multi-modal multi-paradigm

...

Bridging Logical Reasoning and Machine Learning in Program Synthesis 4

Related Works
Program Synthesis in a Nutshell

synthesizer domain evaluated specification logical
reasoning

machine
learning

bridging
level multi-modal

DEEPCODER (Balog et al. 2017) list IO ! " NA !

SEQ2SQL (Zhong et al. 2017) SQL I + NL ! " NA "

DIALSQL (Gur et al. 2018) SQL NL ! " NA "

EXEC (Chen et al. 2018) Karel IO ! " NA !

NEO (Feng et al. 2018) table + list IO " " ★ !

SKETCHADAPT (Nye et al. 2018) list + string + Algolisp IO / IO + NL " " ★★ "

SQLIZER (Yaghmazadeh et al. 2018) SQL NL " " ★ !

AutoPandas (Bavishi et al. 2019) table IO ! " NA !

MARS (Chen et al. 2019) table IO + NL " " ★★★ "

METAL (Si et al. 2019) circuit logical formula " " ★★★ !

CONCORD (Chen et al. 2020) list IO " " ★★★ !

PROBE (Barke et al. 2020) string + circuit + bitvector IO " " ★★★ !

REGEL (Chen et al. 2020) regex IO + NL " " ★★ "

VISER (Wang et al. 2020) visualization IO + visual sketch " " ★ "

IO: Input-Output Example | NL: Natural Language | ": Yes | !: Not explicitly claimed

Bridging Logical Reasoning and Machine Learning in Program Synthesis 5

*The table only lists some of the recent related works.

Program Synthesis with Machine Learning (I)
Program Synthesis in a Nutshell

Neural Encoder

Examples

DSL

User

Proposed ProgramPredictions of Language Constructs / Partial Programs

Natural
Language

representation learning[1]

multi-modal encoding[2]
Bridging Logical Reasoning and Machine Learning in Program Synthesis 6

[1] DEEPCODER (Balog et al. 2017); EXEC (Chen et al. 2018);
AutoPandas (Bavishi et al. 2019); METAL (Si et al. 2019);
CONCORD (Chen et al. 2020);

[2] SEQ2SQL (Zhong et al. 2017); DIALSQL (Gur et al. 2018);
SQLIZER (Yaghmazadeh et al. 2018); MARS (Chen et al. 2019);
REGEL (Chen et al. 2020); VISER (Wang et al. 2020);

A Running Example from StackOverflow[1]
Program Synthesis in a Nutshell

[Description]

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with
columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

figured I need to sum within site. My thoughts were to use split/apply/aggregate/for loops etc but tried various
combinations and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

[Title] r script to count columns within dataset

[Example]

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

[1] Example adapted from https://stackoverflow.com/questions/39369502/r-script-to-reshape-and-count-columns-within-dataset
Bridging Logical Reasoning and Machine Learning in Program Synthesis 7

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

A Running DSL for Data Wrangling[1]
Program Synthesis in a Nutshell

! → #$
| select(!,&⃗'())
| unite(!,&*)*,&⃗'())
| separate(!,&⃗*)*,&'())
| mutate(!,&*)*,+,,&⃗'())
| group_by(!,&⃗'())
| summarise(!,&*)*,-,&⃗'())
| filter(!,., &⃗'())

+, → + | − | × | ÷
- → min | max | sum | count | avg

#$: the 3-th input table
!: table
&, &⃗: column(s) of table
+,: arithmetic operation
-: aggregation function
.: higher-order boolean function

(input table)
(column projection)
(column merging)
(column splitting)
(column arithmetic)
(row grouping)
(row aggregation)
(row filtering)

[1] DSL adapted from Wang. C. et al. Visualization by Example. POPL'20
Bridging Logical Reasoning and Machine Learning in Program Synthesis 8

A B C D
A1 B1 1 5
A2 B2 2 6
A3 B3 3 7
A4 B4 4 8

A C
A1 1
A2 2
A3 3
A4 4

select

A_B C D
A1_B1 1 5
A2_B2 2 6
A3_B3 3 7
A4_B4 4 8

A B C D
A1 B1 1 5
A2 B2 2 6
A3 B3 3 7
A4 B4 4 8

unite

separate

A B C D
A1 B1 1 5
A2 B2 2 6
A3 B3 3 7
A4 B4 4 8

A B C D C+D
A1 B1 1 5 6
A2 B2 2 6 8
A3 B3 3 7 10
A4 B4 4 8 12

mutate

A B C D
X B1 1 5
X B2 2 6
Y B3 3 7
Y B4 4 8

A avg.D
X 5.5
Y 7.5

group_by

summarise

A B C D
A1 B1 1 5
A2 B2 2 6
A3 B3 3 7

A B C D
A1 B1 1 5
A2 B2 2 6
A3 B3 3 7
A4 B4 4 8

filter

T0 = unite(input, ?, ?)
T1 = group_by(T0, ?)
output = summarise(T1, ?, ?, ?)

A Running Example from StackOverflow
Program Synthesis in a Nutshell

[Solution]

T0 = unite(input, "cat", ["species", "inf_status"])
T1 = group_by(T0, ["site", "cat"])
output = summarise(T1, "sts", sum, ["TOT"])

[Example]

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

Bridging Logical Reasoning and Machine Learning in Program Synthesis 9

concrete program
summarise

group_by

unite

input "cat" ["species","inf_status"]

["site","cat"]

"sts" sum ["TOT"]

output

summarise

group_by

unite

input ? ?

?

? ? ?

output partial program / sketch
Labels of some AST nodes are

yet to be determined.

sample_ID site coll_date cat TOT
382870 site1 27/10/2007 SpeciesB_positive 1
382872 site2 27/10/2007 SpeciesB_negative 1
487405 site3 28/10/2007 SpeciesA_positive 1
487405 site3 28/10/2007 SpeciesA_positive 1

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

unite group_by

summarise

NEO[1]: A Brief Overview
Program Synthesis in a Nutshell > Deductive Program Synthesis

mutate

unite

select

input ?

??

? ? ?

output

SMT-Based Deduction[1] & Analyze Conflicts[2]

Component-Based Specifications[2] for Data Wrangling DSL

Equivalent Modulo Conflict (EMC)[1]

out.row==in.row ∧ out.col<=in.col-1select

out.row==in.row ∧ out.col==in.col-1unite

out.row==in.row ∧ out.col==in.col+1separate

out.row==in.row ∧ out.col==in.col+1mutate

out.row==in.row ∧ out.col==in.colgroup_by

out.row<=in.row ∧ out.col<=in.col+1summarise

out.row<=in.row-1 ∧ out.col==in.colfilter

input.row==4 ∧ input.col==6 ∧
N8.row==input.row ∧ N8.col==input.col ∧

N5.row==N8.row ∧ N5.col<=N8.col-1 ∧
N1.row==N5.row ∧ N1.col==N5.col-1 ∧
N0.row==N1.row ∧ N0.col==N1.col+1 ∧

output.row==N0.row ∧ output.col==N0.col ∧
output.row==3 ∧ output.col==3

(input example)
(input alignment)
(select semantics)
(unite semantics)
(mutate semantics)
(output alignment)
(output example)

generated constraints

proposed sketch

mutate

separate

select

input ?

??

? ? ?

output

mutate

separate

unite

input ?

??

? ? ?

output

[1] Feng, Y. et al. Program Synthesis using Conflict-Driven Learning. PLDI'18
[2] Feng, Y. et al. Component-based Synthesis of Table Consolidation and Transformation Tasks from Examples. PLDI'17
Bridging Logical Reasoning and Machine Learning in Program Synthesis 10

Observations & Motivations
• Q1: Why logical reasoning?

• Example: EXEC[1]

• Concrete interpretation is less efficient, especially for complex problems

• Logical reasoning results generalize better in pruning search space

• Q2: Why machine learning?

• Example: AutoPandas[2]

• Machine learning backend provides better estimations prioritizing search order

• Q3: Why bridging?

• Example: NEO[3]

• Programs are precise, but specifications can be vague

• Statistical components can't reflect deduction feedbacks on the fly

Program Synthesis in a Nutshell

We need both, and better!

[1] Chen, X. et al. Execution-Guided Neural Program Synthesis. ICLR'18
[2] Bavishi, R. et al. AutoPandas: Neural-backed Generators for Program Synthesis. OOPSLA'19
[3] Feng, Y. et al. Program Synthesis using Conflict-Driven Learning. PLDI'18
Bridging Logical Reasoning and Machine Learning in Program Synthesis 11

Bridging the Logical and Statistical Lands
• Observations & Motivations

• Existing tools do have logical and statistical components combined

• Example: NEO[1] / TRINITY[2]

• But they are no more than "wired" together: still talk in different languages, act independently

• Two Bridging Directions

• MARS[3]: Encode multi-layer specifications (via machine learning) into logical components

• Talk in logical language!

• Encode specifications as soft/hard constraints in maximum satisfiability modulo theory (Max-SMT)

• CONCORD[4]: Guide the statistical components using deductions

• Talk in statistical language!

• Generate training samples for machine learning models by explaining deduction results
[1] Feng, Y. et al. Program Synthesis using Conflict-Driven Learning. PLDI'18
[2] Martins, R. et al. Trinity: An Extensible Synthesis Framework for Data Science. VLDB'19
[3] Chen, Y. et al. Maximal Multi-layer Specification Synthesis. FSE'19
[4] Chen, Y. et al. Program Synthesis Using Deduction-Guided Reinforcement Learning. CAV'20

Intertitles

Bridging Logical Reasoning and Machine Learning in Program Synthesis 12

MARS[1]: Encoding Multi-Layer Specifications
• Motivations

• Formalization

• Framework Overview

• Multi-Layer Specification Encoding
• Encoding Examples as Hard Constraints

• Encoding Natural Language Specifications

• Evaluations
• Evaluation Setup

• Evaluation Results & Analysis

• Discussions

Bridging Logical Reasoning and Machine Learning in Program Synthesis 13
[1] Chen, Y. et al. Maximal Multi-layer Specification Synthesis. FSE'19

Maximal Multi-Layer Specification Synthesis
• Motivations

• Examples can be imprecise

• Multi-modal specifications contain more useful information

MARS: Encoding Multi-Layer Specifications

[Description]
I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with
columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

figured I need to sum within site. My thoughts were to use split/apply/aggregate/for loops etc but tried various
combinations and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

[Title] r script to count columns within dataset
[Example]

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

Bridging Logical Reasoning and Machine Learning in Program Synthesis 14

Maximal Multi-Layer Specification Synthesis
• Motivations

• Examples can be imprecise

• Multi-modal specifications contain more useful information

MARS: Encoding Multi-Layer Specifications

[Description]
I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with
columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

figured I need to sum within site. My thoughts were to use split/apply/aggregate/for loops etc but tried various
combinations and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

[Title] r script to count columns within dataset
[Example]

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

Bridging Logical Reasoning and Machine Learning in Program Synthesis 15

Maximal Multi-Layer Specification Synthesis
• Motivations

• Examples can be imprecise

• Multi-modal specifications contain more useful information

MARS: Encoding Multi-Layer Specifications

[Description]
I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with
columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

figured I need to sum within site. My thoughts were to use split/apply/aggregate/for loops etc but tried various
combinations and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

[Title] r script to count columns within dataset
[Example]

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

Bridging Logical Reasoning and Machine Learning in Program Synthesis 16

Maximal Multi-Layer Specification Synthesis
• Motivations

• Examples can be imprecise

• Multi-modal specifications contain more useful information

MARS: Encoding Multi-Layer Specifications

[Description]
I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with
columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

figured I need to sum within site. My thoughts were to use split/apply/aggregate/for loops etc but tried various
combinations and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

[Title] r script to count columns within dataset
[Example]

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

group_by

summarise

unite

sum Natural language provides hints to problem solutions.Bridging Logical Reasoning and Machine Learning in Program Synthesis 17

Formalization
• Maximal Multi-Layer Specification Synthesis

• We model the problem using maximum satisfiability modulo theory (Max-SMT) and solve it
with an off-the-shelf SMT solver.

MARS: Encoding Multi-Layer Specifications

Given specification (ℇ, Ψ, Σ) where ℇ = ()*, (+,- , Ψ = ⋃(/), 0)), and Σ represents all symbols in the

DSL, the Maximal Multi-Layer Specification Synthesis problem is to infer a program 1 such that:

• 1 is a well-typed expression over symbols in Σ,

• 1 ()* = (+,-, and

• ∑0) is maximized.

DSL construct

preference/confidence

hard constraints/specifications: examples

soft constraints/specifications: natural languages

Hard constraints should be satisfied;
Soft constraints should be maximized.

Bridging Logical Reasoning and Machine Learning in Program Synthesis 18

Framework Overview
MARS: Encoding Multi-Layer Specifications

deductive

neural

natural languages logical constraintsexamples

user

logical constraints

DSL

program !MARS

soft

hard

encoding statistical estimations

Max-SMT

Bridging Logical Reasoning and Machine Learning in Program Synthesis 19

Encoding Examples as Hard Constraints
MARS: Encoding Multi-Layer Specifications

N5 = unite(?, ?, ?)
N1 = group_by(N5, ?)
N0 = summarise(N1, ?, ?, ?)

summarise

group_by

unite

input ? ?

?

? ? ?

output

symbolic program

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

input.row == 4
input.col == 6

output.row == 3
output.col == 3

N5.row == 4
N5.col == 5

N1.row == 4
N1.col == 5

N0.row <= 4
N0.col <= 6

unite

group_by

summarise

input N7.row == 4
N7.col == 6

satisfiable?

output.row == N0.row
output.col == N0.col

YES

Bridging Logical Reasoning and Machine Learning in Program Synthesis 20

Encoding Examples as Hard Constraints
MARS: Encoding Multi-Layer Specifications

N5 = select(?, ?)
N1 = unite(N5, ?, ?)
N0 = mutate(N1, ?, ?, ?)

mutate

unite

select

input ?

??

? ? ?

output

symbolic program

sample_ID site coll_date species TOT inf_status
382870 site1 27/10/2007 SpeciesB 1 positive
382872 site2 27/10/2007 SpeciesB 1 negative
487405 site3 28/10/2007 SpeciesA 1 positive
487405 site3 28/10/2007 SpeciesA 1 positive

site cat sts
site1 SpeciesB_positive 1
site2 SpeciesB_negative 1
site3 SpeciesA_positive 2

input.row == 4
input.col == 6

output.row == 3
output.col == 3

N5.row == 4
N5.col <= 5

N1.row == 4
N1.col <= 4

N0.row == 4
N0.col <= 6

select

unite

mutate

input N8.row == 4
N8.col == 6

satisfiable?

output.row == N0.row
output.col == N0.col

NO

Bridging Logical Reasoning and Machine Learning in Program Synthesis 21

Encoding Natural Language Specifications
• The Hybrid Neural Architecture

• seq2seq model (supervised): capture common natural language semantics

• association rule module (unsupervised): capture frequent patterns and refine the preference

MARS: Encoding Multi-Layer Specifications

LSTM
Cell

embedding

...... LSTM
Cell

reshape comment appreciate <SOS> unite group_by summarise

unite group_by summarise spread

encoder decoder

count
......

-0.31 -0.52 -0.69 -0.39
-1.91

unite group_by summarise spread

!": {count}->{group_by, summarise}
!#: {aggregate}->{summarise}
!$: {reshape}->{spread}
!%: {unique}->{filter}
... rule set

programdescriptionreshape count ... comment appreciate

rules applied &', &), …

score

final score 2.3

input: natural language specifications

output: program preference score

final output: refined
program preference score

mined association rules

Bridging Logical Reasoning and Machine Learning in Program Synthesis 22

LSTM
Cell

embedding

...... LSTM
Cell

reshape comment appreciate <SOS> unite group_by summarise

unite group_by summarise spread

encoder decoder

count
......

-0.31 -0.52 -0.69 -0.39
-1.91

unite group_by summarise spread

!": {count}->{group_by, summarise}
!#: {aggregate}->{summarise}
!$: {reshape}->{spread}
!%: {unique}->{filter}
... rule set

programdescriptionreshape count ... comment appreciate

rules applied &', &), …

score

final score 2.3

Encoding Natural Language Specifications
• The seq2seq model

MARS: Encoding Multi-Layer Specifications

output: program preference score

ℓ " # = ∑
&
log *("&|#)

** is the seq2seq model

LSTM
Cell

embedding

...... LSTM
Cell

reshape comment appreciate <SOS> unite group_by summarise

unite group_by summarise spread

encoder decoder

count
......

-0.31 -0.52 -0.69 -0.39
-1.91

unite group_by summarise spreadprogramdescriptionreshape count ... comment appreciate

score

input: natural language specifications

Bridging Logical Reasoning and Machine Learning in Program Synthesis 23

seq2seq model captures global user intents.

LSTM
Cell

embedding

...... LSTM
Cell

reshape comment appreciate <SOS> unite group_by summarise

unite group_by summarise spread

encoder decoder

count
......

-0.31 -0.52 -0.69 -0.39
-1.91

unite group_by summarise spread

!": {count}->{group_by, summarise}
!#: {aggregate}->{summarise}
!$: {reshape}->{spread}
!%: {unique}->{filter}
... rule set

programdescriptionreshape count ... comment appreciate

rules applied &', &), …

score

final score 2.3

Encoding Natural Language Specifications
• The association rule module

MARS: Encoding Multi-Layer Specifications

!": {count}->{group_by, summarise}
!#: {aggregate}->{summarise}
!$: {reshape}->{spread}
!%: {unique}->{filter}
... rule set

rules applied !", !$, …
final score 2.3

-1.91scoremined association rules

final output: refined
program preference score

Bridging Logical Reasoning and Machine Learning in Program Synthesis 24

Association rules captures local user intents.

Encoding Natural Language Specifications
• Encoding refined preference scores

MARS: Encoding Multi-Layer Specifications

?

?

?

input ? ?

?

? ? ?

output
unite group_by summarise2.3

(N0 == idx(summarise) ∨ N1 == idx(summarise) ∨ N5 == idx(summarise)) ∧
(N0 == idx(group_by) ∨ N1 == idx(group_by) ∨ N5 == idx(group_by)) ∧

(N0 == idx(unite) ∨ N1 == idx(unite) ∨ N5 == idx(unite))

(N0 == idx(summarise) ⇒ N1 == idx(group_by)) ∧
(N0 == idx(summarise) ⇒ N5 == idx(unite)) ∧
(N1 == idx(group_by) ⇒ N5 == idx(unite))

occurs(summarise, 2.3) ∧
occurs(group_by, 2.3) ∧

occurs(unite, 2.3)

occurs predicates

weight=2.3

hasChild(summarise, group_by, 2.3) ∧
hasChild(group_by, unite, 2.3)

hasChild predicates

weight=2.3

$
%&∈(

)
&∈

+, == ./0(2,)
encoding occurs(2, , 4,)

⋀
%&, %7∈(,*&∈*

+, == ./0(2,) ⇒ ⋀
7∈89(&)

+: == ./0(2:)
encoding hasChild(2,, 2:, 4,)

Bridging Logical Reasoning and Machine Learning in Program Synthesis 25

Evaluation Setup
• Research Questions

• Q1: Do our multi-layer specification and neural architecture suggest candidates that are close to
the user intent?

• Q2: What is the impact of the neural architecture in MARS on the performance of a state-of-the-art
synthesizer for data wrangling tasks?

• Q3: How is the performance of MARS affected by the quality of the corpus?

• Experiment Setup

• Benchmarks: 80 Real-World Challenging Data Wrangling Tasks

• Dataset: 20,640 StackOverflow Pages of Data Wrangling Tasks

• 16,459 question-solution pairs for seq2seq model

• 37,748 transactions for association rule mining (Apriori algorithm); we obtain 187 valid[1] rules

• Comparison to MORPHEUS[2]

MARS: Encoding Multi-Layer Specifications

[1] A rule is valid if its confidence ≥ 0.9 or support ≥ 0.003, and satisfies all the criteria defined in Chen, Y. et al.. Maximal Multi-layer Specification Synthesis. FSE'19
[2] Feng, Y. et al.. Component-based Synthesis of Table Consolidation and Transformation Tasks from Examples. PLDI'17
Bridging Logical Reasoning and Machine Learning in Program Synthesis 26

• Timeout: 5 mins

• Ablation Variants

• ngram: built-in statistical model in MORPHEUS

• seq2seq: MARS with seq2seq model

• hybrid: MARS with seq2seq model and preference score refinement (association rules)

Evaluation Results & Analysis
MARS: Encoding Multi-Layer Specifications

Bridging Logical Reasoning and Machine Learning in Program Synthesis 27

Discussions
MARS: Encoding Multi-Layer Specifications

• Limitations

• Insufficient Text

• Description of the question is barely useful

• Contextual Text

• Some questions require understanding of pragmatic contexts, not only semantic

• Misleading Text

• User specifies functionality not supported by the DSL

• Threats to Validity

• Quality of the Corpus

• Benchmark Selection

Bridging Logical Reasoning and Machine Learning in Program Synthesis 28

Bridging the Logical and Statistical Lands
Intertitles

Bridging Logical Reasoning and Machine Learning in Program Synthesis 29

MARS

?

CONCORD[1]: Deduction-Guided Reinforcement Learning
• Motivations

• Pure Deductive & Statistical Approaches

• Framework Overview

• Formalization
• A Running Example

• Deduction-Guided Reinforcement Learning
• Deduction Engine

• Off-Policy Sampling

• Importance Weighting

• Evaluations
• Evaluation Setup

• Evaluation Results & Analysis

Bridging Logical Reasoning and Machine Learning in Program Synthesis 30
[1] Chen, Y. et al. Program Synthesis Using Deduction-Guided Reinforcement Learning. CAV'20

Deduction-Guided Reinforcement Learning
• Motivations

• Feedback of deduction cannot be seamlessly used by statistical model

• Statistical estimation is not synchronized with deductive knowledge

• Maintenance of deductive knowledge creates overhead

CONCORD: Deduction-Guided Reinforcement Learning

filter separate mutate-2.9

select separate mutate-1.2

select unite mutate-0.1

unite select mutate-0.3

mutate select unite-0.8

separate unite mutate-0.9

-2.3 unite group_by summarise

...

Bridging Logical Reasoning and Machine Learning in Program Synthesis 31

Deductive Approach
CONCORD: Deduction-Guided Reinforcement Learning

DSL

specs

KB

solution

Decide Deduce

• rich and accurate feedback
• efficient search space pruning

• KB maintenance can be difficult
• no feedback incorporation

Bridging Logical Reasoning and Machine Learning in Program Synthesis 32

filter separate mutate-2.9

select separate mutate-1.2

select unite mutate-0.1

unite select mutate-0.3

mutate select unite-0.8

separate unite mutate-0.9

-2.3 unite group_by summarise

...

Statistical Approach
CONCORD: Deduction-Guided Reinforcement Learning

DSL

specs

!"

solution

Infer Check

• data-driven candidate list
• can update policy seamlessly

• less informative feedback
• inefficient pruning

Bridging Logical Reasoning and Machine Learning in Program Synthesis 33

filter separate mutate-2.9

select separate mutate-1.2

select unite mutate-0.1

unite select mutate-0.3

mutate select unite-0.8

separate unite mutate-0.9

-2.3 unite group_by summarise

...

Framework Overview
CONCORD: Deduction-Guided Reinforcement Learning

DSL

specs

!"

solution

Take Action Deduce

Update Policy

!

program

Bridging Logical Reasoning and Machine Learning in Program Synthesis 34

Formalization
CONCORD: Deduction-Guided Reinforcement Learning

• Program Synthesis as Markov Decision Process

initial state

summarise 0.3

unite 0.4

input 0.8!

!

!

!

!

!

!

group_by 0.8

final state +1

…

Objective: Maximize Rewards

? ? ?

? ? ?

?

summarise

group_by

unite

input "cat"["species","inf_status"]

["site","cat"]

"sts" sum ["TOT"]

output

action prob

state reward

?

working

uninstantiated

instantiated

summarise

summarise

group_by

Bridging Logical Reasoning and Machine Learning in Program Synthesis 35

Running Example
CONCORD: Deduction-Guided Reinforcement Learning

filter separate mutate-2.9

select unite mutate-0.1

unite select mutate-0.3

mutate select unite-0.8

-2.3 unite group_by summarise

...

DSL

specs

!" solution

Take Action Deduce

Update Policy

select unite mutate

unite select mutate

mutate select unite

...

sampled infeasible programs

!

• feedback from deduction flows seamlessly to the policy update
• not only prune the search space, but also promote good candidates

Bridging Logical Reasoning and Machine Learning in Program Synthesis 36

Synthesis Algorithm
CONCORD: Deduction-Guided Reinforcement Learning

Deduction
Engine

infeasible
Sampler

feasible
empty set ∅Deduce

Take Action Update Policy

!

select unite mutate-0.1

select unite mutate

unite select mutate

mutate select unite

...

sampled infeasible programs

Bridging Logical Reasoning and Machine Learning in Program Synthesis 37

Deduce

Synthesis Algorithm
CONCORD: Deduction-Guided Reinforcement Learning

Deduction
Engine

infeasible
Sampler

feasible
empty set ∅

Take Action Update Policy

!

select unite mutate-0.1

select unite mutate

unite select mutate

mutate select unite

...

sampled infeasible programs

Off-Policy Sampling

weighted future rewards

importance weighting

program distribution of policy

program distribution of Sampler
Bridging Logical Reasoning and Machine Learning in Program Synthesis 38

Evaluation Setup
CONCORD: Deduction-Guided Reinforcement Learning

• Research Questions:

• Q1: How does Concord compare against existing synthesis tools?

• Q2: How effective is the off-policy RL algorithm compared to standard policy gradient?

• Experiment Setup

• Deduction Engine: NEO's (Feng et al. 2018) conflict-driven deduction engine

• Policy: Gated Recurrent Unit (GRU)

• Benchmarks: DEEPCODER benchmarks used in NEO

• 100 challenging list processing problems

• Comparison between:

• NEO (Feng et al. 2018)

• DEEPCODER (Balog et al. 2017)
The architecture of the policy network used

Bridging Logical Reasoning and Machine Learning in Program Synthesis 39

Evaluation Results & Analysis
CONCORD: Deduction-Guided Reinforcement Learning

tool solved time
CONCORD 82% 36s

NEO 71% 99s

DEEPCODER 32% 205s

tool solved speedup over NEO

CONCORD 82% 8.71x

• Concord tightly couples statistical and deductive reasoning based on reinforcement learning.
• The off-policy reinforcement learning technique is effective.

Bridging Logical Reasoning and Machine Learning in Program Synthesis 40

Related Works & Conclusions
• Program Synthesis with Machine Learning (II)

• Related Works
• METAL

• PROBE

• ABL

• Challenges, Conclusions & Future Works

Bridging Logical Reasoning and Machine Learning in Program Synthesis 41

Program Synthesis with Machine Learning (II)
Related Works & Conclusions

Neural Encoder

Examples

DSL

User

Proposed ProgramPredictions of Language Constructs / Partial Programs

Execution

Check Results &
Update Policy

execution-guided[1]

Natural
Language

representation learning
multi-modal encodingBridging Logical Reasoning and Machine Learning in Program Synthesis 42

deduction-guided[3]

Deduction

Update Policy

Dialog

user-guided[4]

User

[1] SEQ2SQL (Zhong et al. 2017); EXEC (Chen et al. 2018);
AutoPandas (Bavishi et al. 2019);

[2] NEO (Feng et al. 2018); SQLIZER (Yaghmazadeh et al. 2018);
MARS (Chen et al. 2019); REGEL (Chen et al. 2020);
VISER (Wang et al. 2020)

[3] METAL (Si et al. 2019); SKETCHADAPT (Nye et al. 2018);
PROBE (Barke et al. 2020); CONCORD (Chen et al. 2020);

[4] DIALSQL (Gur et al. 2018);

deduction-based[2]

Related Works
• METAL[1]

• Circuit Synthesis

• Invoke a SAT solver to generate a counter-example which adds to the test cases

• PROBE[2]

• String Transformation & Bitvector & Circuit Synthesis

• Just-in-Time Learning: updates a PCFG during synthesis by learning from partial solutions

• ABL[3]

• Handwritten Equation Decipherment

• Improve machine learning models using abductive learning

Related Works & Conclusions

[1] Si, X. et al. Learning a Meta-Solver for Syntax-Guided Program Synthesis. ICLR'19
[2] Barke, S. et al. Just-in-Time Learning for Bottom-up Enumerative Synthesis. OOPSLA'20
[3] Dai, W.-Z. et al. Bridging Machine Learning and Logical Reasoning by Abductive Learning. NeurIPS'19
Bridging Logical Reasoning and Machine Learning in Program Synthesis 43

METAL[1] (The Reinforcement Learning Part)
Related Works & Conclusions

Bridging Logical Reasoning and Machine Learning in Program Synthesis 44

Reward smoothing by considering into reward
design of counter-examples from SAT solver

SAT Solver

Counter-Examples

Policy

Proposed Solution

Policy

Specifications

Update Policy

[1] Si, X. et al. Learning a Meta-Solver for Syntax-Guided Program Synthesis. ICLR'19

PROBE[1] (The Just-in-Time Learning Part)
Related Works & Conclusions

Bridging Logical Reasoning and Machine Learning in Program Synthesis 45

Programs that satisfy a subset of the semantic specification
often share syntactic similarity with the full solution.

Identify Promising
Partial Solutions

Select Promising Partial Solutions*
PCFG
(initially uniform)

Proposed Solution

Update PCFG
PCFG

Examples

*with different objectives and selection schemas

highest proportion of IO satisfieduniform distribution
[1] Barke, S. et al. Just-in-Time Learning for Bottom-up Enumerative Synthesis. OOPSLA'20

ABL[1]: A Brief Overview
Related Works & Conclusions

Bridging Logical Reasoning and Machine Learning in Program Synthesis 46
[1] Dai, W.-Z. et al. Bridging Machine Learning and Logical Reasoning by Abductive Learning. NeurIPS'19

SCALABILITY

INTERACTIVITY

CONTINUALITY

ROBUSTN ESS??

??

MULTI-
MODALITY

Challenges, Conclusions & Future Works
Related Works & Conclusions

Bridging Logical Reasoning and Machine Learning in Program Synthesis 47

How do we speed up synthesis for given task?

How do we access and utilize extra information from users?

How do we distill useful knowledge across synthesis?

How do we tolerate specification mistakes/noises during synthesis?

How do we process multi-modal information?

DEEPCODER (Balog et al. 2017); EXEC (Chen et al. 2018); NEO (Feng et al. 2018); SQLIZER (Yaghmazadeh et al. 2018); AutoPandas (Bavishi et al.
2019); METAL (Si et al. 2019); SKETCHADAPT (Nye et al. 2018); PROBE (Barke et al. 2020); CONCORD (Chen et al. 2020); ...

SEQ2SQL (Zhong et al. 2017); MARS (Chen
et al. 2019); REGEL (Chen et al. 2020); VISER

(Wang et al. 2020); ...

FLASHFILL (Gulwani 2011); RULESYNTH (Singh 2017);
BESTER (Peleg et al. 2020); ...

NELL (Mitchell et al. 2015); Net2Net (Chen et al. 2016);
Parishi et al. 2019; ...

InteractivePROSE (Le et al. 2017); DIALSQL (Gur et al. 2018);
GIM (Peleg et al. 2020); SampleSy (Ji et al. 2020); ...

... and some more
interesting dimensions?

References I
• Gulwani, S. Automating String Processing in Spreadsheets using Input-Output Examples. In POPL'11

• Berant, J., Chou, A., Frostig, R., & Liang, P. Semantic Parsing on {F}reebase from Question-Answer Pairs. In EMNLP'13

• Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., … Welling, J. Never-Ending Learning. In AAAI'15

• Chen, T., Goodfellow, I. J., & Shlens, J. Net2Net: Accelerating Learning via Knowledge Transfer. In ICLR'16

• Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. DeepCoder: Learning to Write Programs. In ICLR'17

• Feng, Y., Martins, R., Van Geffen, J., Dillig, I., & Chaudhuri, S. Component-based Synthesis of Table Consolidation and Transformation Tasks from Examples. In PLDI'17

• Le, V., Perelman, D., Polozov, O., Raza, M., Udupa, A., & Gulwani, S. Interactive Program Synthesis. CoRR, abs/1703.0

• Singh, R., Meduri, V. V., Elmagarmid, A., Madden, S., Papotti, P., Quiané-Ruiz, J.-A., … Tang, N. Synthesizing Entity Matching Rules by Examples. In VLDB'17

• Yaghmazadeh, N., Wang, Y., Dillig, I., & Dillig, T. SQLizer: Query Synthesis from Natural Language. In OOPSLA'17

• Zhong, V., Xiong, C., & Socher, R. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. CoRR, abs/1709.0

• Dong, L., & Lapata, M. Coarse-to-Fine Decoding for Neural Semantic Parsing. In ACL'18

• Feng, Y., Martins, R., Bastani, O., & Dillig, I. Program Synthesis using Conflict-Driven Learning. In PLDI'18

• Gur, I., Yavuz, S., Su, Y., & Yan, X. {D}ial{SQL}: Dialogue Based Structured Query Generation. In ACL'18

• Peleg, H., Shoham, S., & Yahav, E. Programming Not Only by Example. In ICSE'18

• Bavishi, R., Lemieux, C., Fox, R., Sen, K., & Stoica, I. AutoPandas: Neural-backed Generators for Program Synthesis. In OOPSLA'19

Bridging Logical Reasoning and Machine Learning in Program Synthesis 48

References II
• Chen, X., Liu, C., & Song, D. Execution-Guided Neural Program Synthesis. In ICLR'19

• Chen, Y., Martins, R., & Feng, Y. Maximal Multi-layer Specification Synthesis. In FSE'19

• Dai, W.-Z., Xu, Q., Yu, Y., & Zhou, Z.-H. Bridging Machine Learning and Logical Reasoning by Abductive Learning. In NeurIPS'19

• Martins, R., Chen, J., Chen, Y., Feng, Y., & Dillig, I. Trinity: An Extensible Synthesis Framework for Data Science. In VLDB'19

• Nye, M., Hewitt, L., Tenenbaum, J., & Solar-Lezama, A. Learning to Infer Program Sketches. In ICML'19

• Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. Continual lifelong learning with neural networks: A review. Neural Networks, 113, 54–71.

• Si, X., Yang, Y., Dai, H., Naik, M., & Song, L. Learning a Meta-Solver for Syntax-Guided Program Synthesis. In ICLR'19

• Barke, S., Peleg, H., & Polikarpova, N. Just-in-Time Learning for Bottom-up Enumerative Synthesis. In OOPSLA'20

• Chen, Q., Wang, X., Ye, X., Durrett, G., & Dillig, I. Multi-Modal Synthesis of Regular Expressions. In PLDI'20

• Chen, Y., Wang, C., Bastani, O., Dillig, I., & Feng, Y. Program Synthesis Using Deduction-Guided Reinforcement Learning. In CAV'20

• Ji, R., Liang, J., Xiong, Y., Zhang, L., & Hu, Z. Question Selection for Interactive Program Synthesis. In PLDI'20

• Mariano, B., Chen, Y., Feng, Y., Lahiri, S., & Dillig, I. Demystifying Loops in Smart Contracts. In ASE'20

• Peleg, H., & Polikarpova, N. Perfect is the Enemy of Good: Best-Effort Program Synthesis. In ECOOP'20

• Wang, C., Feng, Y., Bodik, R., Cheung, A., & Dillig, I. Visualization by Example. In POPL'20

Bridging Logical Reasoning and Machine Learning in Program Synthesis 49

