
Tree Traversal Synthesis Using 
Domain-Specific Symbolic Compilation

Yanju Chen 1, Junrui Liu 1, Yu Feng 1, Rastislav Bodik 2

1 University of California, Santa Barbara
2 University of Washington



Tree Traversals

2

- Motivations -

Compilers Web Browsers Numerical Computations

Tree traversals are widely used and play important roles.



A Motivating Example
• Synthesizing A Toy Layout Engine

• Two classes, Four Attributes
• Attribute Grammar

3

- Motivations -

class definitions
symbolic 
traversal

example tree

concrete 
traversaldependencies in 𝑛!'s attributes

Attribute Grammar



Existing Approaches & Challenges
• Automata Based: TreeFuser[1] and GRAFTER[2]

• Deterministic Rewrite Rules (Complex to Maintain)

• Synthesis Based: FTL[3]

• Constraints Generated by Domain Experts (Manual and Error-Prone)

• General-Purpose Symbolic Compilation
• Solver-Aided Programming Languages, e.g.,       Rosette[4]

• Path Explosions & Complex Constraint System

4

- Motivations -

[1] TreeFuser: a framework for analyzing and fusing general recursive tree traversals. Laith Sakka, Kirshanthan Sundararajah, Milind Kulkarni. OOPSLA 2017.
[2] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, Milind Kulkarni. PLDI 2019.
[3] Parallel Schedule Synthesis for Attribute Grammars. Leo Meyerovich, Matthew Torok, Eric Atkinson, Rastislav Bodik. PPoPP 2013.
[4] A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. Emina Torlak, Rastislav Bodik. PLDI 2014. 

Interpreter Symbolic Evaluator Solver

Symbolic
Compilation

(e.g., )

Program Symbolic Input

Constraints
Solution



Overview: HECATE
• A CEGIS Framework for Tree Traversal Synthesis

• A Domain-Specific Trace Language
• For Disentangling Complex Dependencies in Trees
• For Generating Easy-to-Solve Constraints for Tree Traversal Synthesis

• A Tool Called HECATE

• For Expressive, Efficient and Flexible Tree Traversal Synthesis

5

traversal (concrete)

trees

grammar

traversal
(symbolic)

Interpreter

Verifier

counterexample tree

solution

Symbolic
Evaluator

Solver

constraints

trace language
domain-specific layer



Attribute Grammar & Traversal Language

6

- Synthesis Using HECATE -

* Please refer to the paper for more details.



General-Purpose Symbolic Compilation
• Constraint System

• Semantic Constraints

• Auxiliary Constraints

7

- Synthesis Using HECATE -

- Every slot should be filled with at most one rule.

- Every rule should be used by only one slot.

"choose one to schedule"
"all dependencies should have been ready"

"target attribute has not been scheduled" Number of timesteps grows as example trees 
become larger, which increases the complexity.

symbolic 
traversal

class definitions

example tree



Domain-Specific Symbolic Compilation
• [Traversal] Given a tree, a traversal defines a total order 

relation ≺ over the set of all locations of the tree.

• [Example] A concrete post-order traversal on the example 
tree yields the following total order of locations:

8

- Synthesis Using HECATE -

We can map a traversal from time domain to relational domain.

Such a traversal can be both concrete or symbolic.

example tree

concrete 
traversalsymbolic 

traversal



Domain-Specific Symbolic Compilation
• A Symbolic Trace Language

• [0-1 Integer Linear Programming] Given coefficients 𝑎, 𝑏 and 𝑐, the 0-1 ILP problem is to 
solve for 𝑥 as follows:

where all entries are integers and in particular 𝑥! ∈ {0,1}.

9

- Synthesis Using HECATE -

symbolic 
traversal

example tree



Domain-Specific Symbolic Compilation

• Constraint System
• Dependency Constraints

• Validity Constraints

10

- Synthesis Using HECATE -

- Every slot should be filled with at most one rule.

- Every rule should be used by only one slot.

"𝒏𝟏.h0 should have been scheduled somewhere 
before the current corresponding location"

Constraints are not talking about 𝒕 anymore, but 
about domain-specific relations now.

symbolic 
traversal

class definitions

example tree



Complexity Analysis

11

- Synthesis Using HECATE -

* Please refer to the paper for more detailed analysis.

start

!!, #!

!!, #"

…

!#, #!

!#, #"

!$, #$

chain

(assume !(Inner. h, *!)
(read ,". -.) (read ,#. -/) (write ,". -))

time

1

2

.

5

6

0

!#, #%7

!#, #&8

!$, #'9

10

….

!$, #(11

…
…

…
…

…
…

general-purpose domain-specific



Evaluation
• Research Questions

• [Performance] What is the performance of synthesized traversals, compared to those 
generated by state-of-the-art traversal synthesizers?

• [Expressiveness] Is HECATE's tree language expressive enough? In particular, can it express 
prevailing tree traversal synthesis problems and solve them?

• [Flexibility] Can HECATE be extended to explore traversals of different design choices?
• [Efficiency] What is the benefit of the domain-specific encoding compared to general-

purpose encoding?

12



Comparison against GRAFTER[1]

• GRAFTER

• Static Dependence Analysis
• Access Automata

• Benchmarks (Adapted from GRAFTER)
• Five Real-World Representative Problem

• Binary Search Tree
• Fast Multipole Method
• Piecewise Functions
• Abstract Syntax Tree
• Layout Rendering Tree

13

- Evaluation -

[1] Sound, Fine-Grained Traversal Fusion for Heterogeneous Trees. Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, Milind Kulkarni. PLDI 2019.



A Case Study: RenderTree
• A Total of Five Rendering Passes

1. Resolving Flexible Widths
2. Resolving Relative Widths
3. Computing Heights
4. Propagating Font Styles
5. Finalizing Element Positions

• Variants of Different Synthesizers
• GRAFTER

• HECATE 𝕃: Sequential, Linked List
• HECATE 𝕍 : Sequential, Vector
• HECATE ℙ : Parallel, Vector

14

- Evaluation -

With minimal efforts, Hecate can effectively explore traversals of different design choices.



Synthesizing Layout Engine in FTL[1]

• FTL
• Specialized for Layout Engine
• Prolog Style Declarative Language for Partial Schedules

• Benchmarks (Adapted from FTL)
• CSS-float
• CSS-margin
• CSS-full

15

- Evaluation -

[1] Parallel Schedule Synthesis for Attribute Grammars. Leo Meyerovich, Matthew Torok, Eric Atkinson, Rastislav Bodik. PPoPP 2013.



Conclusion
• HECATE: A Novel Framework for Tree Traversal Synthesis

• Domain-Specific Symbolic Compilation

• Performance, Expressiveness, Flexibility and Efficiency

16

Thank you!
https://github.com/chyanju/Hecate

https://github.com/chyanju/Hecate

