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Abstract—The performance of programming-by-example sys-
tems varies significantly across different tasks and even across
different examples in one task. The key issue is that the search
space depends on the given examples in a complex way. In
particular, scalable synthesizers typically rely on a combination
of machine learning to prioritize search order and deduction
to prune search space, making it hard to quantitatively reason
about how much an example speeds up the search. We propose
a novel approach for quantifying the effectiveness of an example
at reducing synthesis time. Based on this technique, we devise
an algorithm that actively queries the user to obtain additional
examples that significantly reduce synthesis time. We evaluate
our approach on 30 challenging benchmarks across two different
data science domains. Even with ineffective initial user-provided
examples for pruning, our approach on average achieves a
6.0× speed-up in synthesis time compared to state-of-the-art
synthesizers.

I. INTRODUCTION

Due to its potential to significantly improve both program-

mer productivity and software correctness, programming by

examples (PBE) has recently received significant attention

from researchers. In most domains, the number of possible

programs is enormous, making explicit enumerative search

intractable. Thus, modern synthesizers aggressively prune the

search space using logical deduction [1, 2, 3, 4, 5], as well

as use machine learning to bias the search towards programs

that are more likely to satisfy the specification [6, 3, 7, 8].

Despite the progress that has been made, synthesizers still

face performance challenges that inhibit their usability. We

consider two performance metrics:

• Scalability: This metric is the synthesis time for a set of

IO examples. Many synthesizers [4, 5, 2, 9] are designed

to optimize scalability since it is key to enabling rapid

responses to the user. However, there is often a long tail

of programs that still take significant time to synthesize.

• Reliability: This metric is the variance in synthesis times

across different IO examples specifying the same program.

Even if a synthesizer is fast given one set of examples, it

may not be so for a different set of examples specifying the

same program. Enhancing reliability is important in making

PBE more usable to a broad audience beyond those who

have the expertise to provide “good” examples. However,

existing state-of-the-art example generation techniques [10,

11, 12] are not designed with this objective in mind and are

sensitive to the initial choice of IO examples.

Intuitively, scalability corresponds to minimizing expected

synthesis time across IO examples, whereas reliability cor-

responds to minimizing variance in synthesis time across IO

examples. While the two are closely related, it is possible for

a scalable synthesizer to be unreliable and vice versa.

We propose FAERY1, a novel programming-by-example

framework that leverages user interaction to improve both scal-

ability and reliability. Given an initial set of user-provided ex-

amples, FAERY performs deduction-guided enumerative search

to find a program that satisfies these examples. If FAERY is

not able to find a correct program within a short amount

of time, it selects an additional input example and queries

the user to obtain the corresponding output. Then, FAERY

takes this new IO example and continues its search. This

query is selected to most reduce the (expected) synthesis time,

thereby improving scalability. It also improves reliability since

it makes the synthesis time less sensitive to the initial IO

examples provided by the user.

Choosing additional examples to achieve both high scal-

ability and high reliability is a challenging problem. Our

approach significantly improves both scalability and reliability.

Intuitively, it does so by choosing a second input to query that

most improves expected synthesis time. This strategy naturally

improves scalability. Importantly, it also naturally improves

reliability: choosing an input to query that significantly prunes

the search space directly reduces the dependence of synthesis

time on the user-provided example, thereby improving relia-

bility.

In our setting, the primary challenge is how to choose a

query that most reduces synthesis time. Our strategy is to

1Fast And rEliable pRogram sYnthesis.
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estimate the reduction for each query in a set of candidates and

choose the one that maximizes this estimate. To do so, we need

to solve two key problems: First, we need to quantitatively

estimate how much a query reduces synthesis time; Second, it

must be estimated quickly, since time taken by the estimation

procedure is part of the overall synthesis time.

Because state-of-the-art synthesizers [4, 7, 3] typically rely

on a combination of machine learning to prioritize search

order and deduction to prune search space, to address the

first problem in a realistic setting, we devise a stylized model

of the synthesizer for which we can rigorously reason about

the synthesis time. In this model, the synthesizer employs a

stochastic search strategy that combines a machine learning

model to prioritize the search order with a deduction engine

to prune parts of the search space. To address the second, we

devise an algorithm that approximates the expected synthesis

time using random samples from the search space. Intuitively,

this algorithm estimates the expected fraction of the search

space pruned by the query.

We instantiate FAERY on two data science domains, table

transformations and JSON tree transformations, and evaluate

its effectiveness on 30 challenging benchmarks. Our results

show that even with a single user query, FAERY achieves

2.4× speed-up in the table transformation domain and 9.5×
speed-up in the JSON transformation domain compared to

the state-of-the-art synthesizers [4, 13]. In addition, we show

that FAERY can reduce the variation in running time across

different IO examples for a fixed benchmark. With just a single

user query, FAERY reduces this variation in performance for

benchmarks in both domains, demonstrating that users who

cannot provide high quality IO examples can still use FAERY

to solve challenging tasks.

In summary, we make the following key contributions:

• We propose and formalize the problem of improving the

overall speed and reliability of a program synthesizer by

leveraging user interaction (Section II).

• We propose a novel interactive synthesis algorithm that

addresses this problem. Our algorithm uses a stylized model

of the synthesizer to quantify synthesis time, and uses an

efficient statistical estimator for it (Section III).

• We implement our approach in a tool called FAERY (Sec-

tion IV), and empirically demonstrate its benefits compared

to other state-of-the-art synthesizers (Section V).

II. PROBLEM FORMULATION

We consider syntax-guided synthesis [14], where the speci-

fications are provided as input-output (IO) examples [9]. That

is, given a domain-specific language L and examples E, the

synthesis problem is to find a program in L that satisfies every

example (ein, eout) ∈ E. Because state-of-the-art synthesiz-

ers [5, 3, 4] typically combine statistical models (to guide the

search) with deduction engines (to prune infeasible programs),

in this paper, we are concerned with synthesis techniques that

combine deduction-based pruning with search prioritization

using a statistical policy [6].

Our goal is to leverage user interaction to obtain additional

IO examples that help speed up synthesis. In particular,

we query the user on an additional input example from a

predefined set of candidate inputs to obtain the desired output.

Then, the deduction engine can use the additional IO example

to prune a significantly larger portion of the search space,

compared to only using initial examples E. For simplicity,

we restrict to the case where our algorithm acquires exactly

one new additional IO example, and it is straightforward to

generalize the algorithm with multiple interactions.

To formalize this problem, we devise a stylized model of

how our synthesizer works, which captures its key features

yet is sufficiently simple that we can reason explicitly about

its running time. Then, our goal is to select an additional

input example that most reduces the (expected) running time

of this stylized synthesizer. As long as our model is sufficiently

realistic, the same strategy should also work well for our actual

synthesizer.

A. Preliminaries

We assume the domain-specific language (DSL) L is in

a context-free grammar (V,Σ, R, S), where V is the nonter-

minals, Σ is the terminals, R is the productions, and S is

the start symbol. A partial program P ∈ P is a sequence

P ∈ (Σ ∪ V )∗ such that S
∗⇒ P (i.e., P can be derived from

S via a sequence of productions). A nonterminal in P is a

hole; P is complete (denoted P ∈ P) if it does not have any

holes. A production r ∈ R is valid for P if it can be used

to fill the left-most hole in P ; we denote the resulting partial

program by P ′ = FILL(P, r) whenever P
r⇒ P ′ — here either

P ′ is complete, or there is some production r ∈ R that is valid

for P . Next, P is a lattice with partial order �, where P ′ � P
if and only if P ′ can be derived from P in L (i.e., P

∗⇒ P ′).
In this case, P ′ is a refinement of P ; if P ′ is complete, it is

a completion of P .

Example 1: Consider the following partial program P :

map(©, +1) and production r ≡ © → reverse(©). In

this case, FILL(P, r) yields the following partial program P ′:
map(reverse(©), +1).

Given a set of IO examples E and DSL L, a complete

program P ∈ P satisfies E (denoted P |= E) if eout = �P �ein
for all (ein, eout) ∈ E, where �·� is the concrete semantics.

The synthesis problem for E is to find P ∈ P such that P |=
E; we call such a P a solution for E.

Deduction engine. Given a set of IO examples E, a partial

program P is feasible if there exists a completion P ′ of P
such that P ′ |= E. We consider a deduction engine that

checks whether P is feasible for E using abstract semantics

�·�# that overapproximates �·�. In particular, �·�# maps a

concrete input ein to an abstract value êout = �P �#ein,

which is a set of concrete values satisfying the soundness

condition (P ′ is completion of P ) ⇒ (�P ′�ein ∈ �P �#ein),
This property of �·�# enables us to use �·�# to prune the search

space. In particular, given an IO example e = (ein, eout) and

a partial program P , we say e prunes P if eout 	∈ �P �#ein,

which we denote by P 	|= e. Given a set of IO examples E,
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we say E prunes P if there exists an example e ∈ E such

that P 	|= e, which we denote by P 	|= E.
Notation. In general, we use E to denote a set of IO

examples where each example e = (ein, eout), Ein to denote

a set of inputs ein, Eout to denote a set of outputs eout, and

Êout to denote a set of abstract outputs êout. In addition, we

use Ê to denote a set of input-abstract-output (IAO) examples

ê = (ein, êout)—i.e., where êout = �P �#ein for some P ∈ P .
Example 2: Consider the following input-output example

in list manipulation:

ein : [1, 3, 5, 2, 4] 
→ eout : [5, 4, 3]

Using the size of the list as the abstract domain [4], the partial

program P : reverse(map(ein, ©)) is infeasible (i.e., P 	|=
e). In particular, no matter how we fill hole ©, the resulting

program cannot satisfy the given IO example for the following

reason:

• The map construct applies a function (yet to be determined

by the synthesizer) over every element of ein and yields an

output list whose length equals that of the input list ein.
• The reverse construct reverses its input, making the size

of the output list the same as its input.
• Since the output returned by reverse does not have the

same size as the desired output eout, we derive an incon-

sistency. i.e., size(ein) == size(eout) ∧ size(ein) ==
5 ∧ size(eout) == 3 is UNSAT.

Several techniques from prior work (e.g., [3, 5, 4, 15]) can

prove the infeasibility of such partial programs by using an

SMT solver (provided specifications are given for the DSL

constructs).
Statistical policy. We consider a statistical policy π used

to prioritize the search order. Given a partial program P , it

assigns probabilities π(r | P ) to productions r ∈ R that can

be used to fill the left-most hole in P . Let Z = P∗ be the space

of sequences of programs. Then, we sample partial programs

from the search space using π as follows:
Definition 2.1 (Rollout): Given a set of IO examples E,

a rollout ζ ∈ Z is a random sequence of partial programs

ζ = (P1, ..., Pn) such that (i) P1 = S is the start symbol of

L, (ii) Pi+1 = FILL(Pi, ri) is the partial program constructed

by sampling ri ∼ π(· | Pi) and using it to fill the left-most hole

in Pi , (iii) Pi |= E for all i < n, and (iv) letting Pζ = Pn,

either Pζ ∈ P or Pζ 	|= E.
Example 3: According to Example 2, the partial program

reverse(map(ein, ©)) is a terminal state as it gets pruned
by the deduction engine. Thus, the following sequence corre-
sponds to a rollout:

(S, S → ©), (©,© → reverse(©)),
(reverse(©),© → map(©,©)),
(reverse(map(©,©)),© → ein), (reverse(map(ein,©)),∅).

We use Z(E) ⊆ Z to denote the rollouts for E. Intuitively,

a rollout is a single sequence of samples from the search space

that terminates in a program Pζ that is either a solution to the

synthesis problem for E or that is pruned by deduction using

E. Note that we sample a rollout ζ with probability

p(ζ | E) = π(r1) · π(r2 | P1) · ... · π(rn | Pn−1),

i.e., sequentially sample each rn conditioned on Pn−1. We

prove that p(ζ | E) is a probability distribution over Z(E)—
i.e., it is properly normalized; see Appendix A for a proof.

Theorem 2.2: We have
∑

ζ∈Z(E) p(ζ | E) = 1.

B. Model of Synthesis Running Time

Our stylized model is designed to balance faithful approxi-

mation of a real synthesizer such as Neo [4] with a tractable

quantification of running time. In particular, it captures two

critical components of state-of-the-art synthesizers [4, 2]: (i)

the use of a statistical policy π to determine which parts of

the search space to prioritize, and (ii) a deduction engine used

to prune the search space. The main approximation is that the

stylized synthesizer does not perform an enumerative search

according to the probabilities of π; the running time of such a

search is hard to quantify because it depends on the rankings of

the predicted probabilities of different partial programs rather

than directly using the probabilities.

Instead, using the FILL(Pi, ri) procedure described earlier

in Section II-A, the stylized synthesizer randomly samples

i.i.d. partial programs P according to π until it samples one

such that P |= E. In each iteration, if P is a complete program

and satisfies examples E according to the deduction engine,

we return it as a solution. Otherwise, the current partial P
may be infeasible thus gets pruned by deduction. In that case,

the synthesizer has to keep sampling new partial programs.

Definition 2.3 (Running Time): The running time ρ of the

stylized synthesizer is the random variable with distribution

p(ρ | E) that counts the number of times the deduction engine

is invoked on some partial program P to check whether P |=
E.

C. Fast and Reliable Synthesis

Our goal is to maximize the speed and reliability of the

synthesizer. Our primary objective is speed; as we show in

our experiments, reliability improves as a byproduct of using

interaction to improve speed. We formalize these two metrics

and our problem below.

Metrics. We assume given a distribution p(E) over the

initial IO examples E given by the user; then, the joint distri-

bution over running time ρ and E is p(E, ρ) = p(ρ | E)·p(E).
Definition 2.4 (Expectation and Variability of Running

Time): The expected running time is μ = Ep(E,ρ)[ρ], and the

variability is σ2 = Ep(E,ρ)[(ρ− μ)2].
In other words, expected running time and variability are the

mean and variance of running time ρ, respectively. Then, our

synthesizer is fast if it has low expected running time, and is

reliable if it has low variability. When there is no ambiguity

between the running time ρ and the expected running time μ,

we simply refer to μ as the running time.

Remark 2.5: The expected running time is essentially the

expected pruning power defined in Section II-B, except (i)

it measures the fraction not pruned instead of the fraction

pruned, (ii) it considers the entire search space instead of the

unexplored search space, which is a reasonable approximation

since we only explore a small fraction of the search space
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Fig. 1: Overview of stylized synthesizer with user interaction.

before querying the user, and (iii) it weights partial programs

by their probability according to π. In particular, we show

later that it equals the expected fraction of partial programs

not pruned along a single rollout from π.2

Therefore, our goal is essentially to minimize the (expected)

running time μ.

Problem formulation. Given 1) initial input-output exam-

ples E, 2) candidate inputs E′
in generated by mutations over

ein ∈ Ein, and 3) a stylized synthesizer that is composed by a

search strategy guided by statistical policy π, and a deduction

engine, we want to select e′in ∈ E′
in such that (e′in, e

′
out) min-

imizes the (expected) running time of the stylized synthesizer.

Here, e′out is obtained from the user via interaction.

III. INTERACTIVE SYNTHESIS ALGORITHM

In this section, we describe our interactive synthesis algo-

rithm on top of the stylized synthesizer described in Sec-

tion II-B. First, we briefly explain each of its components.

Then we formally give the estimation of expected running time

of the interactive synthesis algorithm. Based on that, we further

give a detailed discussion of the SELECTQUERY procedure,

which is one of the main contributions of this paper. Since

MUTATE is orthogonal to the main idea of this paper, we defer

its detailed discussion Section IV.

A. Interactive Synthesis Algorithm

Figure 1 shows the overview design of our interactive syn-

thesis algorithm. Given the initial input examples, FAERY first

invokes the MUTATE subroutine to generate candidate input

examples through mutations. Since the initial IO examples

may not be good enough to significantly prune the search

space, FAERY may optionally invokes the SELECTQUERY

subroutine to select an additional input (from the candidate

pool generated by MUTATE) whose corresponding output is

obtained by interacting with the user through the QUERYUSER

procedure. The queried output example together with the cor-

responding input examples will be an additional IO example

that can be utilized to speed up synthesis. To reduce the num-

ber of interactions, SELECTQUERY must choose additional

examples in a way that minimizes the expected running time.

We summarize the interactive algorithm in Algorithm 1.

Formally, the stylized synthesizer samples i.i.d. rollouts ζ until

it samples one such that Pζ |= E. In each iteration (lines 13–

21), it samples a rollout ζ by calling GETROLLOUT (line 13).

2See Theorem 3.5.

Algorithm 1 Interactive Stylized Program Synthesis

Input: Initial IO Examples E, Candidate Input Examples

E′
in

Output: Solution Pζ

1: procedure GETROLLOUT(E)

2: P ← S; ζ ← [P ]
3: while true do
4: r ∼ π(· | P )
5: P ← FILL(P, r)
6: if P 	|= E or P ∈ P return ζ
7: ζ ← ζ ∪ [P ]
8: end while
9: end procedure

10: procedure SYNTHESIZE(E,E′
in)

11: Z ← []
12: while true do
13: ζ ← GETROLLOUT(E)
14: if Pζ is complete and Pζ satisfies E then return

Pζ

15: else Z ← Z ∪ [ζ]
16: end if
17: if |Z| = N then
18: e′in ← SELECTQUERY(E,E′

in, Z)
19: e′out ← QUERYUSER(e′in)
20: E ← E ∪ {(e′in, e′out)}
21: end if
22: end while
23: end procedure

If Pζ is a complete program and satisfies examples E, we

return it as a solution (line 14). Otherwise, the algorithm adds

ζ into Z (line 15). GETROLLOUT procedure initializes P to

be the start symbol (line 2), and then iteratively expands P by

sampling r ∼ π(· | P ) and using it to fill the left-most hole in

P . At each step, it may return if P is infeasible or complete.

Interaction. Note that FAERY will initialize an interaction

as soon as the number of rollouts |Z| reaches some hy-

perparameter N ∈ N (line 17). In practice, we found that

performance is not very sensitive to the number of rollouts

used to compute the optimal query. Instead, how to select e′in
from E′

in is the key challenge to achieving good performance.

We focus on a single interaction since this case has the

highest payoff in terms of improvement in performance for a

fixed amount of user effort; However, if the user is interested in

providing additional IO examples, our algorithm for selecting

queries e′in could simply be applied multiple times.

With interaction, the algorithm calls SELECTQUERY (line

18) to obtain additional input example e′in ∈ E′
in based on

the set of rollouts Z sampled so far and the precomputed set

of candidate input examples E′
in. Then it queries the user by

QUERYUSER (line 19) to obtain corresponding output for a

new IO example (e′in, e
′
out) and add it to the initial examples

(line 20).

Finally, a potential issue is that additional IO examples

might change the set of solutions—i.e., we may have p |= E
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but p 	|= E ∪ {(e′in, e′out)}. For simplicity, we assume that the

user will answer the query (i.e., e′out) that is consistent with

her original intent and the set of solutions does not change.

As we show later in Section V-A, in practice, most of our

tasks are significantly constrained by the initial IO examples

and this assumption holds.

B. Estimation of Expected Running Time

Since the goal of SELECTQUERY subroutine is to pick a

candidate input example that minimizes the expected running

time, here we first show how we estimate it with a single

user interaction. Given a set of initial IO examples E, we

design our synthesis algorithm to minimize the conditional
expected running time μ(E) = Ep(ρ|E)[ρ]. Note that the

expected running time is μ = Ep(E)[μ(E)]; thus, this approach

minimizes μ. As we show in our experiments, it also helps

reduce the variability σ2.

To this end, we show how we make the running time

of the stylized synthesizer tractable to compute. First, we

devise a formula for its running time μ0(E) when there is no

interaction—i.e., N =∞ of line 17 in Algorithm 1. Based on

this formula, we devise a formula for the running time μ(E)
that queries the user on a single additional input example e′in.

Thus, our goal is to compute e′in that minimizes this formula.

Running time with no interactions. Essentially, computing

the running time corresponds to counting how many times line

6 in Algorithm 1 is called. In particular, for a single rollout ζ =
(P1, ..., Pn), this line is executed n times; thus, the running

time of the stylized synthesizer is
∑M

i=1 |ζi|, where M is the

(random) number of rollouts sampled until a solution is found,

and |ζi| is the length of ζi.
Lemma 3.1: For IO examples E, the running time of

the stylized synthesizer with no interactions is μ0(E) =
�(E)/τ∗(E), where �(E) = Ep(ζ|E)[|ζ|] is the expected roll-

out length and τ∗(E) = Pp(ζ|E)[Pζ |= E] is the probability of

a solution. Note that different statistical policies may compute

τ∗(E) differently; in our algorithm we make no assumption

about its specific form.

We give a proof in Appendix A. Note that �(E) depends

on E since a rollout proceeds until Pζ 	|= E (or Pζ ∈ P).

Running time with a single interaction. Next, we consider

the running time of our stylized synthesizer when it issues at

most one single user query. Suppose the initial IO examples

are E, and the synthesizer queries the user to obtain a single

additional IO example (e′in, e
′
out). Then, this case is almost

equivalent to running the synthesizer with no interactions

on IO examples E ∪ {(e′in, e′out)}—i.e., μ(E) = μ0(E ∪
{(e′in, e′out)}). However, there is a chance that the synthesizer

finds a solution before it queries the user; our formula accounts

for this possibility.

Lemma 3.2: Given a set of IO examples E, the running time

of the stylized synthesizer with a single interaction is

μ(E) = α(E) + β(E) · μ0(E ∪ {(e′in, e′out)}),
where e′in = SELECTQUERY(E,E′

in, Z) is the selected query,

e′out = QUERYUSER(e′in) is the user response, and α(E) and

β(E) are positive constants independent of e′in and e′out. We

define α(E) and β(E) along with a proof in Appendix B.

Optimal query. Now, given a set of candidate inputs E′
in,

we can establish a formula characterizing the optimal query

e∗in that most reduces running time. One challenge is handling

the fact that we do not know the corresponding outputs e′out =
QUERYUSER(e′in) for inputs e′in ∈ E′

in. To address this issue,

we assume we know the distribution p(e′out | e′in) over outputs

e′in for the input e′out.
Then, the optimal input example to query that minimizes

the expected running time of the stylized synthesizer is

e∗in = argmin
e′in∈E′

in

Ep(e′out|e′in)[μ(E)]. (1)

We have the following; see Appendix C for a proof:

Theorem 3.3: We have e∗in = argmine′in∈E′
in
J(e′in;E),

where

J(e′in;E) = Ep(e′out|e′in)[�(E ∪ {(e′in, e′out)}].

Thus, we want to choose e′in that minimizes the rollout length

�(E ∪ {(e′in, e′out)} in expectation over p(e′out | e′in). The

key challenge in computing e∗in is that we do not know the

distribution p(e′out | e′in), which is the probability that the

user responds e′out when queried on a given input example

e′in ∈ E′
in. Assuming the user has a target program P ∈ P in

mind, and we know the probability p(P ), we could decompose

this probability as

p(e′out | e′in) ∝
∑
P∈P

(e′out = �P �e′in) · (P |= E) · p(P ),

where is the boolean predicate function3. In other words,

the probability they have in mind P restricted to complete

programs consistent with the initial IO examples E and

programs that evaluate to e′out on input e′in. A natural choice

for p(P ) would be the probability of sampling P using π.

However, since the original synthesis problem was to com-

pute P ∈ P that satisfies E, drawing a single sample P
such that P |= E is computationally infeasible. Instead, our

algorithm uses heuristics to approximately optimize J(e′in;E);
we discuss these heuristics in Section III-C.

Therefore, we reduce the intractable expected running time

to a tractable objective based on expected rollout length. We’ll

then elaborate how SELECTQUERY subroutine computes the

objective and selects an optimal query.

C. SELECTQUERY Subroutine

Algorithm 2 shows the design of the SELECTQUERY sub-

routine, which selects an input example e′in ∈ E′
in that

optimizes J(e′in;E). Its inputs are the initial IO examples E,

a precomputed set of candidate input examples E′
in, and a set

of rollouts Z sampled so far, and it outputs an example e′in ∈
E′

in. The key challenge is that we do not know the distribution

p(e′out | e′in). To address this issue, as shown by Figure 2,

3A boolean predicate function (A) is commonly defined as (A) ={
1 if A
0 if ¬A .
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Algorithm 2 Query Selection

Input: Initial IO Examples E, Candidate Input Examples

E′
in and Rollouts Z

Output: Optimal Query argmine′in∈E′
in
JA

abs(e
′
in)

1: procedure SELECTQUERY(E,E′
in, Z)

2: for e′in ∈ E′
in do

3: Ê′
out ← [�P �#e′in | ζ ∈ Z, P ∈ ζ, P |= E]

4: for ê′out ∈ Ê′
out do

5: �((e′in, ê
′
out))←̃ 1

|Z|
∑

ζ∈Z |T (ζ, (e′in, ê
′
out))|

6: end for
7: JA

abs(e
′
in)← A

{
λê′out.�((e

′
in, ê

′
out)); Ê

′
out

}

8: end for
9: return argmine′in∈E′

in
JA

abs(e
′
in)

10: end procedure

Distribution 	
����
� ����

� � is unknown

Estimated by

Distribution over abstract outputs:  	
 �����
� � ����

� �

Used to

Aggregate and choose queries by  ����
� 
 ����

	 		
 
	���
	 � 

Approximated by

Monte Carlo estimation

Fig. 2: Workflow of SELECTQUERY.

our algorithm considers abstract outputs—i.e., p(ê′out | e′in).
Then, for each candidate input e′in ∈ E′

in, our algorithm

approximates p(e′out | e′in) to be the set Ê′
out of possible

abstract outputs �P �#e′in of sampled partial programs P (line

3). Then, it computes the rollout length �(E ∪ {(e′in, ê′out)})
for each ê′out ∈ Ê′

out using the Monte Carlo estimate below

(line 5). Next, based on this estimate, it evaluates a variant

JA
abs(e

′
in;E, Ê′

out) of the objective J(e′in;E) by aggregating

over ê′out ∈ Ê′
out (line 7). Finally, it selects the query e′in that

minimizes this objective (line 9). We describe these steps in

detail below.

Distribution over abstract outputs. Since we do not know

the output e′out of each candidate input example e′in ∈ E′
in in

advance, as a heuristic, we instead consider abstract outputs

ê′out. We can sample ê′out for e′in by sampling partial programs

P ∈ P consistent with the initial IO examples E, and

evaluating ê′out = �P �#e′in. To sample such a P , we sample a

rollout ζ = (P1, ..., Pn) according to p(ζ | E); by definition,

Pi |= E for all i < n, so each Pi is a valid sample. We

denote the distribution over abstract outputs sampled this way

by p(ê′out | e′in).
Furthermore, we can easily extend deduction to handling

such input-abstract-output (IAO) examples. In particular, we

let P |= ê if �P �#ein � êout—i.e., we assume P can be

pruned unless it is provably consistent with ê. This definition

extends to sets of IAO examples Ê in the obvious way—i.e.,

P 	|= Ê if there exists ê ∈ Ê such that �P �# 	|= ê; it also

works with combinations of IO examples and IAO examples.

Then, we replace the objective J(e′in;E) with the following:

Jabs(e
′
in;E) = Ep(ê′out|e′in)[�(E ∪ {(e′in, ê′out)}],

where in Jabs(e
′
in;E) the expectation is computed over

p(ê′out | e′in).
Aggregating over abstract outputs. A potential shortcom-

ing of Jabs(e
′
in;E) is that because p(ê′out | e′in) is a heuristic, it

might no longer yield good queries. To improve robustness to

this choice, we consider a more general objective that aggre-

gates over possible abstract outputs Ê′
out for each e′in ∈ E′

in

using a given operator A. In particular, given a set Ê′
out

of abstract outputs for each candidate input e′in ∈ E′
in, we

replace Jabs(e
′
in;E) with JA

abs(e
′
in;E, Ê′

out), which is given by:

JA
abs(e

′
in;E, Ê′

out) = A
{
λê′out.�(E ∪ {(e′in, ê′out)}); Ê′

out

}
.

In other words, A is a function that aggregates the loss func-

tion �(E ∪ {(e′in, ê′out)}) over ê′out ∈ Ê′
out. Possible choices

of A include the expectation over the empirical distribution

Uniform(Ê′
out), the best- or worst-case over Ê′

out.

Finally, our algorithm uses the set Ê′
out of abstract outputs

constructed using the partial programs in the sampled rollouts

ζ ∈ Z that are consistent with E in conjunction with the above

procedure (note that all partial programs in ζ will be consistent

except for the last one Pζ).

Monte Carlo estimation. Next, we estimate �(E∪{ê′}) in

JA
abs(e

′
in;E, Ê′

out) using sampling—i.e., given i.i.d. samples

Z = (ζ1, ..., ζk) from p(ζ | E ∪ {ê′}), we use the estimate

�(E ∪ {ê′}) ≈ 1
|Z|

∑
ζ∈Z |ζ|.

However, computing this estimate independently for each e′

is computationally expensive due to the need to sample rollouts

ζ for each candidate input e′in ∈ E′
in and each abstract output

ê′out for e′in. Instead, we show how we can estimate �(E∪{ê′})
based on samples from p(ζ | E).

Definition 3.4 (ê-prefix): Given a set E of IO examples, a

rollout ζ = (P1, ..., Pm) sampled from p(ζ | E), and an IAO

example ê, the ê-prefix of ζ is T (ζ, E, ê) = (P1, ..., Pn) such

that (i) Pi |= E for all i < n, and (ii) either Pζ ∈ P or

Pζ 	|= e.

Note that such an n must exist, since if it is not satisfied for

any n < m, it must hold for n = m—in particular, if P 	|= E,

then by definition we have P 	|= E ∪ {ê}. Then, we have the

following result; see Appendix D for a proof:

Proposition 3.5: Given IO examples E and IAO example ê,

�(E ∪ {ê}) = Ep(ζ|E)[|T (ζ, E, ê)|].

In other words, we can express �(E∪{ê′}) in terms of samples

from p(ζ | E) (instead of p(ζ | E ∪ {ê′})). In particular,

given i.i.d. samples Z = (ζ1, ..., ζk) from p(ζ | E), we can

use �(E ∪ {ê′}) ≈ 1
|Z|

∑
ζ∈Z |T (ζ, E, ê′)|. Thus, rather than

drawing new samples ζ from p(ζ | E ∪ {(e′in, ê′out)}) for

each candidate input e′in ∈ E′
in and each abstract output

ê′out ∈ Ê′
out corresponding to e′in, we can draw them once

and compute T (ζ, E, (e′in, ê
′
out)).

4For simplicity, we here use intersection rather than implication for com-
paring abstract outputs of the example.
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Fig. 3: Estimating the running time of an input e′in by aggregating the losses from all abstract outputs. Left: Algorithmic view

of running time estimation, where a question mark denotes consistency checking result; Right: A concrete example of running

time estimation4.

Example 4: We now show how one estimates the running

time of a given candidate input e′in. Following Example 2

FAERY first computes the abstract values (êin, êout) for the

original example ein : [1, 3, 5, 2, 4] 
→ eout : [5, 4, 3] whose

abstract values are:

êin : 〈5, [1, 5], 1, 4〉 
→ êout : 〈3, [3, 5], 5, 3〉
where every abstract value is composed by four abstract do-
mains: list length, value range (computed by [min(l),max(l)]
given a list l), first value, and last value. Then given the
following candidate partial programs:

P1 : take(reverse(sort(ein)), 3)

P2 : drop(reverse(sort(ein)), 2)

P3 : take(reverse(map(ein,+1)), 3)

where all the programs (written in list manipulation DSL

similar to previous works [6, 16]) are feasible given the

initial example and P1 is the intended solution, FAERY needs

to pick an additional example that has a higher chance of

pruning P2 and P3. Here drop (resp. take) truncates (resp.

preserves) the last (first) n elements of a given list and returns

it, where n denotes the parameter; sort rearranges the list in

an ascending order while reverse flips the list backward.

As shown in Figure 3, for a given candidate input e′in :
[1, 3, 5, 3, 2, 4] and its corresponding abstract value ê′in :
〈6, [1, 5], 1, 4〉, our goal is to estimate the objective value

J(e′in;E) using the sampled partial programs P1, P2 and P3.

For example, abstractly evaluating P2 on e′in (i.e., �P2�
#e′in)

yields its abstract output ê
′(2)
out to be 〈4, [1, 5], 5, [1, 5]〉 — i.e.,

the output list must contain 4 elements with the head elements

being 5 and last element falls into interval [1, 5]. FAERY

evaluates all sampled programs on e′in and fill in the cells

as follows:

• �means that �Pj�
#e′in is guaranteed to be consistent with

ê
′(i)
out—i.e., we have �Pj�

#e′in � ê
′(i)
out

• �means that �Pj�
#e′in may be inconsistent with ê

′(i)
out—

i.e., we have �Pj�
#e′in 	� ê

′(i)
out

According to the Figure 3 (right), P1 and P2 generate different

(and inconsistent) abstract outputs. Then, we compute the

objective value of e′in for each abstract output ê
′(i)
out—i.e.,

�(E ∪ {(e′in, ê
′(i)
out)}), which is the sum of � in the corre-

sponding row. Finally, we obtain the score of e′in by using A
to aggregate this objective value over the abstract outputs of

all sampled programs—e.g., A may take the maximum over

these objective values.

Whereas Algorithm 2 operates over sampled rollouts ζ ∈ Z,

in this example, we operate over the “flattened” Z—i.e., the set

of sampled partial programs PZ = {P | ζ ∈ Z, P ∈ ζ}. These

two approaches are equivalent—Algorithm 2 flattens Z on line

3 to construct the abstract outputs Ê′
out; also, the sum in line 5

equals (up to constants) |{P ∈ PZ | P |= (e′in, ê
′
out)}|, which

is exactly �(E ∪ {(e′in, ê′out)}) in Figure 3. Finally, we count

� instead of � since we are estimating running time instead

of pruning power (see Theorem 2.5).

IV. IMPLEMENTATION

We describe its procedure for generating candidate input

examples, and the available aggregation functions A in FAERY.

Candidate inputs. Our algorithm assumes a given set of

candidate input examples E′
in. FAERY generates E′

in using a

standard mutation procedure. First, for a given kind of input

data structure (e.g., a list, tree, table, etc.), we provide a DSL

that encodes common operations over the data structure. For

instance, for the table transformation domain, our DSL (as

shown in Table III) contains operations such as deleting a
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column, inserting a row, swapping the order of two rows, etc.

Then, given the initial input example e′in, E′
in is obtained by

executing φ(ein) where φ is randomly sampled program from

this DSL.

Aggregation function. Recall that in Algorithm 2, the

SELECTQUERY subroutine relies on a function A to aggre-

gate scores over the possible abstract outputs ê′out for each

e′in ∈ E′
in. We have implemented the following possible A:

• The MAX strategy estimates the pruning power of a candi-

date input by:

A(Ê′
out) = − max

ê′out∈Ê′
out

�(ê′out),

where �(ê′out) = �(E ∪ {(e′in, ê′out)).

Intuitively, this strategy is an optimistic lower bound on

the pruning power of e′in—namely, the largest number of

programs pruned by any possible abstract output.

• The EXPECTED strategy estimates the pruning power of a

candidate input by computing the expected objective value

across different abstract outputs:

A(Ê′
out) = −

∑

ê′out∈Ê′
out

�(ê′out) · (
∑

ζ∈Z |ζ| − �(ê′out))∑
ζ∈Z |ζ|

.

Intuitively, this strategy sums the number of programs

pruned by each abstract output, weighted by the estimated

probability that the queried output is consistent with the

abstract output.

V. EVALUATION

We evaluated FAERY by conducting systematic experiments

that are designed to answer the following research questions:

• Q1. Scalability. How does FAERY perform compared to

state-of-the-art synthesis tools?

• Q2. Reliability. Can FAERY consistently reduce synthesis

time for different initial examples?

• Q3. Effectiveness. How effective are the different aggre-

gation functions described in Section IV?

A. Experimental Setup

For our core experiments, we use FAERY with the MAX

strategy. We instantiate FAERY on two important domains

in data science: (i) data wrangling in R, and (ii) JSON

transformations using the JQ [17] library. To compare FAERY

with existing tools, we adopt the original DSL used in NEO

and MORPHEUS [4, 3] for domain (i), and designed a variant

DSL of JQ for domain (ii). All experiments are conducted on

an Intel Xeon(R) computer with an E5-2640 v3 CPU and 16G

of memory, running the Ubuntu 18.04 with a timeout of 10

minutes.

State-of-the-art tools. In data wrangling domain, we com-

pare to NEO [4], a state-of-the-art synthesis tool that is

designed for this domain. To allow a fair comparison, we

instantiate FAERY with the same DSL and specifications

used by NEO. Furthermore, we use NEO’s bigram model to

prioritize the search. For the JSON transformations domain,

Fig. 4: Comparison between FAERY and: 1) NEO (up) on

data wrangling tasks, and 2) TRINITY (down) on JSON

transformation tasks; x-axis shows the number of benchmarks

solved; y-axis shows the cumulative time taken.

we compare against TRINITY [13]. We also used the same

DSL and abstract semantics for both tools.

Benchmark selection. For data wrangling, we use 15 of the

most difficult benchmarks in prior work [4], where difficulty

is measured in terms of NEO’s synthesis time; we focus on

difficult benchmarks since the goal of FAERY is to improve

performance on benchmarks in the long tail in terms of

scalability.

For JSON transformations, we have collected 15 challeng-

ing JSON transformation tasks from StackOverflow (i.e., a

post with an IO example and a response with the desired

program)—namely, tasks where the solution is a program with

at least (i) 10 AST nodes, (ii) two higher-order components,

and (iii) a mapping or aggregation function.

Number of interactions. We show that both data-wrangling

and JSON transformation domains are highly constrained,

and typically a single example is sufficient to significantly

constrain the search space to just a few (and often a single)

solution; the challenge is finding even a single solution. In

particular, based on a study of the full 50 benchmarks for

the data wrangling domain in NEO, there are 47 (94%)

of them where the user-intended solution can be precisely

quantified by the single user-provided input-output example.

Similarly, for the JSON transformation domain, for 13 out

of 15 (87%) benchmarks, the user-intended solution can be

precisely quantified by the single user-provided input-output

example. The benefit of interaction for these domains is almost

entirely to improve scalability and reliability.

B. Scalability

We design automated evaluation and a user study to measure

the scalability performance of FAERY. In automated evalua-

tion, answers to user queries are directly supplied, while in

the user study the tool waits for a real participant’s response.
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Results. Figure 4 (left) shows results for data wrangling. As

we can see, FAERY significantly outperforms NEO in terms of

both synthesis time and the number of benchmarks solved.

In particular, FAERY solves 14 benchmarks with an average

running time of 174 seconds, whereas NEO solves just 11

benchmarks with an average running time of 211 seconds.

Next, Figure 4 (right) shows results for JSON transforma-

tions. We observe an even greater speed-up in this domain:

FAERY solves all 15 benchmarks with an average running time

of 48 seconds, whereas TRINITY solves 11 benchmarks with

an average running time of 22 seconds. Both results show that

FAERY can dramatically speed up search compared to state-

of-the-art synthesis techniques.

User interaction. We note that it is easy for end users to

label the output examples for our selected input examples. On

average, it took 10 seconds for a user to answer a query (i.e.,

provide the desired output for an input), which is less than

5% of the total synthesis time. See Section F for details of the

user study.

C. Reliability

To evaluate the reliability of FAERY, we create variants

of the existing synthesis tasks and compare the performance

between different tools on these tasks. Specifically, we mutate

synthesis tasks by replacing the initial IO example with each

of the candidate IO examples produced by the MUTATE

subroutine, and ask each tool to solve them. In the data

wrangling (resp., JSON transformation) domain, we compare

the performance of FAERY with NEO (resp., TRINITY); we

also compare to an ablation “FAERY with RANDOM” that

randomly selects a candidate input example to query the user.

Results. We show the performance of different tools on each

benchmark across different initial IO example in Figure 5. The

box captures the quartiles of the distribution in performance

across different IO examples. For both domains, FAERY with

MAX performs reliably on all benchmarks—in particular, its

synthesis time is low in terms of both mean and variance.

The baselines perform well on some benchmarks (sometimes

even slightly better than FAERY with MAX), but have huge

mean and/or variance on others—i.e., in z1, z5-7, and z10-13.

There are a few reasons why FAERY with MAX may perform

slightly worse: a) Mutation strategy: The candidate input

examples produced by our mutation algorithm are equally

effective, which can result in similar end-to-end performance

for any query (e.g., z12 and z13). b) Quality of initial
examples: Having high-quality initial examples reduces the

benefit of interaction, and adding an extra example to the

synthesizer may even introduce more overhead than time saved

by extra pruning, thereby increasing synthesis time (e.g., z4,

z8, z14 and z15). c) Approximations: Our MAX strategy uses

approximations that rely on assumptions about the structure of

the abstract search space, which may not always hold. Other

strategies make different assumptions that perform better in

specific cases—e.g., EXPECTED performs much better than

MAX on z4 and z6 (but worse on the remaining benchmarks).

Strategy
Data

Wrangling
JSON

Transformation

FAERY (MAX) 99s 105s
FAERY (RANDOM) 142s 168s

NEO/TRINITY 170s 174s

TABLE I: Variability∗ of synthesizers.

Benchmark MAX EXPECTED

Data
Wrangling

#solved 14/15 12/15
avg. time 174s 228s

avg. speed-up 2.4× 1.4×
JSON

Transformation

#solved 15/15 11/15
avg. time 48s 36s

avg. speed-up 9.5× 8.2×
TABLE II: Effectiveness of different aggregation functions.

In addition, note that FAERY with RANDOM often out-

performs NEO (e.g., r5 and z12). These results demonstrate

the promise of using user interaction to reduce synthesis

time; by using a more intelligent strategy, FAERY with MAX

further improves performance by a significant margin. Next,

in Table I, we show the variability for each strategy averaged

across benchmarks in a domain (we take the square root so

the units are seconds). As can be seen, FAERY with MAX is

significantly more reliable than the baselines—e.g., 42% better

than NEO on data wrangling and 40% better than TRINITY on

JSON transformations.

Finally, Table II shows the performance of FAERY using

the different aggregation strategies in Section IV—i.e., MAX

and EXPECTED. Both strategies are effective. Specifically,

in both domains, the MAX strategy outperforms EXPECTED

favorably in terms of both running time (9.5× v.s. 8.2× speed-

up in the JSON transformation client; 2.4× v.s. 1.4× in the

data wrangling domain) and the number of benchmarks being

solved (15 v.s. 11 benchmarks in the JSON transformation

domain; 14 v.s. 12 benchmarks in the data wrangling client).

In summary, FAERY achieves high reliability compared to

the baselines with a random or fixed strategies. In particular,

when the initial user-provided examples are ineffective, FAERY

is still efficient by leveraging the pruning power of the

extra examples. While both strategies are effective, the MAX

strategy outperforms EXPECTED favorably in terms of both

running time and the number of benchmarks being solved.

D. Threats to Validity

Validity of user response. Even though additional user

response provides more potentially useful information for

problem solving, a user’s familiarity towards context of the

problem that she’s working on still plays a key role to the

performance of FAERY– i.e., mistakes or inconsistency made

between the user’s inputs could create additional challenges to

the synthesizer. Thus, to mitigate this in the user study, each

participant is asked to complete a tutorial that reinforces them

about the intention and context of the problem. We elaborate

more detail in Section F.

* We report the square root of the average across benchmarks.
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Fig. 5: Box plots measuring reliability on data wrangling benchmarks (top) and JSON transformation benchmarks (bottom).

The boxes capture quartiles (omitting outliers, which are shown separately as points) across different initial IO examples for

each benchmark. The black horizontal line is the mean (lower mean implies better scalability), and the height of the box

captures variability (lower variability implies better reliability).

Quality of mutation. Generation of the additional candidate

inputs is done by MUTATE, which is then used by SELECT-

QUERY for user interaction. Effectiveness of the candidates for

improving the synthesis performance given valid user response

may still drop – that is, the quality of MUTATE is nontrivial to

quantify and optimize. To mitigate this, we increase the size

of the candidate pool generated using MUTATE so as to reduce

the chance of queries that are ineffective or difficult to answer.

VI. RELATED WORK

A. Program Synthesis

There has been significant interest in automatically synthe-

sizing programs from high-level user intent [18, 9, 19, 6, 20,

15, 21, 22]. Techniques geared towards programmers often

utilize complex specifications, such as program sketches [18,

23, 24, 25] or types [19, 26], possibly in conjunction with test

cases [27, 28] or logical specifications [23, 20]. In contrast,

techniques geared towards end-users (i.e., non-experts) rely on

IO examples [9, 21, 5, 29], natural language [30, 31, 32, 33],

or both [34, 35]. While we have focused on IO examples, the

high-level ideas can in principle, be applied to a broad classes

of specifications, as long as some notion of refinement of the

specification is available (analogous to querying additional IO

examples).

B. Deduction-Based Pruning

We build on a line of work using deduction to prune the

search space [19, 3, 4, 13, 2, 15]—e.g., using types and type-

directed reasoning to prune infeasible partial programs [19,

15, 27, 36, 37], or using lightweight program analysis to

do so [2, 3, 4, 13]. Concretely, BLAZE [2] uses abstract

interpretation to build a compact version space representation

capturing the space of all feasible programs; MORPHEUS [3],

NEO [4] and TRINITY [13] use logical specifications of DSL

constructs to derive feasibility conditions that are checked

with an SMT solver; and SCYTHE [5] and VISER [38] use

deductive reasoning to compute approximate results of partial

programs to check feasibility. Our approach queries the user

on the input example that maximizes the pruning power of the

deduction engine. The deduction engine FAERY uses is similar
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to NEO [4]; however, it can in principle be used with other

deductive reasoning techniques.

C. Interactive Synthesis

Existing interactive synthesis systems focus on obtaining

extra examples to disambiguate user intent[12, 11, 39, 40, 10,

41, 42, 43, 44, 45, 46]—e.g., Mayer et al. [12] and Wang et al.

[11] randomly mutate existing inputs until a distinguishing

input is found, and query the user on this example. Laich

et al. [39] generates additional examples to address ambiguity

issues, and Pu et al. [40] develops an approach to select small

and representative subsets of examples. Ji et al. [10] improves

these approaches by selecting the optimal input that minimizes

the number of user queries needed to resolve ambiguity. In

contrast, we are interested in problems where interaction is not

needed to disambiguate, but to speed up synthesis. Importantly,

techniques for tackling the former problem fundamentally

cannot address the latter. In particular, they all rely on being

able to sample multiple correct (concrete) programs. However,

if we can identify even a single correct concrete program,

then we have already solved our problem. In addition, we

provide a theoretical framework to quantify the running time

of deduction-guided synthesis.

VII. CONCLUSION

We have proposed a novel programming-by-example frame-

work that leverages user interaction to improve both scalability

and reliability. While we have focused on leveraging our

theoretical analysis to facilitate user interaction, we believe

our techniques have the potential to help improve our under-

standing the underlying synthesis search space. As we have

demonstrated in our evaluation, the reliability of synthesis

tools remains a key challenge, and our approach serves as

a first step towards to quantifying the performance properties

of synthesizers.
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