
Synthesis-Powered Optimization of Smart
Contracts via Data Type Refactoring

Yanju Chen*15, Yuepeng Wang*2, Maruth Goyal3, James Dong4, Yu Feng15, Isil Dillig35

*equal contribution
1. University of California, Santa Barbara 2. Simon Fraser University 3. Stanford University 4. The University of Texas at Austin 5. Veridise Inc.

Gas Optimization of Smart Contracts

Smart Contract

Blockchain

Miners

Miners
Developer

Computation

Developers typically invest significant effort in optimizing their code and making it as gas-efficient as possible.

Gas-Efficient Gas-Burning

2

Related Approaches

• Bytecode Superoptimization
• SYRUP[1], GASOL[2]

• Anti-Pattern Detection
• GASPER[3], GasReducer[4]

[1] Synthesis of Super-Optimized Smart Contracts Using Max-SMT. Elvira Albert, Pablo Gordillo, Albert Rubio, Maria A. Schett. In CAV'20.
[2] GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts. Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, Albert Rubio. In TACAS'20.
[3] Under-optimized smart contracts devour your money. Ting Chen, Xiaoqi Li, Xiapu Luo, Xiaosong Zhang. In SANER'17.
[4] Towards saving money in using smart contracts. Ting Chen, Zihao Li, Hao Zhou, Jiachi Chen, Xiapu Luo, Xiaoqi Li, Xiaosong Zhang. In ICSE-NIER'18.

Reducing gas usage of some contracts requires significant changes
to data layout, which is not addressed by any prior work.

3

Example

Figure. A motivating real-world smart contract that is not gas efficient.

4

Example

Figure. A motivating real-world smart contract that is not gas efficient.

1

2

2

5

Gas Optimization via Type Refactoring

Smart Contract
(Source Code)

Data Type
Refactoring Operations

Smart Contract
(Source Code, Optimized)Functionally Equivalent

Gas-EfficientGas-Burning

6

Example

How about a syntax-based rewriting?

1

2 1

2

1. It's often difficult to determine which of the rewriting strategies would result in equivalent code;
2. It can't ensure gas-optimality of the generated code.

7

Example

Reducing the gas usage requires significant changes to data layouts
and re-implementing significant part of the contract code.

Figure. Differences between the smart contract before (left) and after (right) refactoring for gas optimization (~30% reduction).

8

Overview of SOLIDARE

Type
Declarations

Variable
Declarations

P

Smart Contract

T

Data Type
Transformation

Sketch
Completion

Sketch
Generation

Auto-Tuning

??

Sketch

P'

Refactored
Smart Contract

New Variable
Declarations

New Data Types

Figure. An overview of Solidare.DSL

Optimal Program Synthesis

9

A Running Example

10

Step 1. Type Declarations

Figure. Syntax of the transformation language; see paper for semantics

Owner, Point = Split(Item, 2)

Transformation Program

11

Step 2. Variable Declarations

Owner, Point = Split(Item, 2)

Transformation Program

12

Step 3. Code Generation

Figure. Workflow of the code generation procedure.

13

Step 3a. Sketch Generation (Expr.)

Owner, Point = Split(Item, 2)

Transformation Program ! ⊢ Γ ↪ Γ′

Type Environment Γ

Type Environment Γ′

Γ ⊢ items[i].x ∶ Item.uintX
Γ ⊢ items[i].1 ∶ Item.uintY
Γ ⊢ _x: Item.uintX
Γ ⊢ _y: Item.uintY
...

Γ ⊢ points[i].x ∶ Point.uintX
Γ ⊢ points[i].1 ∶ Point.uintY
Γ ⊢ _x: Point.uintX
Γ ⊢ _y: Point.uintY
...

Each stale expression is replaced with a hole
whose domain includes well-typed expressions.

*Please see the paper for detailed sketch generation rules.

Stale Expressions

14

Step 3a. Sketch Generation (Stmt.)

Owner, Point = Split(Item, 2)

Transformation Program ! ⊢ Γ ↪ Γ′

Replace each statement swith a stale expression with a
conditional statement: if (??{⊤,⊥}) then s' else skip.

*Please see the paper for detailed sketch generation rules.

Unwrap(Point)

Some statements become redundant after
transformation; removing them saves gas.

15

Step 3b. Sketch Completion (Alg. & Enc.)

• Max-SAT Encoding
• Hard Constraints

• Every hole should be instantiated with
exactly one expression in its domain.

• Different occurrences of same source
expression are transformed into the same
target expression.

• Soft Constraints (Proxy Metric of Gas Usage)
• Minimizing blockchain variables
• Minimizing statements

*Please see the paper for detailed encoding and algorithm.

16

Step 3b. Sketch Completion (MFS)

• Minimal Failing Sub-Contract

The key idea is to generalize model ℳ and add a blocking clause that
prevents many incorrect programs at the same time.

Original Contract *

Transformed Contract (Incorrect) Minimal Failing Sub-Contract *∗

1. *∗ only contains a subset of
functions in *

2. *∗ is not equivalent to * with
respect to functions it
implements

3. *∗ is minimal – removing any
functions would make *∗ and *
equivalent with respect to
functions *∗ implemented

*Please see the paper for more details.

17

Evaluation

• SOLIDARE is implemented in a combination of Java and Kotlin, with Sat4J[1] as backend.

• Benchmarks
• Etherscan: 20

• Contains rich data structures, complicated control flows
• Wide coverage: auctions, crowd sourcing, decentralized autonomous organizations (DAOs),

etc.

• GasStation: 10
• Most frequently used smart contracts / gas burners

• Experimental Settings
• Two usage modes: manual + auto-tuner transformations
• Intel® Xeon® E5-2640@2.60GHz CPU, 128GB Physical Memory

• Ubuntu 18.04@Docker
• For more implementation details, please refer to the paper

[1] The sat4j library, release 2.2, system description. Daniel Le Berre, Anne Parrain. In Journal on Satisfiability, Boolean Modeling and Computation 7. 2010

18

Evaluation

RQ1: Is SOLIDARE able to generate equivalent
code for different data layouts?

Table. Statistics about benchmarks and results of running time.

Yes.

Major time cost: sketch completion
(including equivalence checking)

Averaged running time: 21.1s
Medium running time: 0.9s

19

Evaluation

RQ2: Can we reduce the gas usage of real-world smart contracts through data type refactoring?

Figure. Gas reduction in benchmarks.

Yes.

Etherscan Dataset: 18/20 have improvement, avg. gas saving is 16%.

GasStation Dataset: 6/10 have improvement, gas saving is 0.1% ~ 10%.

Most benchmarks in GasStation are digital tokens, which require more complex program logic and less complicated data layout.

20

Evaluation

RQ3: How much manual effort does SOLIDARE save developers?

Figure. Diff size as percentage of the lines of code in original contracts. Max: Statistics of transformation the requires the most changes;
Avg: Averaged diff ratio per benchmark across all transformations.

On average, 25% of the lines of code (~avg. 53 lines) need to be modified.

The largest diff size could be 49% and 40%.

21

Evaluation

RQ4: How does our sketch completion method compare with simpler baselines?

Timeout: 20min

Ablative Variants:

• SOLIDARE

• SOLIDARE-NOMFS

• SOLIDARE-NOSOFT

• SOLIDARE-BASELINE

Figure. Comparing SOLIDARE against baselines. y-axis is on log-scale.

Our MaxSAT-based sketch solver that utilizes minimal failing sub-contracts significantly outperforms other baselines.

solves 100%

solves 22% less

solves 10% less

solves 24% less

22

Evaluation

RQ5: Is SOLIDARE's auto-tuner able to automatically find gas-saving refactorings?

Figure. Comparison of gas reduction between manual refactoring and autotuning.
Yes.

The auto-tuner can automatically reduce gas usage for 17/20 (85%) benchmarks.

For 13/20 (65%), the reduction is >5%. For 9/20 (45%), the reduction is >10%.

For 7/20 (65%), auto-tuner is better than manual refactoring.

23

Evaluation

RQ6: How does SOLIDARE compare with other gas optimization tools?

• SYRUP[1]: Bytecode Superoptimization

Figure. Comparing SOLIDARE and SYRUP.

[1] Synthesis of Super-Optimized Smart Contracts Using Max-SMT. Elvira Albert, Pablo Gordillo, Albert Rubio, Maria A. Schett. In CAV'20.

SYRUP focuses on optimizing arithmetic operations within a basic block, but more significant gas savings require
changing in data layout.

Nonetheless, we believe the types of optimizations performed by SYRUP are complementary SOLIDARE's.

24

Conclusion

Smart Contract
(Source Code)

SOLIDARE
Smart Contract

(Source Code, Optimized)Functionally Equivalent

Gas-EfficientGas-Burning

Fully Automatic & Effective

25

