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Abstract—The performance of programming-by-example sys-
tems varies significantly across different tasks and even across
different examples in one task. The key issue is that the search
space depends on the given examples in a complex way. In
particular, scalable synthesizers typically rely on a combination
of machine learning to prioritize search order and deduction
to prune search space, making it hard to quantitatively reason
about how much an example speeds up the search. We propose
a novel approach for quantifying the effectiveness of an example
at reducing synthesis time. Based on this technique, we devise
an algorithm that actively queries the user to obtain additional
examples that significantly reduce synthesis time. We evaluate
our approach on 30 challenging benchmarks across two different
data science domains. Even with ineffective initial user-provided
examples for pruning, our approach on average achieves a
6.0x speed-up in synthesis time compared to state-of-the-art
synthesizers.

I. INTRODUCTION

Due to its potential to significantly improve both program-
mer productivity and software correctness, programming by
examples (PBE) has recently received significant attention
from researchers. In most domains, the number of possible
programs is enormous, making explicit enumerative search
intractable. Thus, modern synthesizers aggressively prune the
search space using logical deduction [1, 2, 3, 4, 5], as well
as use machine learning to bias the search towards programs
that are more likely to satisfy the specification [6, 3, 7, 8].

Despite the progress that has been made, synthesizers still
face performance challenges that inhibit their usability. We
consider two performance metrics:

o Scalability: This metric is the synthesis time for a set of
10 examples. Many synthesizers [4, 5, 2, 9] are designed
to optimize scalability since it is key to enabling rapid
responses to the user. However, there is often a long tail
of programs that still take significant time to synthesize.

o Reliability: This metric is the variance in synthesis times
across different IO examples specifying the same program.
Even if a synthesizer is fast given one set of examples, it
may not be so for a different set of examples specifying the

same program. Enhancing reliability is important in making
PBE more usable to a broad audience beyond those who
have the expertise to provide “good” examples. However,
existing state-of-the-art example generation techniques [10,
11, 12] are not designed with this objective in mind and are
sensitive to the initial choice of IO examples.

Intuitively, scalability corresponds to minimizing expected
synthesis time across IO examples, whereas reliability cor-
responds to minimizing variance in synthesis time across 10
examples. While the two are closely related, it is possible for
a scalable synthesizer to be unreliable and vice versa.

We propose FAERY!, a novel programming-by-example
framework that leverages user interaction to improve both scal-
ability and reliability. Given an initial set of user-provided ex-
amples, FAERY performs deduction-guided enumerative search
to find a program that satisfies these examples. If FAERY is
not able to find a correct program within a short amount
of time, it selects an additional input example and queries
the user to obtain the corresponding output. Then, FAERY
takes this new IO example and continues its search. This
query is selected to most reduce the (expected) synthesis time,
thereby improving scalability. It also improves reliability since
it makes the synthesis time less sensitive to the initial 10
examples provided by the user.

Choosing additional examples to achieve both high scal-
ability and high reliability is a challenging problem. Our
approach significantly improves both scalability and reliability.
Intuitively, it does so by choosing a second input to query that
most improves expected synthesis time. This strategy naturally
improves scalability. Importantly, it also naturally improves
reliability: choosing an input to query that significantly prunes
the search space directly reduces the dependence of synthesis
time on the user-provided example, thereby improving relia-
bility.

In our setting, the primary challenge is how to choose a
query that most reduces synthesis time. Our strategy is to
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estimate the reduction for each query in a set of candidates and
choose the one that maximizes this estimate. To do so, we need
to solve two key problems: First, we need to quantitatively
estimate how much a query reduces synthesis time; Second, it
must be estimated quickly, since time taken by the estimation
procedure is part of the overall synthesis time.

Because state-of-the-art synthesizers [4, 7, 3] typically rely
on a combination of machine learning to prioritize search
order and deduction to prune search space, to address the
first problem in a realistic setting, we devise a stylized model
of the synthesizer for which we can rigorously reason about
the synthesis time. In this model, the synthesizer employs a
stochastic search strategy that combines a machine learning
model to prioritize the search order with a deduction engine
to prune parts of the search space. To address the second, we
devise an algorithm that approximates the expected synthesis
time using random samples from the search space. Intuitively,
this algorithm estimates the expected fraction of the search
space pruned by the query.

We instantiate FAERY on two data science domains, table
transformations and JSON tree transformations, and evaluate
its effectiveness on 30 challenging benchmarks. Our results
show that even with a single user query, FAERY achieves
2.4x speed-up in the table transformation domain and 9.5x
speed-up in the JSON transformation domain compared to
the state-of-the-art synthesizers [4, 13]. In addition, we show
that FAERY can reduce the variation in running time across
different IO examples for a fixed benchmark. With just a single
user query, FAERY reduces this variation in performance for
benchmarks in both domains, demonstrating that users who
cannot provide high quality IO examples can still use FAERY
to solve challenging tasks.

In summary, we make the following key contributions:

We propose and formalize the problem of improving the
overall speed and reliability of a program synthesizer by
leveraging user interaction (Section II).

We propose a novel interactive synthesis algorithm that
addresses this problem. Our algorithm uses a stylized model
of the synthesizer to quantify synthesis time, and uses an
efficient statistical estimator for it (Section III).

We implement our approach in a tool called FAERY (Sec-
tion IV), and empirically demonstrate its benefits compared
to other state-of-the-art synthesizers (Section V).

II. PROBLEM FORMULATION

We consider syntax-guided synthesis [14], where the speci-
fications are provided as input-output (I0) examples [9]. That
is, given a domain-specific language L and examples E, the
synthesis problem is to find a program in L that satisfies every
example (€;y,,€0ut) € E. Because state-of-the-art synthesiz-
ers [5, 3, 4] typically combine statistical models (to guide the
search) with deduction engines (to prune infeasible programs),
in this paper, we are concerned with synthesis techniques that
combine deduction-based pruning with search prioritization
using a statistical policy [6].
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Our goal is to leverage user interaction to obtain additional
10 examples that help speed up synthesis. In particular,
we query the user on an additional input example from a
predefined set of candidate inputs to obtain the desired output.
Then, the deduction engine can use the additional 10 example
to prune a significantly larger portion of the search space,
compared to only using initial examples FE. For simplicity,
we restrict to the case where our algorithm acquires exactly
one new additional IO example, and it is straightforward to
generalize the algorithm with multiple interactions.

To formalize this problem, we devise a stylized model of
how our synthesizer works, which captures its key features
yet is sufficiently simple that we can reason explicitly about
its running time. Then, our goal is to select an additional
input example that most reduces the (expected) running time
of this stylized synthesizer. As long as our model is sufficiently
realistic, the same strategy should also work well for our actual
synthesizer.

A. Preliminaries

We assume the domain-specific language (DSL) L is in
a context-free grammar (V, X, R, S), where V is the nonter-
minals, ¥ is the terminals, R is the productions, and S is
the start symbol. A partial program P € P is a sequence
P € (S UV)* such that S = P (i.e., P can be derived from
S via a sequence of productions). A nonterminal in P is a
hole; P is complete (denoted P € P) if it does not have any
holes. A production r € R is valid for P if it can be used
to fill the left-most hole in P; we denote the resulting partial
program by P’ = FILL(P, r) whenever P = P’ — here either
P’ is complete, or there is some production r € R that is valid
for P. Next, P is a lattice with partial order C, where P’ C P
if and only if P’ can be derived from P in L (i.e., P = P’).
In this case, P’ is a refinement of P; if P’ is complete, it is
a completion of P.

Example 1: Consider the following partial program P:
map (O, +1) and production r = () — reverse(()). In
this case, FILL(P,r) yields the following partial program P’
map (reverse (), +1).

Given a set of IO examples £/ and DSL L, a complete
program P € P satisfies E (denoted P |= E) if eyt = [Pein
for all (e;n,eout) € F, where [] is the concrete semantics.
The synthesis problem for E is to find P € P such that P |=
FE; we call such a P a solution for E.

Deduction engine. Given a set of IO examples E, a partial
program P is feasible if there exists a completion P’ of P
such that P’ = E. We consider a deduction engine that
checks whether P is feasible for £ using abstract semantics
[-]# that overapproximates [-]. In particular, [-]# maps a
concrete input e;, to an abstract value é,,; = [P]*ein,
which is a set of concrete values satisfying the soundness
condition (P’ is completion of P) = ([P']ein € [P]#ein).
This property of [-]# enables us to use [-]* to prune the search
space. In particular, given an IO example e = (€;,,, €oy¢) and
a partial program P, we say e prunes P if e, & [P]* €in,
which we denote by P [~ e. Given a set of IO examples F,
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we say E prunes P if there exists an example e € E such
that P [~ e, which we denote by P [~ E.

Notation. In general, we use E to denote a set of 10
examples where each example e = (e, €out)> Fin to denote
a set of inputs e;,, Foqy+ to denote a set of outputs e,,¢, and
Eout to denote a set of abstract outputs é,,;. In addition, we
use E to denote a set of input-abstract-output (IAO) examples
é = (€in, Eout)—i.e., where é,,; = [P]7e;y, for some P € P.

Example 2: Consider the following input-output example
in list manipulation:

€in * [1, 3, 5, 2,4} = Cout * [57 47 3]

Using the size of the list as the abstract domain [4], the partial

program P: reverse (map (e;n, ()) is infeasible (i.e., P £

e). In particular, no matter how we fill hole (), the resulting

program cannot satisfy the given IO example for the following

reason:

o The map construct applies a function (yet to be determined
by the synthesizer) over every element of e;,, and yields an
output list whose length equals that of the input list e;,.

o The reverse construct reverses its input, making the size
of the output list the same as its input.

o Since the output returned by reverse does not have the
same size as the desired output e,,;, we derive an incon-
sistency. i.e., size(ei,) == size(eour) N size(ey,) ==
5 A size(eout) == 3 is UNSAT.

Several techniques from prior work (e.g., [3, 5, 4, 15]) can
prove the infeasibility of such partial programs by using an
SMT solver (provided specifications are given for the DSL
constructs).

Statistical policy. We consider a statistical policy 7 used
to prioritize the search order. Given a partial program P, it
assigns probabilities w(r | P) to productions r € R that can
be used to fill the left-most hole in P. Let Z = P* be the space
of sequences of programs. Then, we sample partial programs
from the search space using 7 as follows:

Definition 2.1 (Rollout): Given a set of 10 examples E,
a rollout ¢ € Z is a random sequence of partial programs
¢ = (Py,..., P,) such that (i) P, = S is the start symbol of
L, (ii) P;y1 = FILL(P;,r;) is the partial program constructed
by sampling r; ~ 7(- | P;) and using it to fill the left-most hole
in P;, (ili) P; = E for all i < n, and (iv) letting P; = P,,
either P- € P or P, |~ E.

Example 3: According to Example 2, the partial program
reverse (map (e, ())) is a terminal state as it gets pruned

by the deduction engine. Thus, the following sequence corre-
sponds to a rollout:

(5.5 = 0), (0,0 — reverse(O)),

(reverse(O), O — map(O, O)),

(reverse(map(0, D)), O — €in), (reverse(map(ein, 0)), D).

We use Z(E) C Z to denote the rollouts for E. Intuitively,

arollout is a single sequence of samples from the search space
that terminates in a program P that is either a solution to the
synthesis problem for E or that is pruned by deduction using
FE. Note that we sample a rollout { with probability

p(C|E) =m(r) -m(ry [ Pr) oo m(rn | Pros),
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i.e., sequentially sample each 7, conditioned on P,_;. We

prove that p(¢ | E) is a probability distribution over Z(E)—

i.e., it is properly normalized; see Appendix A for a proof.
Theorem 2.2: We have 3. 7y p(C | E) = 1.

B. Model of Synthesis Running Time

Our stylized model is designed to balance faithful approxi-
mation of a real synthesizer such as Neo [4] with a tractable
quantification of running time. In particular, it captures two
critical components of state-of-the-art synthesizers [4, 2]: (i)
the use of a statistical policy 7 to determine which parts of
the search space to prioritize, and (ii) a deduction engine used
to prune the search space. The main approximation is that the
stylized synthesizer does not perform an enumerative search
according to the probabilities of 7; the running time of such a
search is hard to quantify because it depends on the rankings of
the predicted probabilities of different partial programs rather
than directly using the probabilities.

Instead, using the FILL(FP;,r;) procedure described earlier
in Section II-A, the stylized synthesizer randomly samples
i.i.d. partial programs P according to 7 until it samples one
such that P |= FE. In each iteration, if P is a complete program
and satisfies examples £ according to the deduction engine,
we return it as a solution. Otherwise, the current partial P
may be infeasible thus gets pruned by deduction. In that case,
the synthesizer has to keep sampling new partial programs.

Definition 2.3 (Running Time): The running time p of the
stylized synthesizer is the random variable with distribution
p(p | E) that counts the number of times the deduction engine
is invoked on some partial program P to check whether P =
E.

C. Fast and Reliable Synthesis

Our goal is to maximize the speed and reliability of the
synthesizer. Our primary objective is speed; as we show in
our experiments, reliability improves as a byproduct of using
interaction to improve speed. We formalize these two metrics
and our problem below.

Metrics. We assume given a distribution p(F) over the
initial 10 examples E given by the user; then, the joint distri-
bution over running time p and E is p(E, p) = p(p | E)-p(E).

Definition 2.4 (Expectation and Variability of Running

Time): The expected running time is j1 = By ) [p], and the
variability is 0 = E,g ,)[(p — 11)?].
In other words, expected running time and variability are the
mean and variance of running time p, respectively. Then, our
synthesizer is fast if it has low expected running time, and is
reliable if it has low variability. When there is no ambiguity
between the running time p and the expected running time g,
we simply refer to p as the running time.

Remark 2.5: The expected running time is essentially the
expected pruning power defined in Section II-B, except (i)
it measures the fraction nor pruned instead of the fraction
pruned, (ii) it considers the entire search space instead of the
unexplored search space, which is a reasonable approximation
since we only explore a small fraction of the search space
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Fig. 1: Overview of stylized synthesizer with user interaction.

before querying the user, and (iii) it weights partial programs
by their probability according to 7. In particular, we show
later that it equals the expected fraction of partial programs
not pruned along a single rollout from 7.

Therefore, our goal is essentially to minimize the (expected)
running time /.

Problem formulation. Given 1) initial input-output exam-
ples E, 2) candidate inputs E!, generated by mutations over
ein € Ein, and 3) a stylized synthesizer that is composed by a
search strategy guided by statistical policy 7, and a deduction
engine, we want to select e;,, € E/ such that (¢}, ,e,,,) min-
imizes the (expected) running time of the stylized synthesizer.

Here, €, is obtained from the user via interaction.

III. INTERACTIVE SYNTHESIS ALGORITHM

In this section, we describe our interactive synthesis algo-
rithm on top of the stylized synthesizer described in Sec-
tion II-B. First, we briefly explain each of its components.
Then we formally give the estimation of expected running time
of the interactive synthesis algorithm. Based on that, we further
give a detailed discussion of the SELECTQUERY procedure,
which is one of the main contributions of this paper. Since
MUTATE is orthogonal to the main idea of this paper, we defer
its detailed discussion Section IV.

A. Interactive Synthesis Algorithm

Figure 1 shows the overview design of our interactive syn-
thesis algorithm. Given the initial input examples, FAERY first
invokes the MUTATE subroutine to generate candidate input
examples through mutations. Since the initial IO examples
may not be good enough to significantly prune the search
space, FAERY may optionally invokes the SELECTQUERY
subroutine to select an additional input (from the candidate
pool generated by MUTATE) whose corresponding output is
obtained by interacting with the user through the QUERYUSER
procedure. The queried output example together with the cor-
responding input examples will be an additional 10 example
that can be utilized to speed up synthesis. To reduce the num-
ber of interactions, SELECTQUERY must choose additional
examples in a way that minimizes the expected running time.

We summarize the interactive algorithm in Algorithm 1.
Formally, the stylized synthesizer samples i.i.d. rollouts ¢ until
it samples one such that P = E. In each iteration (lines 13—
21), it samples a rollout ¢ by calling GETROLLOUT (line 13).

2See Theorem 3.5.
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Algorithm 1 Interactive Stylized Program Synthesis
Input: Initial IO Examples E, Candidate Input Examples
El,
Output: Solution P
: procedure GETROLLOUT(E)
P+ S; (<« [P]
while true do
r~w(-| P)
P + FILL(P,r)
if P~ E or P € P return (
¢+ CUI[P]
end while
end procedure

10: procedure SYNTHESIZE(E, E, )
1 Z <« ]

12: while true do

13: ¢ < GETROLLOUT(E)

14: if P; is complete and P, satisfies I/ then return
P

15: else Z < ZU|[(]

16: end if

17: if |[Z| = N then

18: e;, < SELECTQUERY(E, F;, ,Z)

19: el .+ < QUERYUSER(e},,)

20: E — EU{(¢j: €ou)}

21: end if

22: end while

23: end procedure

If P is a complete program and satisfies examples F, we
return it as a solution (line 14). Otherwise, the algorithm adds
¢ into Z (line 15). GETROLLOUT procedure initializes P to
be the start symbol (line 2), and then iteratively expands P by
sampling 7 ~ 7(- | P) and using it to fill the left-most hole in
P. At each step, it may return if P is infeasible or complete.

Interaction. Note that FAERY will initialize an interaction
as soon as the number of rollouts |Z| reaches some hy-
perparameter N € N (line 17). In practice, we found that
performance is not very sensitive to the number of rollouts
used to compute the optimal query. Instead, how to select e/,
from E, is the key challenge to achieving good performance.

We focus on a single interaction since this case has the
highest payoff in terms of improvement in performance for a
fixed amount of user effort; However, if the user is interested in
providing additional 10 examples, our algorithm for selecting
queries ¢}, could simply be applied multiple times.

With interaction, the algorithm calls SELECTQUERY (line
18) to obtain additional input example ¢;, € E!, based on
the set of rollouts Z sampled so far and the precomputed set
of candidate input examples E/ . Then it queries the user by
QUERYUSER (line 19) to obtain corresponding output for a
new 10 example (e, e,,.,) and add it to the initial examples
(line 20).

Finally, a potential issue is that additional 10 examples
might change the set of solutions—i.e., we may have p = F
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but p = EU{(€},,el,.)} For simplicity, we assume that the
user will answer the query (i.e., ¢/ ,) that is consistent with
her original intent and the set of solutions does not change.
As we show later in Section V-A, in practice, most of our
tasks are significantly constrained by the initial IO examples
and this assumption holds.

B. Estimation of Expected Running Time

Since the goal of SELECTQUERY subroutine is to pick a
candidate input example that minimizes the expected running
time, here we first show how we estimate it with a single
user interaction. Given a set of initial IO examples E, we
design our synthesis algorithm to minimize the conditional
expected running time p(E) = E,(, g [p]. Note that the
expected running time is ;1 = E,(g)[1(E)]; thus, this approach
minimizes p. As we show in our experiments, it also helps
reduce the variability o2,

To this end, we show how we make the running time
of the stylized synthesizer tractable to compute. First, we
devise a formula for its running time 1o(E) when there is no
interaction—i.e., N = oo of line 17 in Algorithm 1. Based on
this formula, we devise a formula for the running time p(E)
that queries the user on a single additional input example €/,,.
Thus, our goal is to compute e}, that minimizes this formula.

Running time with no interactions. Essentially, computing
the running time corresponds to counting how many times line
6 in Algorithm 1 is called. In particular, for a single rollout ( =
(Py, ..., P,), this line is executed n times; thus, the running
time of the stylized synthesizer is Zfil |Ci|, where M is the
(random) number of rollouts sampled until a solution is found,
and |¢;| is the length of ¢;.

Lemma 3.1: For 10 examples FE, the running time of
the stylized synthesizer with no interactions is pg(E)
UE)/T*(E), where ((E) = E,|m[|C]] is the expected roll-
out length and 7*(E) = Py, [P = E] is the probability of
a solution. Note that different statistical policies may compute
7*(E) differently; in our algorithm we make no assumption
about its specific form.

We give a proof in Appendix A. Note that /(F) depends
on E since a rollout proceeds until P (£ E (or P € P).

Running time with a single interaction. Next, we consider
the running time of our stylized synthesizer when it issues at
most one single user query. Suppose the initial IO examples
are F/, and the synthesizer queries the user to obtain a single
additional IO example (€}, €.,,;). Then, this case is almost
equivalent to running the synthesizer with no interactions
on IO examples E U {(e,,el..)}—ie., p(E) to(E U
{(€},,, €bus)}). However, there is a chance that the synthesizer
finds a solution before it queries the user; our formula accounts
for this possibility.

Lemma 3.2: Given a set of 10 examples E, the running time
of the stylized synthesizer with a single interaction is

W(E) = a(E) + B(E) - o (E U {(€}, €our)});
where ¢}, = SELECTQUERY(E E!. . Z) is the selected query,
€t = QUERYUSER( ,) is the user response, and a(E) and
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B(E) are positive constants independent of e}, and e/ ,. We
define a(F) and S(F) along with a proof in Appendix B.
Optimal query. Now, given a set of candidate inputs E.,,
we can establish a formula characterizing the optimal query
,, that most reduces running time. One challenge is handling
the fact that we do not know the corresponding outputs €], =
QUERYUSER(¢},,) for inputs ¢}, € E, . To address this issue,
we assume we know the dlstrlbutlon p( el | €h,) over outputs
,, for the input e/ ,,.
Then, the optimal input example to query that minimizes
the expected running time of the stylized synthesizer is

€y = argmmE el ler ) ()] (1)
LEEL.
We have the following; see Appendix C for a proof:
Theorem 3.3: We have e, = argmin, g J(e),; E),

where

I(€ini B) = By, et ) [L(E U {(€Gns €0ur) }]-

wmn?

Thus, we want to choose ¢}, that minimizes the rollout length
UE U {(e,. e )} in expectation over p(el,, | el,). The
key challenge in computing e}, is that we do not know the
distribution p(e! Cout | €},), which is the probability that the
user responds e/, when queried on a given input example
el € E!. . Assuming the user has a target program P € P in

mind, and we know the probability p(P), we could decompose
this probability as

p(ei)ut | e;n) X Z 1(6:7ut = [[P]]e;n) ' H(P

PeP

= E)-p(P),

where 1 is the boolean predicate function®. In other words,
the probability they have in mind P restricted to complete
programs consistent with the initial 10 examples E and
programs that evaluate to e, on input ¢/,,. A natural choice
for p(P) would be the probability of sampling P using 7.

However, since the original synthesis problem was to com-
pute P € P that satisfies £, drawing a single sample P
such that P |= E is computationally infeasible. Instead, our
algorithm uses heuristics to approximately optimize J(e,, ; F);
we discuss these heuristics in Section III-C.

Therefore, we reduce the intractable expected running time
to a tractable objective based on expected rollout length. We’ll
then elaborate how SELECTQUERY subroutine computes the
objective and selects an optimal query.

Z’I’l7

C. SELECTQUERY Subroutine

Algorithm 2 shows the design of the SELECTQUERY sub-
routine, which selects an input example e}, € E. that
optimizes J (e}, ; £). Its inputs are the initial IO examples E,
a precomputed set of candidate input examples E/, , and a set
of rollouts Z sampled so far, and it outputs an example €, €
E!,. The key challenge is that we do not know the distribution

p(el,: | €.,). To address this issue, as shown by Figure 2,

3A boolean predicate function 1(A) is commonly defined as 1(A)

1 if A
0 if =A"
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Algorithm 2 Query Selection

Input: Initial IO Examples E, Candidate Input Examples

E’, and Rollouts Z

Output: Optimal Query argmin,, cp/ T (eln)
1: procedure SELECTQUERY(F, WZ)
2 for ¢, € E!, do
3 E:)ute[[[P]]#ezn'(EZaPe(vp':E]
4: for ¢, € £, do
5: (s Ehn)) 171 2cez | TG (€ )l
6 end for
7 Jab%( Cin )F'A{ out ((6;7” out)) Egut}
8 end for
9 return argmin,, o Jim(el,)

10: end procedure

Distribution | p(egy:|€j,)|is unknown

i Estimated by

€

Distribution over abstract outputs: | p(€py¢|€i)

Used to

Jabs @in: E, Egur)

Approximated by

Aggregate and choose queries b

Monte Carlo estimation
Fig. 2: Workflow of SELECTQUERY.

our algorithm considers abstract outputs—l e, pl€lu: | €
Then, for each candidate input e}, € Ej,, our algorithm
approximates p(el,,, | €/ ) to be the set E! , of possible
abstract outputs [P]#e!, of sampled partial programs P (line
3). Then, it computes the rollout length £(E U {(e},,,€,,)})
for each ¢/, € Eout using the Monte Carlo estimate below
(line 5). Next, based on this estimate, it evaluates a variant
T (e m,E Eout) of the objective J(e},,; E') by aggregating
over &, . € E! . (line 7). Finally, it selects the query e, that
minimizes this objective (line 9). We describe these steps in
detail below.

Distribution over abstract outputs. Since we do not know
the output e/, of each candidate input example €/, € E! in
advance as a heuristic, we instead consider abstract outputs

€l .+ We can sample €/, for e}, by sampling partial programs
P € P consistent with the initial IO examples FE, and
evaluating &, = [P]*e.,,. To sample such a P, we sample a
rollout ¢ = (P, ..., Py) according to p(¢ | E); by definition,
P, E E for all i < n, so each P; is a valid sample. We
denote the distribution over abstract outputs sampled this way
by p(&h | €))-

Furthermore, we can easily extend deduction to handling
such input-abstract-output (IAO) examples. In particular, we
let P |= ¢é if [P]#e;n T épu—i.e., we assume P can be
pruned unless it is provably consistent with é. This definition
extends to sets of IAO examples E in the obvious way—i.e.,
P [~ E if there exists ¢ € E such that [P]# [~ é; it also
works with combinations of IO examples and IAO examples.
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Then, we replace the objective J (e}, ; ') with the following:

Jabs(e;n; E) = E

2n7

(Ehutlely, )[Z(EU{( in’ out)}}

where in Jys(e, ; E) the expectation is computed over

p(éout ‘ ein)'
Aggregating over abstract outputs A potential shortcom-
ing of Jyps(€},,; E) is that because p(é,,, | e},,) is a heuristic, it
might no longer yield good queries. To improve robustness to
this choice, we consider a more general objective that aggre-
gates over possible abstract outputs Eouf for each ], € Ej,
using a given operator A. In particular, glven a set F/
of abstract outputs for each candidate input ¢, € E!

m°

ZTL7

ouf

m

replace Jups (€),,; E) with J4 (¢} B, E! ), which is given by.
Jﬁs( m’E E(/mf) A{/\ Cout* (EU{( Cin> ouf)}) E(/)uf

In other words, A is a function that aggregates the loss func-
tion £(E U {(e},,&,.,.)}) over & . € E! . Possible choices
of A include the expectation over the empirical distribution
Uniform(E/,,), the best- or worst-case over £/, ,.

Finally, our algorithm uses the set Eout of abstract outputs
constructed using the partial programs in the sampled rollouts
¢ € Z that are consistent with E in conjunction with the above
procedure (note that all partial programs in ¢ will be consistent
except for the last one F).

Monte Carlo estimation. Next, we estimate /(EU{é'}) in
JA (el B, E!,,) using sampling—i.c., given i.id. samples
Z = (C1, - ,Ck) from p(¢ | EU{é'}), we use the estimate

UBULEN = ey [dl

However, computing this estimate independently for each ¢’
is computationally expensive due to the need to sample rollouts
C for each candidate input ¢}, € EJ and each abstract output

él . for el . Instead, we show how we can estimate ((EU{¢é'})
based on samples from p(¢ | E).

Definition 3.4 (é-prefix): Given a set E of 10 examples, a

rollout { = (P, ..., P,,) sampled from p(¢ | E), and an IAO
example é, the é-prefix of ( is T((, E,é) = (P, ..., P,) such
that (i) P; = F for all i < n, and (ii) either P; € P or
PC l?é €.
Note that such an n must exist, since if it is not satisfied for
any n < m, it must hold for n = m—in particular, if P |~ E,
then by definition we have P [~ F U {é}. Then, we have the
following result; see Appendix D for a proof:

Proposition 3.5: Given 10 examples E and IAO example é,

In other words, we can express ¢(EU{é'}) in terms of samples
from p(¢ | E) (instead of p(¢ | E U {é’'})). In particular,
given i.i.d. samples Z = (¢1y ., Cg) from p(¢ | E), we can
use ((EU{¢'}) =~ IZ\ >cez|T(C E,¢€)|. Thus, rather than
drawing new samples ( from p(¢ | E U {(e,,é.,,)}) for
each candidate input e}, € E! and each abstract output
Cout € Eout correspondlng to e},, we can draw them once
and compute T(C? ( €in> é/out))

in°

“For simplicity, we here use intersection rather than implication for com-
paring abstract outputs of the example.
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Fig. 3: Estimating the running time of an input ¢},

Candidate Input . Sampled Programs msececececcee=-= ;

: e/ : : Pl: take (reverse (sort(e;,)) ,3) :

I (6 [1 5":; 1 4) : E PZ: drop (reverse (sort(¢;,) ) ,2) :

= P3: take (reverse (map (¢, ,+1)) ,3) :
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@n.51503) @ @ D 1
652 @ Q @ 2
Aggregated Objective Value
= =2

by aggregating the losses from all abstract outputs. Left: Algorithmic view

of running time estimation, where a question mark denotes consistency checking result; Right: A concrete example of running

time estimation®.

Example 4: We now show how one estimates the running
time of a given candidate input ¢),,. Following Example 2
FAERY first computes the abstract values (€;,,€,y¢) for the

original example e;,, : [1,3,5,2,4] — eout : [5,4,3] whose
abstract values are:
éin ¢ (5,[1,5],1,4) — éout = (3,[3,5],5,3)

where every abstract value is composed by four abstract do-
mains: list length, value range (computed by [min(l), max(l)]
given a list [), first value, and last value. Then given the
following candidate partial programs:

Py : take(reverse(sort(ein)),3)
P, : drop(reverse(sort(ein)),2)
P : take(reverse(map(€in, +1)),3)

where all the programs (written in list manipulation DSL
similar to previous works [6, 16]) are feasible given the
initial example and P; is the intended solution, FAERY needs
to pick an additional example that has a higher chance of
pruning P, and Ps. Here drop (resp. take) truncates (resp.
preserves) the last (first) n elements of a given list and returns
it, where n denotes the parameter; sort rearranges the list in
an ascending order while reverse flips the list backward.
As shown in Figure 3, for a given candidate input ¢},
[1,3,5,3,2,4] and its corresponding abstract value é,
(6,[1,5],1,4), our goal is to estimate the objective value
J(e,; E) using the sampled partial programs Py, P, and Ps.
For example, abstractly evaluating P, on el (e, [P]"el,)

yields its abstract output é O(ut to be (4,1, 5}, 5,[1,5]) —ie.,
the output list must contain 4 elements with the head elements
being 5 and last element falls into interval [1,5]. FAERY
evaluates all sampled programs on e}, and fill in the cells

as follows:
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« v'means that [P;]#e],
éo(:,)f—l.e., we have [P;]#e], C

« Xmeans that [P;]#¢},
i.e., we have [P;]#e), Z ¢
According to the Figure 3 (right), P; and P, generate different
(and inconsistent) abstract outputs. Then, we compute the
objective value of e}, for each abstract output é o(uz

LE U {(e],, Ao(;l)}), which is the sum of v in the corre-
spondmg row. Finally, we obtain the score of €}, by using A
to aggregate this objective value over the abstract outputs of
all sampled programs—e.g., A may take the maximum over
these objective values.

Whereas Algorithm 2 operates over sampled rollouts ¢ € Z,
in this example, we operate over the “flattened” Z—i.e., the set
of sampled partial programs Pz = {P | ( € Z, P € (}. These
two approaches are equivalent—Algorithm 2 flattens Z on line
3 to construct the abstract outputs Eout, also, the sum in line 5
equals (up to constants) |[{P € Pz | P = (e},,,€,.+)}], which
is exactly ¢(E U {(e},,,€,,:)}) in Figure 3. Finally, we count
v instead of X since we are estimating running time instead
of pruning power (see Theorem 2.5).

is guaranteed to be consistent with
5'(1)

= Cout
'(4)

may be inconsistent with €, ;—

'(4)

out

1e

IV. IMPLEMENTATION

We describe its procedure for generating candidate input
examples, and the available aggregation functions A in FAERY.

Candidate inputs. Our algorithm assumes a given set of
candidate input examples E/ . FAERY generates E; using a
standard mutation procedure. First, for a given kind of input
data structure (e.g., a list, tree, table, etc.), we provide a DSL
that encodes common operations over the data structure. For
instance, for the table transformation domain, our DSL (as
shown in Table III) contains operations such as deleting a
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column, inserting a row, swapping the order of two rows, etc.
Then, given the initial input example e}, E/, is obtained by
executing ¢(e;,,) where ¢ is randomly sampled program from
this DSL.

Aggregation function. Recall that in Algorithm 2, the
SELECTQUERY subroutine relies on a function A to aggre-
gate scores over the possible abstract outputs ¢/, for each
e}, € E!. . We have implemented the following possible .A:
o The MAX strategy estimates the pruning power of a candi-

date input by:

A(E’

out max ‘g(é;ut)V

é L EE!

out out

where 0(€},,) = L(EU{(€},,€hu))-

Intuitively, this strategy is an optimistic lower bound on
the pruning power of e, —namely, the largest number of
programs pruned by any possible abstract output.

The EXPECTED strategy estimates the pruning power of a
candidate input by computing the expected objective value

across different abstract outputs:

g(éi)ut) : (Z(eZ ‘C| - g(égul‘))
éguteZE’ > ez €] '

out
Intuitively, this strategy sums the number of programs
pruned by each abstract output, weighted by the estimated
probability that the queried output is consistent with the
abstract output.

A(Eéut) =

V. EVALUATION

We evaluated FAERY by conducting systematic experiments
that are designed to answer the following research questions:

o QI. Scalability. How does FAERY perform compared to
state-of-the-art synthesis tools?

o Q2. Reliability. Can FAERY consistently reduce synthesis
time for different initial examples?

o Q3. Effectiveness. How effective are the different aggre-
gation functions described in Section IV?

A. Experimental Setup

For our core experiments, we use FAERY with the MAX
strategy. We instantiate FAERY on two important domains
in data science: (i) data wrangling in R, and (ii) JSON
transformations using the JQ [17] library. To compare FAERY
with existing tools, we adopt the original DSL used in NEO
and MORPHEUS [4, 3] for domain (i), and designed a variant
DSL of JQ for domain (ii). All experiments are conducted on
an Intel Xeon(R) computer with an E5-2640 v3 CPU and 16G
of memory, running the Ubuntu 18.04 with a timeout of 10
minutes.

State-of-the-art tools. In data wrangling domain, we com-
pare to NEO [4], a state-of-the-art synthesis tool that is
designed for this domain. To allow a fair comparison, we
instantiate FAERY with the same DSL and specifications
used by NEO. Furthermore, we use NEO’s bigram model to
prioritize the search. For the JSON transformations domain,
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Fig. 4: Comparison between FAERY and: 1) NEO (up) on
data wrangling tasks, and 2) TRINITY (down) on JSON
transformation tasks; z-axis shows the number of benchmarks
solved; y-axis shows the cumulative time taken.

we compare against TRINITY [13]. We also used the same
DSL and abstract semantics for both tools.

Benchmark selection. For data wrangling, we use 15 of the
most difficult benchmarks in prior work [4], where difficulty
is measured in terms of NEO’s synthesis time; we focus on
difficult benchmarks since the goal of FAERY is to improve
performance on benchmarks in the long tail in terms of
scalability.

For JSON transformations, we have collected 15 challeng-
ing JSON transformation tasks from StackOverflow (i.e., a
post with an IO example and a response with the desired
program)—namely, tasks where the solution is a program with
at least (i) 10 AST nodes, (ii) two higher-order components,
and (iii) a mapping or aggregation function.

Number of interactions. We show that both data-wrangling
and JSON transformation domains are highly constrained,
and typically a single example is sufficient to significantly
constrain the search space to just a few (and often a single)
solution; the challenge is finding even a single solution. In
particular, based on a study of the full 50 benchmarks for
the data wrangling domain in NEO, there are 47 (94%)
of them where the user-intended solution can be precisely
quantified by the single user-provided input-output example.
Similarly, for the JSON transformation domain, for 13 out
of 15 (87%) benchmarks, the user-intended solution can be
precisely quantified by the single user-provided input-output
example. The benefit of interaction for these domains is almost
entirely to improve scalability and reliability.

B. Scalability

We design automated evaluation and a user study to measure
the scalability performance of FAERY. In automated evalua-
tion, answers to user queries are directly supplied, while in
the user study the tool waits for a real participant’s response.
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Results. Figure 4 (left) shows results for data wrangling. As
we can see, FAERY significantly outperforms NEO in terms of
both synthesis time and the number of benchmarks solved.
In particular, FAERY solves 14 benchmarks with an average
running time of 174 seconds, whereas NEO solves just 11
benchmarks with an average running time of 211 seconds.

Next, Figure 4 (right) shows results for JSON transforma-
tions. We observe an even greater speed-up in this domain:
FAERY solves all 15 benchmarks with an average running time
of 48 seconds, whereas TRINITY solves 11 benchmarks with
an average running time of 22 seconds. Both results show that
FAERY can dramatically speed up search compared to state-
of-the-art synthesis techniques.

User interaction. We note that it is easy for end users to
label the output examples for our selected input examples. On
average, it took 10 seconds for a user to answer a query (i.e.,
provide the desired output for an input), which is less than
5% of the total synthesis time. See Section F for details of the
user study.

C. Reliability

To evaluate the reliability of FAERY, we create variants
of the existing synthesis tasks and compare the performance
between different tools on these tasks. Specifically, we mutate
synthesis tasks by replacing the initial IO example with each
of the candidate 10 examples produced by the MUTATE
subroutine, and ask each tool to solve them. In the data
wrangling (resp., JSON transformation) domain, we compare
the performance of FAERY with NEO (resp., TRINITY); we
also compare to an ablation “FAERY with RANDOM” that
randomly selects a candidate input example to query the user.

Results. We show the performance of different tools on each
benchmark across different initial IO example in Figure 5. The
box captures the quartiles of the distribution in performance
across different IO examples. For both domains, FAERY with
MAX performs reliably on all benchmarks—in particular, its
synthesis time is low in terms of both mean and variance.
The baselines perform well on some benchmarks (sometimes
even slightly better than FAERY with MAX), but have huge
mean and/or variance on others—i.e., in z1, z5-7, and z10-13.
There are a few reasons why FAERY with MAX may perform
slightly worse: a) Mutation strategy: The candidate input
examples produced by our mutation algorithm are equally
effective, which can result in similar end-to-end performance
for any query (e.g., z12 and z13). b) Quality of initial
examples: Having high-quality initial examples reduces the
benefit of interaction, and adding an extra example to the
synthesizer may even introduce more overhead than time saved
by extra pruning, thereby increasing synthesis time (e.g., z4,
z8, z14 and z15). c) Approximations: Our MAX strategy uses
approximations that rely on assumptions about the structure of
the abstract search space, which may not always hold. Other
strategies make different assumptions that perform better in
specific cases—e.g., EXPECTED performs much better than
MAX on z4 and z6 (but worse on the remaining benchmarks).
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Strat Data JSON
rategy Wrangling | Transformation
FAERY (MAX) 99s 105s
FAERY (RANDOM) 142s 168s
NEO/TRINITY 170s 174s

TABLE I: Variability* of synthesizers.

\ Benchmark | MaX | EXPECTED |

Data #solved 14/15 12/15
Wranelin avg. time 174s 228s
ghng avg. speed-up | 2.4x 1.4x
#solved 15/15 11/15

JSON -
. avg. time 48s 36s
Transformation avg. speed-up | 9.5x 8.2x

TABLE II: Effectiveness of different aggregation functions.

In addition, note that FAERY with RANDOM often out-
performs NEO (e.g., r5 and z12). These results demonstrate
the promise of using user interaction to reduce synthesis
time; by using a more intelligent strategy, FAERY with MAX
further improves performance by a significant margin. Next,
in Table I, we show the variability for each strategy averaged
across benchmarks in a domain (we take the square root so
the units are seconds). As can be seen, FAERY with MAX is
significantly more reliable than the baselines—e.g., 42% better
than NEO on data wrangling and 40% better than TRINITY on
JSON transformations.

Finally, Table II shows the performance of FAERY using
the different aggregation strategies in Section [IV—i.e., MAX
and EXPECTED. Both strategies are effective. Specifically,
in both domains, the MAX strategy outperforms EXPECTED
favorably in terms of both running time (9.5x v.s. 8.2x speed-
up in the JSON transformation client; 2.4x v.s. 1.4x in the
data wrangling domain) and the number of benchmarks being
solved (15 v.s. 11 benchmarks in the JSON transformation
domain; 14 v.s. 12 benchmarks in the data wrangling client).

In summary, FAERY achieves high reliability compared to
the baselines with a random or fixed strategies. In particular,
when the initial user-provided examples are ineffective, FAERY
is still efficient by leveraging the pruning power of the
extra examples. While both strategies are effective, the MAX
strategy outperforms EXPECTED favorably in terms of both
running time and the number of benchmarks being solved.

D. Threats to Validity

Validity of user response. Even though additional user
response provides more potentially useful information for
problem solving, a user’s familiarity towards context of the
problem that she’s working on still plays a key role to the
performance of FAERY- i.e., mistakes or inconsistency made
between the user’s inputs could create additional challenges to
the synthesizer. Thus, to mitigate this in the user study, each
participant is asked to complete a tutorial that reinforces them
about the intention and context of the problem. We elaborate
more detail in Section F.

* We report the square root of the average across benchmarks.
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Quality of mutation. Generation of the additional candidate
inputs is done by MUTATE, which is then used by SELECT-
QUERY for user interaction. Effectiveness of the candidates for
improving the synthesis performance given valid user response
may still drop — that is, the quality of MUTATE is nontrivial to
quantify and optimize. To mitigate this, we increase the size
of the candidate pool generated using MUTATE so as to reduce
the chance of queries that are ineffective or difficult to answer.

VI. RELATED WORK
A. Program Synthesis

There has been significant interest in automatically synthe-
sizing programs from high-level user intent [18, 9, 19, 6, 20,
15, 21, 22]. Techniques geared towards programmers often
utilize complex specifications, such as program sketches [18,
23, 24, 25] or types [19, 26], possibly in conjunction with test
cases [27, 28] or logical specifications [23, 20]. In contrast,
techniques geared towards end-users (i.e., non-experts) rely on
10 examples [9, 21, 5, 29], natural language [30, 31, 32, 33],
or both [34, 35]. While we have focused on IO examples, the
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high-level ideas can in principle, be applied to a broad classes
of specifications, as long as some notion of refinement of the
specification is available (analogous to querying additional 10
examples).

B. Deduction-Based Pruning

We build on a line of work using deduction to prune the
search space [19, 3, 4, 13, 2, 15]—e.g., using types and type-
directed reasoning to prune infeasible partial programs [19,
15, 27, 36, 37], or using lightweight program analysis to
do so [2, 3, 4, 13]. Concretely, BLAZE [2] uses abstract
interpretation to build a compact version space representation
capturing the space of all feasible programs; MORPHEUS [3],
NEO [4] and TRINITY [13] use logical specifications of DSL
constructs to derive feasibility conditions that are checked
with an SMT solver; and SCYTHE [5] and VISER [38] use
deductive reasoning to compute approximate results of partial
programs to check feasibility. Our approach queries the user
on the input example that maximizes the pruning power of the
deduction engine. The deduction engine FAERY uses is similar
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to NEO [4]; however, it can in principle be used with other
deductive reasoning techniques.

C. Interactive Synthesis

Existing interactive synthesis systems focus on obtaining
extra examples to disambiguate user intent[12, 11, 39, 40, 10,
41,42, 43,44, 45, 46]—e.g., Mayer et al. [12] and Wang et al.
[11] randomly mutate existing inputs until a distinguishing
input is found, and query the user on this example. Laich
et al. [39] generates additional examples to address ambiguity
issues, and Pu et al. [40] develops an approach to select small
and representative subsets of examples. Ji et al. [10] improves
these approaches by selecting the optimal input that minimizes
the number of user queries needed to resolve ambiguity. In
contrast, we are interested in problems where interaction is not
needed to disambiguate, but to speed up synthesis. Importantly,
techniques for tackling the former problem fundamentally
cannot address the latter. In particular, they all rely on being
able to sample multiple correct (concrete) programs. However,
if we can identify even a single correct concrete program,
then we have already solved our problem. In addition, we
provide a theoretical framework to quantify the running time
of deduction-guided synthesis.

VII. CONCLUSION

We have proposed a novel programming-by-example frame-
work that leverages user interaction to improve both scalability
and reliability. While we have focused on leveraging our
theoretical analysis to facilitate user interaction, we believe
our techniques have the potential to help improve our under-
standing the underlying synthesis search space. As we have
demonstrated in our evaluation, the reliability of synthesis
tools remains a key challenge, and our approach serves as
a first step towards to quantifying the performance properties
of synthesizers.
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