Bridging Logical Reasoning and Machine Learning in Program Synthesis

Yanju Chen

Computer Science Department University of California, Santa Barbara 12/03/2020

Overview

- Program Synthesis in a Nutshell
- MARS: Encoding Multi-Layer Specifications
- CONCORD: Deduction-Guided Reinforcement Learning
- Related Works & Conclusions

Program Synthesis in a Nutshell

- Problem Formalization
- Related Works
- Program Synthesis with Machine Learning (I)
- A Data Wrangling Example & DSL
- NEO: A Brief Overview

- Observations & Motivations
 - Q1: Why logical reasoning?
 - Q2: Why machine learning?
 - Q3: Why bridging?

$\frac{Program \; Synthesis \; in \; a \; Nutshell}{Related \; Works}$

*The table only lists some of the recent related works. IO: Input-Output Example | NL: Natural Language | 😂: Yes | 😰: Not explicitly claimed

synthesizer	domain evaluated	specification	logical reasoning	machine learning	bridging level	multi-modal
DEEPCODER (Balog et al. 2017)	list	Ю		\odot	NA	
SEQ2SQL (Zhong et al. 2017)	SQL	I + NL		\odot	NA	
DIALSQL (Gur et al. 2018)	SQL	NL		\odot	NA	
EXEC (Chen et al. 2018)	Karel	IO		\odot	NA	
NEO (Feng et al. 2018)	table + list	IO	0	\odot	*	
SKETCHADAPT (Nye et al. 2018)	list + string + Algolisp	IO / IO + NL	0	\bigcirc	**	<u></u>
SQLIZER (Yaghmazadeh et al. 2018)	SQL	NL	0	\odot	*	
AutoPandas (Bavishi et al. 2019)	table	IO		\odot	NA	
MARS (Chen et al. 2019)	table	IO + NL	\odot	\odot	***	<u></u>
METAL (Si et al. 2019)	circuit	logical formula	0	\bigcirc	***	
CONCORD (Chen et al. 2020)	list	Ю	\odot	\odot	***	
PROBE (Barke et al. 2020)	string + circuit + bitvector	IO	0	\odot	***	
REGEL (Chen et al. 2020)	regex	IO + NL	0	\odot	**	<u></u>
VISER (Wang et al. 2020)	visualization	IO + visual sketch	\odot	0	*	0

Bridging Logical Reasoning and Machine Learning in Program Synthesis

Program Synthesis in a Nutshell Program Synthesis with Machine Learning (I)

Program Synthesis in a Nutshell A Running Example from StackOverflow^[1]

[Title] r script to count columns within dataset

[Example]

sample_ID	site	coll_date	species	тот	inf_status
382870	site1	27/10/2007	SpeciesB	1	positive
382872	site2	27/10/2007	SpeciesB	1	negative
487405	site3	28/10/2007	SpeciesA	1	positive
487405	site3	28/10/2007	SpeciesA	1	positive

[Description]

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

figured I need to sum within site. My thoughts were to use split/apply/aggregate/for loops etc but tried various combinations and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

[1] Example adapted from https://stackoverflow.com/questions/39369502/r-script-to-reshape-and-count-columns-within-dataset Bridging Logical Reasoning and Machine Learning in Program Synthesis

Program Synthesis in a Nutshell A Running DSL for Data Wrangling^[1]

t \rightarrow x_i $select(t, \vec{c}_{ar,q})$ unite(t, c_{tgt} , \vec{c}_{arg}) separate($t, \vec{c}_{tgt}, c_{arg}$) $mutate(t, c_{tgt}, op, \vec{c}_{arg})$ group_by(t, \vec{c}_{arg}) $summarise(t, c_{tgt}, a, \vec{c}_{arg})$ filter(t, f, \vec{c}_{arg}) $op \rightarrow + \mid - \mid \times \mid \div$ $a \rightarrow \min \mid \max \mid sum \mid$

(input table) (column projection) (column merging) (column splitting) (column arithmetic) (row grouping) (row aggregation) (row filtering)

count avq

x_i: the *i*-th input table *t*: table c, \vec{c} : column(s) of table *op*: arithmetic operation *a*: aggregation function f: higher-order boolean function

					-				
Α	В	С	D		Α	С			
A1	B1	1	5	select	A1	1			
A2	B2	2	6		A2	2			
A3	Β3	3	7		A3	3			
A4	Β4	4	8		A4	4			
Α	В	С	D	unite	A	B	С	D	
A1	Β1	1	5		A1_	_B1	1	5	
A2	B2	2	6		A2_	_B2	2	6	
A3	Β3	3	7		A3_	_B3	3	7	
A4	Β4	4	8	separate	A4	_B4	4	8	
	_								
Α	В	С	D		Α	В	С	D	C+D
A A1	B B1	C 1	D 5	mutate	A A1	B B1	C 1	D 5	C+D 6
A A1 A2	B B1 B2	C 1 2	D 5 6	mutate	A A1 A2	B B1 B2	C 1 2	D 5 6	C+D 6 8
A A1 A2 A3	B B1 B2 B3	C 1 2 3	D 5 6 7	mutate	A A1 A2 A3	B B1 B2 B3	C 1 2 3	D 5 6 7	C+D 6 8 10
A A1 A2 A3 A4	B B1 B2 B3 B4	C 1 2 3 4	D 5 6 7 8	mutate	A A1 A2 A3 A4	B B1 B2 B3 B4	C 1 2 3 4	D 5 6 7 8	C+D 6 8 10 12
A A1 A2 A3 A4	B B1 B2 B3 B4	C 1 2 3 4	D 5 6 7 8	mutate	A A1 A2 A3 A4	B B1 B2 B3 B4	C 1 2 3 4	D 5 6 7 8	C+D 6 8 10 12
A A1 A2 A3 A4	B B1 B2 B3 B4 B4	C 1 2 3 4 C	D 5 6 7 8 D	mutate	A A1 A2 A3 A4	B1 B2 B3 B4	C 1 2 3 4	D 5 6 7 8	C+D 6 8 10 12
A A1 A2 A3 A4 A4	B B1 B2 B3 B4 B1	C 1 2 3 4 C 1	D 5 6 7 8 0 5	mutate	A A1 A2 A3 A4	B B1 B2 B3 B4	C 1 2 3 4	D 5 6 7 8	C+D 6 8 10 12
A A1 A2 A3 A4 A4 X X	B B1 B2 B3 B4 B4 B1 B1 B2	C 1 2 3 4 C 1 2	D 5 6 7 8 3 5 5 6	mutate	A A1 A2 A3 A4 X	B B1 B2 B3 B4 B4	C 1 2 3 4 D	D 5 6 7 8	C+D 6 8 10 12
A A1 A2 A3 A4 A4 X X Y	 B1 B2 B3 B4 B1 B1 B2 B3 	C 1 2 3 4 C 1 2 3	D 5 6 7 8 1 5 5 6 7	<pre>mutate mutate group_by summarise</pre>	A A1 A2 A3 A4 A4 X Y	B B1 B2 B3 B4 B4 5.5 7.5	C 1 2 3 4	D 5 6 7 8	C+D 6 8 10 12

				/
111111				1
Α	В	С	D	
A1	B1	1	5	1.1
A2	B2	2	6	
A3	В3	3	7	1
A4	B4	4	8	_
	2	0 1	777	tę
А	В	С	D	

A2 B2 2 6

A3 B3 3 7

	8		
	D	C+D	
-	5	6	
)	6	8	

Program Synthesis in a Nutshell A Running Example from StackOverflow

[Example]

[1] Feng, Y. et al. Program Synthesis using Conflict-Driven Learning. PLDI'18

[2] Feng, Y. et al. Component-based Synthesis of Table Consolidation and Transformation Tasks from Examples. PLDI'17

Bridging Logical Reasoning and Machine Learning in Program Synthesis

Program Synthesis in a Nutshell Observations & Motivations

- Q1: Why logical reasoning?
 - Example: EXEC^[1]
 - Concrete interpretation is less efficient, especially for complex problems
 - Logical reasoning results generalize better in pruning search space
- Q2: Why machine learning?
 - Example: AutoPandas^[2]
 - Machine learning backend provides better estimations prioritizing search order
- Q3: Why bridging?
 - Example: NEO^[3]
 - Programs are precise, but specifications can be vague
 - Statistical components can't reflect deduction feedbacks on the fly

Chen, X. et al. Execution-Guided Neural Program Synthesis. ICLR'18
 Bavishi, R. et al. AutoPandas: Neural-backed Generators for Program Synthesis. OOPSLA'19
 Feng, Y. et al. Program Synthesis using Conflict-Driven Learning. PLDI'18
 Bridging Logical Reasoning and Machine Learning in Program Synthesis

We need both, and better!

Bridging the Logical and Statistical Lands

- Observations & Motivations
 - Existing tools do have logical and statistical components combined
 - Example: NEO^[1] / TRINITY^[2]
 - But they are no more than "wired" together: still talk in different languages, act independently
- Two Bridging Directions
 - MARS^[3]: Encode multi-layer specifications (via machine learning) into logical components
 - Talk in logical language!
 - Encode specifications as soft/hard constraints in maximum satisfiability modulo theory (Max-SMT)
 - CONCORD^[4]: Guide the statistical components using deductions
 - Talk in statistical language!
 - Generate training samples for machine learning models by explaining deduction results

 Feng, Y. et al. Program Synthesis using Conflict-Driven Learning. PLDI'18
 Martins, R. et al. Trinity: An Extensible Synthesis Framework for Data Science. VLDB'19
 Chen, Y. et al. Maximal Multi-layer Specification Synthesis. FSE'19
 Chen, Y. et al. Program Synthesis Using Deduction-Guided Reinforcement Learning. CAV'20 Bridging Logical Reasoning and Machine Learning in Program Synthesis

MARS^[1]: Encoding Multi-Layer Specifications

• Motivations

• Evaluations

- Formalization
- Framework Overview
- Multi-Layer Specification Encoding
 - Encoding Examples as Hard Constraints
 - Encoding Natural Language Specifications

- Evaluation Setup
 - Evaluation Results & Analysis
- Discussions

- Motivations
 - Examples can be imprecise
 - Multi-modal specifications contain more useful information

[Title] r script to count columns within dataset [Example]

sample_ID	site	coll_date	species	ТОТ	inf_status
382870	site1	27/10/2007	SpeciesB	1	positive
382872	site2	27/10/2007	SpeciesB	1	negative
487405	site3	28/10/2007	SpeciesA	1	positive
487405	site3	28/10/2007	SpeciesA	1	positive

site	cat	sts
site1	SpeciesB_positive	1
site2	SpeciesB_negative	1
site3	SpeciesA_positive	2

[Description]

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

- Motivations
 - Examples can be imprecise
 - Multi-modal specifications contain more useful information

[Title] r script to count columns within dataset

[Exam	ple]								
	sample_ID	site	coll_date	species	тот	inf_status			
	382870	site1	27/10/2007	SpeciesB	1	positive	site	Cat	STS
	382872	site2	27/10/2007	SpeciesB	1	negative	site1	SpeciesB_positive	1
	487405	site3	28/10/2007	SpeciesA	1	positive	site2	SpeciesB_negative	1
	487405	site3	28/10/2007	SpeciesA	1	positive	site3	SpeciesA_positive	2

[Description]

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

- Motivations
 - Examples can be imprecise
 - Multi-modal specifications contain more useful information

[Title] r script to count columns within dataset [Example]

sample_ID	site	coll_date	species	ТОТ	inf_status
382870	site1	27/10/2007	SpeciesB	1	positive
382872	site2	27/10/2007	SpeciesB	1	negative
487405	site3	28/10/2007	SpeciesA	1	positive
487405	site3	28/10/2007	SpeciesA	1	positive

[Description]

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with columns for total found by species and the fish status (i.e. speciesA_pos, SpeciesA_neg, Sp_B_pos.. etc).

• Mo	otivation	S					summa	arise					
•	Exa gr	coup_by	mprecis	e									
•	Multi-n	nodal sp	ecification	s contair	1 more u	seful info	rmatior	L					
[Title] [Exam	r script to ple]	count co	olumns with	iin dataset	t	unite	e						
	sample_ID	site	coll_date	species	тот	inf_stati s			••		-		
	382870	site1	27/10/2007	SpeciesB	1	positive		8	site	C	at	sts	
	382872	site2	27/10/2007	SpeciesB	1	negative		S	ite1	Species	_positive	e 1	
	487405	site3	28/10/2007	SpeciesA	1	positive	•	S	ite2	SpeciesB	_negativ	e 1	
	487405	site3	28/10/2007	SpeciesA	1	positive		S	ite3	SpeciesA	_positive	e 2	

[Description]

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and date combo) with columns for total found by species and the fish status (i.e. speciesA_pos_SpeciesA_neg, Sp_B_pos.. etc).

$\label{eq:Mars:Encoding Multi-Layer Specifications} Formalization$

• Maximal Multi-Layer Specification Synthesis

hard constraints/specifications: examplesDSL constructGiven specification $(\mathcal{E}, \Psi, \Sigma)$ where $\mathcal{E} = (T_{in}, T_{out}), \Psi = \bigcup(\chi_i, \omega_i)$, and Σ represents all symbols in the
DSL, the Maximal Multi-Layer Specification Synthesis problem is to infer a program \mathcal{P} such that:• \mathcal{P} is a well-typed expression over symbols in Σ ,• $\mathcal{P}(T_{in}) = T_{out}$ and• $\sum \omega_i$ is maximizedsoft constraints/specifications: natural languages• We model the problem using maximum satisfiability modulo theory (Max-SMT) and solve it

with an off-the-shelf SMT solver. Hard constraints should be satisfied; Soft constraints should be maximized.

output.row == N0.row output.col == N0.col

MARS: Encoding Multi-Layer Specifications Encoding Examples as Hard Constraints

Bridging Logical Reasoning and Machine Learning in Program Synthesis

output.row == N0.row
output.col == N0.col

MARS: Encoding Multi-Layer Specifications Encoding Examples as Hard Constraints

Bridging Logical Reasoning and Machine Learning in Program Synthesis

- The Hybrid Neural Architecture
 - seq2seq model (supervised): capture common natural language semantics
 - association rule module (unsupervised): capture frequent patterns and refine the preference

• The seq2seq model

• The association rule module

Bridging Logical Reasoning and Machine Learning in Program Synthesis

$\begin{array}{c} {}_{\text{MARS: Encoding Multi-Layer Specifications}} \\ \text{Evaluation Setup} \end{array} \end{array} \\$

- Research Questions
 - Q1: Do our multi-layer specification and neural architecture suggest candidates that are close to the user intent?
 - Q2: What is the impact of the neural architecture in MARS on the performance of a state-of-the-art synthesizer for data wrangling tasks?
 - Q3: How is the performance of MARS affected by the quality of the corpus?
- Experiment Setup
 - Benchmarks: 80 Real-World Challenging Data Wrangling Tasks
 - Dataset: 20,640 StackOverflow Pages of Data Wrangling Tasks
 - 16,459 question-solution pairs for seq2seq model
 - 37,748 transactions for association rule mining (*Apriori* algorithm); we obtain 187 *valid*^[1] rules
 - Comparison to MORPHEUS^[2]

[1] A rule is *valid* if its confidence \geq 0.9 or support \geq 0.003, and satisfies all the criteria defined in Chen, Y. et al.. Maximal Multi-layer Specification Synthesis. FSE'19 [2] Feng, Y. et al.. Component-based Synthesis of Table Consolidation and Transformation Tasks from Examples. PLDI'17 Bridging Logical Reasoning and Machine Learning in Program Synthesis

MARS: Encoding Multi-Layer Specifications Evaluation Results & Analysis

- Timeout: 5 mins
- Ablation Variants
 - *ngram*: built-in statistical model in MORPHEUS
 - *seq2seq*: MARS with seq2seq model
 - *hybrid*: MARS with seq2seq model and preference score refinement (association rules)

Table 1: Statistics for different model rankings.

model	n-g ram	seq2seq	hybrid
average [*]	42	25	18
std. ¹	70	39	26

standard deviation. computed based on the rankings of the correct solutions. Table 2: Counts of top-1s and top-3s in different models.

model	n-gram	seq2seq	hybrid
Top-1 total [*]	0	8	11
Top-3 total [*]	2	18	29

* computed based on the rankings of the correct solutions.

Table 3: Statistics of running time.

model	avg. speedup 1	#timeouts*
ngram	1x	11
seq2seq	6x	8
hybrid	15x	2

¹ average speedup on challenging solved benchmarks.

number of timeouts on all benchmarks.

$\label{eq:Mars:Encoding Multi-Layer Specifications} Discussions$

- Limitations
 - Insufficient Text
 - Description of the question is barely useful
 - Contextual Text
 - Some questions require understanding of *pragmatic* contexts, not only semantic
 - Misleading Text
 - User specifies functionality not supported by the DSL ⁿ
- Threats to Validity

٠

- Quality of the Corpus
- Benchmark Selection

"... I can solve my problem using dplyr's **mutate but** it's a time-intensive, roundabout way to achieve my goal. ..."

"... I want to use mutate to make variable d which is

mean of a,b and c. ..."

Intertitles Bridging the Logical and Statistical Lands

CONCORD^[1]: Deduction-Guided Reinforcement Learning

Motivations •

٠

- Pure Deductive & Statistical Approaches
- Framework Overview .
- Formalization .
- A Running Example

- Deduction-Guided Reinforcement Learning •
 - **Deduction Engine** ٠
 - **Off-Policy Sampling**
 - Importance Weighting ٠
- Evaluations •
 - **Evaluation Setup**
 - Evaluation Results & Analysis

[1] Chen, Y. et al. Program Synthesis Using Deduction-Guided Reinforcement Learning. CAV'20 Bridging Logical Reasoning and Machine Learning in Program Synthesis

CONCORD: Deduction-Guided Reinforcement Learning Deduction-Guided Reinforcement Learning

- Motivations
 - Feedback of deduction cannot be seamlessly used by statistical model

-0.1	select unite mutate]→€0
-0.3	unite select mutate	
-0.8	mutate select unite	
-0.9	separate unite mutate	
-1.2	select separate mutate]

-2.3	unite group_by summarise
-2.9	filter separate mutate

- Statistical estimation is not synchronized with deductive knowledge
- Maintenance of deductive knowledge creates overhead

Bridging Logical Reasoning and Machine Learning in Program Synthesis

$\begin{array}{c} {\rm CONCORD: \ Deduction-Guided \ Reinforcement \ Learning} \\ Statistical \ Approach \end{array}$

$\begin{array}{c} {\rm CONCORD: \ Deduction-Guided \ Reinforcement \ Learning} \\ Running \ Example \end{array}$

$\begin{array}{c} {\rm CONCORD: \ Deduction-Guided \ Reinforcement \ Learning} \\ Synthesis \ Algorithm \end{array}$

Bridging Logical Reasoning and Machine Learning in Program Synthesis

$\begin{array}{c} {\rm CONCORD: \ Deduction-Guided \ Reinforcement \ Learning} \\ {\rm Evaluation \ Setup} \end{array} \end{array}$

- Research Questions:
 - Q1: How does Concord compare against existing synthesis tools?
 - Q2: How effective is the off-policy RL algorithm compared to standard policy gradient?
- Experiment Setup
 - Deduction Engine: NEO's (Feng et al. 2018) conflict-driven deduction engine
 - Policy: Gated Recurrent Unit (GRU)
 - Benchmarks: DEEPCODER benchmarks used in NEO
 - 100 challenging list processing problems
 - Comparison between:
 - NEO (Feng et al. 2018)
 - DEEPCODER (Balog et al. 2017)

The architecture of the policy network used

CONCORD: Deduction-Guided Reinforcement Learning Evaluation Results & Analysis

Fig. 5.	Comparison	between	CONCORD,	NEO,	and	DEEPCODER
---------	------------	---------	----------	------	-----	-----------

tool	solved	time
Concord	82%	36s
NEO	71%	99s
DeepCoder	32%	205s

tool	solved	speedup over NEO
Concord	82%	8.71x

• Concord tightly couples statistical and deductive reasoning based on reinforcement learning.

• The off-policy reinforcement learning technique is effective.

Related Works & Conclusions

- Program Synthesis with Machine Learning (II)
- Related Works
 - METAL
 - PROBE
 - ABL
- Challenges, Conclusions & Future Works

Related Works & Conclusions Program Synthesis with Machine Learning (II)

$\frac{Related \ Works \ \& \ Conclusions}{Related \ Works}$

- METAL^[1]
 - Circuit Synthesis
 - Invoke a SAT solver to generate a counter-example which adds to the test cases
- PROBE^[2]
 - String Transformation & Bitvector & Circuit Synthesis
 - Just-in-Time Learning: updates a PCFG during synthesis by learning from partial solutions
- ABL^[3]
 - Handwritten Equation Decipherment
 - Improve machine learning models using abductive learning

 Si, X. et al. Learning a Meta-Solver for Syntax-Guided Program Synthesis. ICLR'19
 Barke, S. et al. Just-in-Time Learning for Bottom-up Enumerative Synthesis. OOPSLA'20
 Dai, W.-Z. et al. Bridging Machine Learning and Logical Reasoning by Abductive Learning. NeurIPS'19 Bridging Logical Reasoning and Machine Learning in Program Synthesis

METAL^[1] (The Reinforcement Learning Part)

[1] Si, X. et al. Learning a Meta-Solver for Syntax-Guided Program Synthesis. ICLR'19 Bridging Logical Reasoning and Machine Learning in Program Synthesis

PROBE^[1] (The Just-in-Time Learning Part)

Bridging Logical Reasoning and Machine Learning in Program Synthesis

Related Works & Conclusions ABL^[1]: A Brief Overview

[1] Dai, W.-Z. et al. Bridging Machine Learning and Logical Reasoning by Abductive Learning. NeurIPS'19 Bridging Logical Reasoning and Machine Learning in Program Synthesis

Related Works & Conclusions Challenges, Conclusions & Future Works

DEEPCODER (Balog et al. 2017); EXEC (Chen et al. 2018); NEO (Feng et al. 2018); SQLIZER (Yaghmazadeh et al. 2018); AutoPandas (Bavishi et al. 2019); METAL (Si et al. 2019); SKETCHADAPT (Nye et al. 2018); PROBE (Barke et al. 2020); CONCORD (Chen et al. 2020); ...

References I

- Gulwani, S. Automating String Processing in Spreadsheets using Input-Output Examples. In POPL'11
- Berant, J., Chou, A., Frostig, R., & Liang, P. Semantic Parsing on {F}reebase from Question-Answer Pairs. In EMNLP'13
- Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., ... Welling, J. Never-Ending Learning. In AAAI'15
- Chen, T., Goodfellow, I. J., & Shlens, J. Net2Net: Accelerating Learning via Knowledge Transfer. In ICLR'16
- Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. DeepCoder: Learning to Write Programs. In ICLR'17
- Feng, Y., Martins, R., Van Geffen, J., Dillig, I., & Chaudhuri, S. Component-based Synthesis of Table Consolidation and Transformation Tasks from Examples. In PLDI'17
- Le, V., Perelman, D., Polozov, O., Raza, M., Udupa, A., & Gulwani, S. Interactive Program Synthesis. CoRR, abs/1703.0
- Singh, R., Meduri, V. V., Elmagarmid, A., Madden, S., Papotti, P., Quiané-Ruiz, J.-A., ... Tang, N. Synthesizing Entity Matching Rules by Examples. In VLDB'17
- Yaghmazadeh, N., Wang, Y., Dillig, I., & Dillig, T. SQLizer: Query Synthesis from Natural Language. In OOPSLA'17
- Zhong, V., Xiong, C., & Socher, R. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. CoRR, abs/1709.0
- Dong, L., & Lapata, M. Coarse-to-Fine Decoding for Neural Semantic Parsing. In ACL'18
- Feng, Y., Martins, R., Bastani, O., & Dillig, I. Program Synthesis using Conflict-Driven Learning. In PLDI'18
- Gur, I., Yavuz, S., Su, Y., & Yan, X. {D}ial{SQL}: Dialogue Based Structured Query Generation. In ACL'18
- Peleg, H., Shoham, S., & Yahav, E. Programming Not Only by Example. In ICSE'18
- Bavishi, R., Lemieux, C., Fox, R., Sen, K., & Stoica, I. AutoPandas: Neural-backed Generators for Program Synthesis. In OOPSLA'19

References II

- Chen, X., Liu, C., & Song, D. Execution-Guided Neural Program Synthesis. In ICLR'19
- Chen, Y., Martins, R., & Feng, Y. Maximal Multi-layer Specification Synthesis. In FSE'19
- Dai, W.-Z., Xu, Q., Yu, Y., & Zhou, Z.-H. Bridging Machine Learning and Logical Reasoning by Abductive Learning. In NeurIPS'19
- Martins, R., Chen, J., Chen, Y., Feng, Y., & Dillig, I. Trinity: An Extensible Synthesis Framework for Data Science. In VLDB'19
- Nye, M., Hewitt, L., Tenenbaum, J., & Solar-Lezama, A. Learning to Infer Program Sketches. In ICML'19
- Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. Continual lifelong learning with neural networks: A review. Neural Networks, 113, 54–71.
- Si, X., Yang, Y., Dai, H., Naik, M., & Song, L. Learning a Meta-Solver for Syntax-Guided Program Synthesis. In ICLR'19
- Barke, S., Peleg, H., & Polikarpova, N. Just-in-Time Learning for Bottom-up Enumerative Synthesis. In OOPSLA'20
- Chen, Q., Wang, X., Ye, X., Durrett, G., & Dillig, I. Multi-Modal Synthesis of Regular Expressions. In PLDI'20
- Chen, Y., Wang, C., Bastani, O., Dillig, I., & Feng, Y. Program Synthesis Using Deduction-Guided Reinforcement Learning. In CAV'20
- Ji, R., Liang, J., Xiong, Y., Zhang, L., & Hu, Z. Question Selection for Interactive Program Synthesis. In PLDI'20
- Mariano, B., Chen, Y., Feng, Y., Lahiri, S., & Dillig, I. Demystifying Loops in Smart Contracts. In ASE'20
- Peleg, H., & Polikarpova, N. Perfect is the Enemy of Good: Best-Effort Program Synthesis. In ECOOP'20
- Wang, C., Feng, Y., Bodik, R., Cheung, A., & Dillig, I. Visualization by Example. In POPL'20