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Intro.: Tell A Story for Kids
• From Sleeping Beauty:

• Oh, how happy they were!

• They shared their joy by inviting seven wise 
fairies to the palace.

• Now there was one other fairy whose 
magic was more powerful than all the wise 
ones put together.
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Intro.: Tell A Story for Kids
• From Sleeping Beauty:

• Oh, how happy they were!

• They shared their joy <break> by inviting
seven wise fairies <break> to the palace.

• Now <break> there was one other fairy
<break> whose magic was more powerful
than all the wise ones put together.
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Motivations

• To Extract the Semantic/Prosody Information
• From Some Acoustic Patterns in Speech

• From Eye Tracking (Klerke etc. 2016)

• To Represent/Model Semantic Patterns in 
Speech

• To Utilize Extracted Semantic Information
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Our Work
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We use speeches to generate labels for texts, and use texts to predict these labels, 
and incorporate the patterns in texts into sentence compression task.



Intro.: Prosody in Speech

• Emphasized Semantic Information
• Uncertainty

• Contrast

• etc

• Perceivable by Listeners (Prosody Detection)
• Lower-Level Acoustic Features

• Higher-Level Acoustic Features
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Intro.: Prosody Prediction
• Predict Prosodic Prominence from Lexical 

Features Only
• Word-Based Prosodic Patterns
• Manual Text-To-Speech Alignment
• Hand-Crafted Lexical/Semantic Features

• Related Works
• (Brenier etc. 2005): Maxent, Read Text
• (Brenier 2008): More Advanced 

Lexical/Semantic Features, Read & Speech 
Texts

8



Intro.: Prosody Application 

• Text-To-Speech Synthesis

• Related Applications:
• Emotion Detection (Cao etc. 2014)

• Disfluency Detection (Ferguson etc. 2015)

• Deception Detection (Levitan etc. 2016)

• Speaker State Detection (Wang etc. 2013)
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Challenges in Prosody Prediction

• Large-Scale Annotation
• Large-Scale Speech Data with 

Transcriptions

• High Labeling Cost: Sometimes 
Unaffordable

• Normalization
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Our Solution: Prosody Prediction

• Weak Supervision
• Automatic Speech-To-Text Alignment  

-> Large-Scale Data

• Empirical Rules 

-> Weakly/Noisily Labeled Data

• Using Distinctive Acoustic Features 

-> Normalization
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Intro.: Sentence Compression
• Target: Generate Shorter Paraphrases

• Application
• Automatic Summarization
• Assistive Applications

• Extractive (Deletion-Based) Sentence 
Compression
• Generate Subsequences of the Input 

Sequences
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Challenges in Sentence Compression

• Relying Heavily on Manual Syntactic 
Information
• Vulnerability in Error Propagation

• Manual Labeling Required Training 
Syntactic Parsers

• Incorporation of Extra Data/Supervision
• How to generate large-scale extra data
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Our Solution: Sentence Compression

• Multitask & Extra Data
• Lexical Prosody Dataset 

-> Get rid of manual labeling

• Multitask Learning 

-> Incorporate prosody in learning
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The Problems
• Where to find large-scale aligned acoustic data

• How to generate prosodic representation for 
every word automatically

• How to utilize the labeled data and incorporate 
them into Sentence Compression task
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Prosody Dataset Construction

• Source: Lit2Go (Audio Book)

• Aligner: cmusphinx

• Feature: Standard Word Duration

• Normalization (within a sentence)

• Categorization
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Prosody Dataset Construction：
Algorithm & Example
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Prosody Dataset Construction：
Example
• Jim was laid up for four days and nights.

• (EP: 001101101)

• But it was too dark to see yet, so we made the 
canoe fast and set in her to wait for daylight.
• (EP: 00011010,10101101101001)

• I didn’t need anybody to tell me that that was an 
awful bad sign and would fetch me some bad luck, 
so I was scared and most shook the clothes off of 
me.
• (EP: 000001101001110011011,000100101101)
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Prosody Dataset Details

• Basic Information of Collected Acoustic Data
• Every sentence is a sample in the dataset.
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Modeling Prosodic Patterns: 
Settings
• Problem Type: Sequence Labeling

• Architecture: LSTM, Bi-LSTM

• Evaluation Metrics: 
• Word-Based Accuracy, Sentence-Based Accuracy

• Dataset Characteristics: 
• 230k(train), 25k(valid), 28k(test)

• Results: 
• LSTM-(82.90%, 9.47%), Bi-LSTM-(85.24%, 14.42%)
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Multi-Task 
Sentence Compression

• Problem Type: Multi-Task Sequence Labeling

• Architectures: LSTM, Bi-LSTM, Stacked Bi-LSTM

22

Our Solution



Multi-Task 
Sentence Compression
• Training: Alternative Multi-Task

• Compression Datasets: GOOGLE, BROADCAST

• Extra Datasets: Pre-Processed Eye-Tracking Dataset

• Evaluation Metrics: 
• W.Acc: Word-Based Accuracy
• S.Acc: Sentence-Based Accuracy
• 𝐹10: F1-Scores of Label 0
• 𝐹11: F1-Scores of Label 1

• Without Any Extra Syntactic/Semantic Information
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Results & Analysis: 
GOOGLE
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Results & Analysis: 
BROADCAST1
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Results & Analysis: 
BROADCAST2
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Results & Analysis: 
BROADCAST3
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Future Works

• Better Tuned Extraction
• Speaker Normalization

• More Acoustic Features (f0 & Intensity)

• More Sophisticated Multitask Training

• Incorporation with More NLP Tasks
• Low-Level: POS Tagging, NER, SRL, …

• High-Level: Sentiment, QA, Translation, …
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Thank you!


