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Abstract

We introduce a novel method to extract and utilize the seman-
tic information from acoustic data. By automatic Speech-To-
Text alignment techniques, we are able to detect word-based
acoustic durations that can prosodically emphasize specific
words in an utterance. We model and analyze the sentence-
based emphatic patterns by predicting the emphatic levels us-
ing only the lexical features, and demonstrate the potential
ability of emphatic information produced by such an unsuper-
vised method to improve the performance of NLP tasks, such
as sentence compression, by providing weak supervision on
multi-task learning based on LSTMs.

Introduction

Specific words can be prosodically emphasized in an ut-
terance by a speaker in order to draw attentions on them,
which can be modeled by pitch accents of words (Bolinger
1958). Also referred as prosodic prominence, pitch accent
is found to emphasize several semantic information in an ut-
terance such as uncertainty, contrast, turn-taking cues and so
on, whose changes in an utterance can be perceived by lis-
teners and thus convey certain kinds of emphasis (Terken
1991). The detection of prosodic prominence shows im-
provements on different tasks, such as Text-to-Speech syn-
thesis and spoken language summarization. With most of
the detections of prosodic prominence are done by using
acoustic features (acoustic durations and intensities, extrem-
ity of fundamental frequency minima and maxima), there
are also works investigating predictions of emphatic words
using only lexical features (Brenier, Cer, and Jurafsky 2005;
Brenier 2008), which shows promising results and potential
improvements on more NLP tasks but are partly restricted
by the cost of high-quality manual feature extraction.

As one of the standard NLP tasks, the target of sentence
compression is to generate shorter paraphrases of sentences,
which can be further used both to assist other tasks such
as automatic summarization (Berg-Kirkpatrick, Gillick, and
Klein 2011) and to provide assistive applications for poor
readers (Canning et al. 2000), as well as to generate read-
able news headlines (Filippova 2010). In sentence com-
pression systems that deal with deletion-based compression,
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generated words constitute subsequences of the input se-
quences. Existing systems mostly rely heavily on syntac-
tic information (McDonald 2006; Berg-Kirkpatrick, Gillick,
and Klein 2011), resulting in a vulnerability to error propa-
gation. Thus, competitive systems without any syntactic in-
formation are proposed (Filippova et al. 2015), which ben-
efits from LSTM structures and efficient heuristic search
in the scope of neural network sequence labeling, provid-
ing possible solutions to the weakness of the traditional
methods. More recent advances include using eye-tracking
recordings (Barrett, Agić, and Søgaard 2015) to improve
performance of LSTM-based sentence compression models
(Klerke, Goldberg, and Søgaard 2016).

In this paper we address the following question: can use-
ful emphatic information be automatically extracted from
the prevailing acoustic data without any manual feature ex-
traction and be used to help improve the performance of nat-
ural language processing tasks such as sentence compres-
sion? While sentence compression requires the models of a
good comprehension of the semantic context and the exact
intention of the input sentence, we believe the supervision
of additional emphatic data can be a boost to the later, and
the LSTM structures dealing with the former, which will be
supported by our evidence. Meanwhile, with the Speech-To-
Text alignment techniques, we present a faster approach to
automatically extract approximate emphatic patterns from
aligned acoustic data, thus lowering the cost of manual
feature extraction in emphatic words detection and predic-
tion and providing weak supervision as an auxiliary task
to improve sentence compression performance using LSTM
structures.

The contributions of our work are summarized as follows:

• We propose a faster approach to automatically extract
the emphatic information from prevailing aligned acous-
tic data.

• We model and analyse the extracted emphatic patterns
and demonstrate how the disjoint emphatic data can be
added to improve the performances of sentence compres-
sion tasks using LSTM structures.

• We observe competitive improvements on our multi-task
sentence compression models with the disjoint emphatic
data, compared with the baselines.
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Related Works

There are some related works on sentence compression and
the detection and prediction of emphatic words respectively.
However, to our knowledge, there is no competitive research
that connects the two tasks together and improve the for-
mer with a weak supervision from the later. There are sev-
eral works that prove the benefits of deep multi-task learning
with low level tasks supervised at lower layers (Søgaard and
Goldberg 2016), and works that improve sentence compres-
sion by introducing gaze measures prediction as an auxiliary
task (Klerke, Goldberg, and Søgaard 2016), and therefore
we argue that emphatic patterns of sentences from acoustic
data can also bring improvements even when they are ex-
tracted automatically without manual annotation.

Emphatic Words Prediction from Text

While several classifiers for prominence detection and pre-
diction have been proposed (Chen, Hasegawa-Johnson, and
Cohen 2004; Sun 2002; Brenier, Cer, and Jurafsky 2005;
Hovy et al. 2013), with some of them utilizing lexical fea-
tures, most of the features used require labeling by expe-
rienced human annotators, and specifically for lexical fea-
tures, the manual alignment of text and speech are required.
The labeling cost is thus high especially for some of the
advanced linguistic text features that only professional an-
notators can afford (Brenier 2008). As a result, the overall
accuracies of these classifiers are high and this provides bet-
ter improvements in further applications like text-to-speech
synthesis.

Specifically for those classifiers that predict prominence
from only lexical features, the overall accuracies can be
around 79.7% (Brenier, Cer, and Jurafsky 2005) using maxi-
mum entropy classifiers. Since the weak supervision method
is considered a new possibility to solve classification prob-
lems with different constraints in the access to the class in-
formation (Hernández-González, Inza, and Lozano 2016), a
balance between the accuracy and the quantity of the data
can then be reached to provide sufficient information for
many NLP tasks (Hoffmann et al. 2011), which indicates
that an approximate approach that generates a larger but less
accurate corpus and consumes less human labors can be con-
sidered in the perspective of natural language processing.

Robust Sentence Compression without Linguistic
Information

Recent advances of sentence compression involve the re-
moval of syntactic information (no Part-of-Speech tags,
Name Entity tags or dependencies). A competitive system
(Filippova et al. 2015) is proposed using only word em-
beddings and gold-standard labels of previous words dur-
ing training (generated labels during decoding). The model
outperforms the baseline (McDonald 2006), which employs
syntactic information. Stacked LSTMs together with beam
search on top layer generate competitive results. Another
model (Klerke, Goldberg, and Søgaard 2016) uses stacked
Bi-LSTMs with eye-tracking measures as auxiliary task is
also reported competitive results, but the model has CCG-
tags prediction as a second auxiliary task and is not strictly

a model without syntactic information.
Our model for experiment is similar to the two above, with

no additional heuristic search or syntactic information at-
tached, which is a pure multi-task learning neural network.

Emphatic Words Detection in Acoustic Data

Usually acoustic data is a good resource for emphatic words
detection. In this paper, we refer emphatic words to those
words that are a subset of pitch accents that have been shown
to be categorically interpreted as distinct from neural pitch
accents (Ladd and Morton 1997) and conveying an acute
degree of emphasis (Brenier, Cer, and Jurafsky 2005).

Semantic Information in Prosodic Prominence

Prosodic prominence is found to convey various seman-
tic information (Pon-Barry and Shieber 2009; Wang et al.
2013; Cao et al. 2014; Ferguson, Durrett, and Klein 2015;
Levitan et al. 2016) through changes between words and
syllables. Such information including contrast, incredulity,
uncertainty, adverbial focus and so on, correlates with the
speaker’s intentions and can be perceived by listeners. Major
indicators to judge whether a word is pitch accented or not
include duration, intensity and extremity of fundamental fre-
quency minima and maxima. The detection of the three in-
dicators are usually done by annotators using several acous-
tic tools according to general standards before the annotated
data can be used to train an automatic prominence classifier.

Automatic Speech-To-Text Alignment

Also known as forced alignment, automatic speech-to-text
alignment has received some attention for different research
goals. Given an exact transcription of what is being spoken
in the acoustic data, the aligner is asked to identify the time
when each word in the transcription was spoken in the utter-
ance.

Among the three indicators of prosodic prominence, word
duration is a relatively easier indicator to be detected using
an automatic speech-to-text alignment system, because an
aligner provides the exact time that a transcribed word oc-
curs and thus we can estimate the word’s duration from the
aligner’s outputs, thus making it possible to collect emphatic
data in a faster and unsupervised way, as well as modeling
the emphatic patterns of a given aligned sentence. An au-
tomatic data collection procedure can then be designed to
establish a large scale corpus of emphatic data. We will ex-
amine later how the information extracted based on a single
indicator can help improve certain NLP tasks.

Gathering Emphatic Patterns from Aligned
Acoustic Data

We collect acoustic data with corresponding transcriptions
from Lit2Go1, a free online collection of stories and poems
in audiobook format with transcriptions. There are over 200
books read by distinct readers. Each book is segmented to
several passages, and we collect over 4,000 passages and

1http://etc.usf.edu/lit2go/
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align them in cmusphinx2 to establish the emphatic corpus.
Table 1 shows more details about the data.

Table 1: Basic Information of Collected Acoustic Data
authors: 208 books: 205
genres: 22 passages: 4198

sentences: 286,083 words: 5,881,720
vocab. size: 48,204 mean sent. len.: 20

The General Process of Aligning Data

First, we do a pre-processing on the transcriptions, includ-
ing a separation of the punctuations from the attached words
and so on. Second, we feed the aligner with acoustic data
and their corresponding transcriptions. Third, we calculate
the standard duration (S.Duration) of each word according
to Eq. (1). Finally, we extract each sentence with the corre-
sponding S.Duration sequence from the aligned data as an
emphatic pattern.

S.Duration =
total time duration

num. of syllables
. (1)

We define an emphatic pattern here as an ordered se-
quence of standard duration of a sentence. To give a faster
estimation of each word’s acoustic duration, we adopt the
assumption that each syllable has an equal length of time du-
ration in Eq. (1), so that we can alleviate the effects of word
length on the word’s total time duration by considering the
number of syllables a word has.

Thus, a typical entry in the corpus of emphatic data is
a pair of two components: a lexical sentence and a corre-
sponding emphatic pattern. There are over 280,000 pairs in
the corpus.

Modeling Emphatic Patterns in Aligned Text

We extend the view of emphatic words prediction from mod-
eling the context of a single word to modeling the whole
sentence’s emphatic pattern. The Long Short Term Mem-
ory (Hochreiter and Schmidhuber 1997) structure can model
larger context as well as controlling the access of error sig-
nals, making the learning of sentence-level information and
long-term dependencies possible. We use only lexical fea-
tures of the emphatic data to predict the emphatic patterns in
a sequence labeling manner.

Generating Word-Based Emphatic Levels

We normalize and binarize the words’ standard durations
in a sentence to alleviate the effects of different reading
styles (e.g., speeds, tones) of readers. The standard durations
within a sentence will first be normalized and mapped to a
list of integer emphatic levels, which denotes the relative
standard duration of each word in a sentence ranging from 1
to 30. According to the changes between the emphatic lev-
els, they are then binarized to be 0 (not emphatic) or 1 (em-
phatic), which we denote as binary emphatic levels.

2http://cmusphinx.sourceforge.net/

Algorithm 1 Binary Emphatic Levels Generation
// BinEmpSeqs: binary emphatic levels of sentences
// EmpLvs: emphatic levels of one sentence
// BinEmpLvs: binary emphatic levels of one sentence
// elv−1: previous word’s emphatic level
// bslot−1: previous word’s binary emphatic level
BinEmpSeqs = []
for emphatic pattern of each sequence do

// 1. generate emphatic levels of a single sentence
P5 = 5th percentile in the emphatic pattern
P95 = 95th percentile in the emphatic pattern
EmpLvs = []
for each standard duration sd do

if sd > P95 then
cslot = 30

else if sd < P5 then
cslot = 1

else
cslot = round(2 + 28 ∗ sd−P5

P95−P5
)

end if
EmpLvs.add(cslot)

end for
// 2. binarize emphatic levels of a single sentence
BinEmpLvs = []
for each emphatic level elv in EmpLvs do

if elv − elv−1 > 4 && elv > 15 then
bslot = 1

else if elv−1 − elv < 2 && elv > 15
&& bslot−1 == 1 then

bslot = 1
else
bslot = 0

end if
BinEmpLvs.add(bslot)

end for
BinEmpSeqs.add(BinEmpLvs)

end for

Alg. 1 shows the details of how a sequence of binary em-
phatic levels is generated in every sentence. As a post pro-
cessing, binary emphatic levels of those words on a stop-
word list or in the first positions of sentences will be set to
0 before the data is used for the emphatic words prediction
model. Several labeling results are shown in Table 2 after the
post processing is done.

Emphatic Words Prediction with LSTMs

LSTM is used to model the binary emphatic patterns. Let X
be the input sequence and A be the output emphatic patterns,
as defined below:

X = (x1, ..., xN ),A = (a1, ..., aN ).

We are to optimize the following problem:

θ∗ = argmax
θ

∑

X,A

log p(A|X; θ). (2)

For the basic LSTM model depicted in Figure. 1, p can be
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Table 2: Example Binary Emphatic Levels Generated from Acoustic Data after Post Processing
Type Sample Labeling Results

V Jim was laid up for four days and nights .
L 18 12 20 30 17 22 26 11 21 .
V But it was too dark to see yet , so we made the canoe fast and set in her to wait for daylight .
L 12 9 11 17 20 11 30 17 23 11 17 8 16 25 14 19 18 13 22 17 5 22
V I didn’t need anybody to tell me that that was an awful bad sign and would fetch me some bad luck , so I was
L 30 9 14 14 13 18 28 13 22 14 11 18 25 30 13 9 27 28 14 19 24 , 20 22 10
V scared and most shook the clothes off of me .
L 25 7 12 24 9 16 20 7 30 .

1 ”V” means visualized results, and ”L” means original emphatic levels.
2 Underlined bold-faced words are emphatic, otherwise non-emphatic.

Figure 1: Basic LSTM Unrolled Through Time

decomposed as follows:

p(A|X; θ) =

N∏

t=1

p(At|X0, X1, ..., Xt; θ). (3)

For the bi-directional LSTM model depicted in Fig. 2, p can
be decomposed as follows:

p(A|X; θ) =

N∏

t=1

pf (A|X; θ)pb(A|X; θ), (4)

where

pf (A|X; θ) =
N∏

t=1

pf (At|X0, X1, ..., Xt; θ), (5)

pb(A|X; θ) =

N∏

t=1

pb(At|XN , XN−1, ..., Xt; θ). (6)

Using the optimal θ∗, the prediction can then be estimated:

Â = argmax
A

p(A|X; θ∗). (7)

We use LSTM in the experiment of emphatic words pre-
diction (see Fig. 1), with a shared softmax classifier con-
nected to each hidden state that predicts the binary emphatic
labels of the current time step. We also use bi-directional
LSTM (see Fig. 2) as a further observation. Adadelta (Zeiler
2012) is used to maximize the training objective.

We used pre-trained word embeddings from the skip-
gram model3 (Mikolov and Dean 2013) for every input

3https://code.google.com/p/word2vec/

Figure 2: Bi-Directional LSTM Unrolled Through Time

word. Specifically, to enhance the robustness of the model,
the following operations are applied:

• Length of input sequences will be at most 50 words, oth-
erwise cut short.

• The embeddings only include words that appear no less
than 2 times in the data.

• We use <UKN> to represent words that does not appear
in the embeddings.

Training, validating and testing sets are split. Table 3 shows
the information of the experiment settings.

Results

We measure and record the following two metrics:

• Word-Based Accuracy (W.Acc): how many words are
correctly labeled

• Sentence-Based Accuracy (S.Acc): how many sentence
are fully correctly labeled

We record a word-based accuracy of 82.90% and a
sentence-based accuracy of 9.47% on the test set, within 10
training epochs. The basic LSTM sequence labeling model
shows a potential capability of capturing and predicting
the emphatic patterns. The Bi-LSTM model has recorded
85.24% word-based accuracy and 14.42% sentence-based
accuracy.
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Improvements on Sentence Compression Task

To further verify the potential capability of the extracted se-
mantic information over specific NLP tasks, we carry out a
series of experiments on deletion-based sentence compres-
sion tasks to evaluate the performance of several basic mod-
els when emphatic data is added as an auxiliary task.

Sentence Compression Using Multi-Task LSTMs

Similar to the models used by Klerke et al. (2016), we
adopt even simpler model structures in order to better in-
vestigate the actual effects of the emphatic data over the
whole task, without either the prediction of CCG tags or the
CASCADED-LSTM structure. We follow part of the task
settings (Filippova et al., 2015) which introduce no addi-
tional syntactic or linguistic information into the models but
only pre-trained embeddings processed with similar opera-
tions in the emphatic words prediction experiment.

Figure 3: Unrolled Stacked Bi-LSTM High-Level Overview

A bi-directional LSTM reads a sequence in both regular
and reversed orders. Our basic model structure is depicted
in Figs. 1 and 2. For some larger datasets, we use 3-layered
stacked bi-directional LSTM to capture deep semantic infor-
mation from the sequences, as shown in Fig. 3. Two different
softmax classifiers are connected to each of the hidden states
(connected to the top hidden states for stacked bi-directional
LSTM) to perform multi-task learning. One for the classifi-
cation of task data and the other for the emphatic data (or
other extra data for comparison).

Additionally for sentence compression, we define Y as
the output compression labels (1 if a word is retained, 0 if
deleted) as follows:

Y = (y1, ..., yN ).

Besides the auxiliary optimization problem defined in
Eq. (2), our major optimization problem here is:

θ∗ = argmax
θ

∑

X,Y

log p(Y |X; θ). (8)

The sentence compression predictions can be estimated by:

Ŷ = argmax
Y

p(Y |X; θ∗). (9)

The parameters θ are shared by the two tasks.

Experiments

We carry out comparative experiments. The performance
of a baseline model is compared with a multi-task version
that has emphatic data as an auxiliary task. Additionally we
carry out another set of experiments with the same multi-
task model but different extra data, as a further comparison.

Table 3: Datasets Characteristics
Dataset Train Valid Test Del.Rate1

GOOGLE 8,000 1,000 1,000 0.59
BROADCAST 880 78 412 0.33

Emphatic2 230k* 25k* 28k* 0.73
* These are approximate numbers.
1 Sentences with more than 50 words are cut short.
2 For sentence compression, the whole set is used as an aux-

iliary task; for emphatic words prediction, the whole data
set is then split as above.

Compression Data We use two different sentence com-
pression datasets, details shown in Table 3:

• The publicly available subset of GOOGLE4

• BROADCAST (Clarke and Lapata 2006)

Baselines As shown in Figs. 1 and 2, we use LSTM and
bi-directional LSTM for the compression data, and addition-
ally we evaluate the 3-layered stacked bi-directional LSTM
on the GOOGLE (Filippova et al. 2015) dataset. There are
no auxiliary tasks in the three baseline models.

Auxiliary Tasks We evaluate the emphatic data as an
auxiliary task in the multi-task learning models. Mean-
while, the first pass duration of eye-tracking data (denoted as
Gaze.fp in tables) is also used as an auxiliary task in another
comparative experiment, pre-processed by Klerke (2016).

Evaluation Metrics For different deletion rates (after the
pre-processing) of datasets shown in Table 3, the F1-Scores
of both label 0 and 1 are of equal importance and thus we
evaluate both F1-Score of label 0 (F10) and F1-Score of
label 1 (F11). We also evaluate the word-based accuracy
(W.Acc) and the sentence-based accuracy (S.Acc).

Multi-Task Learning In each training epoch, the model
is first fed with certain amount of random samples from data
of the auxiliary task, and then certain amount of samples
from the compression task. The process may be repeated
once in the same epoch (see Table 4 for more details).

Other Settings The dimensions of input and hidden lay-
ers and the embeddings (pre-trained and pre-processed, see
previous section) are 300, and at the output layer we pre-
dict sequences of two categories (compression task and em-
phatic task) or six categories (eye-tracking task). All models
are trained for 30 iterations and we adopt an early-stopping
strategy to select parameters with highest word-based accu-
racy (W.Acc) on validation set and perform and record eval-
uations on testing set. We run each experiment for 32 times.
The average of each evaluation metrics is recorded and we
also perform significance tests between the sample metrics

4http://storage.googleapis.com/sentencecomp/compression-
data.json
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Table 4: Feeding Order in An Epoch

Experiment LSTM Bi-LSTM Stacked
Bi-LSTM

Baseline1 C:Full C:Full C:Full

Emphatic
&Gaze.fp2

A:2500
C:1500
A:2500
C:1500

A:2000
C:2000
A:2000
C:2000

A:2000
C:2000
A:2000
C:2000

Emphatic
&Gaze.fp3

A:2500
C:Full

A:2000
C:Full

-
-

* ”Full” means all 8,000 training samples in GOOGLE dataset,
all 880 training samples in BROADCAST dataset, otherwise
randomly sampled; ”C” means samples from compression
task; ”A” means samples from auxiliary task.

* Samples are fed in the order as shown in each cell from top to
down alternately.

1 The rules apply to all datasets.
2 The rules apply to GOOGLE dataset.
3 The rules apply to BROADCAST datasets.

drawn from the baseline system and from the comparative
systems to give confidence levels.

Results and Discussion

Our results are presented below. Across all datasets, the em-
phatic data leads to improvements over the baselines in all
evaluation metrics. As the structures become deeper and
more complex, when capturing more contexts, the improve-
ments are much more significant.
• GOOGLE Dataset

Table 5: Performance on GOOGLE Dataset
Model Data GOOGLE

W.Acc F10 F11 S.Acc

LSTM
Baseline 79.15 82.73 73.70 6.51

Emphatic 79.40 82.86 74.19 7.18
Gaze.fp 79.27 82.84 73.81 6.58

Bi-LSTM
Baseline 79.79 83.31 74.40 7.19

Emphatic 80.14 83.73 74.50 8.11
Gaze.fp 79.71 83.40 73.97 7.53

Stacked
Bi-LSTM

Baseline 79.94 83.40 74.63 8.00
Emphatic 80.30 83.74 74.99 9.26

Gaze.fp 79.95 83.48 74.50 8.53

As shown in Table 5, all models with emphatic data as
an auxiliary task outperform their comparative models in
all evaluation metrics with significant performances. We
observed that in all three LSTM models, as an impor-
tant indicator, the sentence-based accuracy (S.Acc) has
more than 10% improvements over the baselines. As a
result, the emphatic data coordinates with the GOOGLE
dataset’s aggressive compressions, imposing a positive
regularization during multi-task training.

• BROADCAST Datasets
The BROADCAST datasets are manually annotated by
three different annotators. We observe significant im-
provements on nearly every metric on bi-directional

Table 6: Performance on BROADCAST1 Dataset
Model Data BROADCAST1

W.Acc F10 F11 S.Acc

LSTM
Baseline 72.28 14.56 83.43 10.93

Emphatic 72.70 19.37 83.53 10.87
Gaze.fp 72.69 18.56 83.56 10.90

Bi-LSTM
Baseline 72.76 21.17 83.51 11.30

Emphatic 73.56 25.93 83.87 11.95
Gaze.fp 73.34 23.98 83.82 11.81

Table 7: Performance on BROADCAST2 Dataset
Model Data BROADCAST2

W.Acc F10 F11 S.Acc

LSTM
Baseline 79.10 13.27 88.12 22.19

Emphatic 79.34 17.20 88.19 22.25
Gaze.fp 79.42 15.98 88.27 22.12

Bi-LSTM
Baseline 79.78 22.89 88.35 22.82

Emphatic 80.37 26.60 88.66 23.19
Gaze.fp 80.24 26.11 88.59 22.97

Table 8: Performance on BROADCAST3 Dataset
Model Data BROADCAST3

W.Acc F10 F11 S.Acc

LSTM
Baseline 66.85 36.22 77.55 9.60

Emphatic 67.06 37.93 77.52 9.70
Gaze.fp 67.19 40.38 77.34 8.56

Bi-LSTM
Baseline 67.58 38.94 77.86 11.48

Emphatic 68.35 38.39 78.66 11.65
Gaze.fp 68.23 38.01 78.59 11.57

LSTM models, while the LSTM models don’t show much
significant improvements, as shown in Tables 6 , 7 and 8.
Specifically, we observe that the emphatic data always
provides a solid regularization over the whole sentences,
resulting in steady improvements on sentence-based ac-
curacies.

Conclusion and Future Work

We present, to our knowledge, a first attempt at the auto-
matic extraction of the semantic information from acous-
tic data to help improve sentence compression task. The re-
sults of our experiments indicate the potential ability of the
aligned acoustic data when modeled to capture emphatic in-
formation in the text and embedded as an auxiliary task dur-
ing multi-task learning. The faster approach to extract em-
phatic patterns proves to work well and generate improve-
ments in related experiments. The weak supervision of the
emphatic data provides positive regularization to many of
the training process.

There remain many improvements in our work. For exam-
ple, the automatic extraction can be better tuned according
to different tasks, and a more sophisticated multi-task train-
ing manner can be thus applied to make better use of the
regularization effects of the emphatic data.
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