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Modern web browsers rely on layout engines to convert HTML documents to layout trees that specify color,

size, and position. However, existing layout engines are notoriously di�cult to maintain because of the

complexity of web standards. This is especially true for incremental layout engines, which are designed to

improve performance by updating only the parts of the layout tree that need to be changed.

In this paper, we proposeMedea, a new framework for automatically generating incremental layout engines.

Medea separates the speci�cation of the layout engine from its incremental implementation, and guarantees

correctness through layout engine synthesis. The synthesis is driven by a new iterative algorithm based on

detecting con�icts that prevent optimality of the incremental algorithm.

We evaluated Medea on a fragment of HTML layout that includes challenging features such as margin

collapse, �oating layout, and absolute positioning. Medea successfully synthesized an incremental layout

engine for this fragment. The synthesized layout engine is both correct and e�cient. In particular, we

demonstrated that it avoids real-world bugs that have been reported in the layout engines of Chrome, Firefox,

and Safari. The incremental layout engine synthesized byMedea is up to 1.82× faster than a naive incremental

baseline. We also demonstrated that our con�ict-driven algorithm produces engines that are 2.74× faster than

a baseline without con�ict analysis.
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1 INTRODUCTION

Layout engines compute the visual appearance of web pages. They are at the heart of web browsers
and numerous GUI frameworks ( [Github 2013]). The ubiquity of layout engines makes layout
bugs especially problematic. These bugs can make applications confusing to navigate, or simply
unusable. Unfortunately, layout engines contain a large number of unresolved layout bugs, some of
which have remained open for over �ve years [Brubeck 2014; Keesara 2007].

Those bugs may resist simple �xes due to deep-rooted mismatches between intended semantics
of a layout feature and the engine’s architecture. For example, the bug [stshine 2016] from the
Servo layout engine is caused by incorrect interaction of two features: margin collapse and text
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layout. These features must pass information during layout computation but they are implemented
in Servo as modules that run independently. The unresolved circular dependency is the root cause
of the bug.

Such layout bugs cannot be �xed by permuting a few lines of code, because a correct implemen-
tation must divide the code for margin collapsing and text layout into multiple interleaving steps.
This would alter the existing layout schedule, which is the order in which the visual attributes of a
layout are computed. However, layout schedules are the largest-scale architectural decision in a
browser layout engine: once chosen, the schedule is di�cult to change without a complete rewrite.
For the aforementioned bug, changing the layout schedule would distribute the margin collapsing
code across multiple phases, a�ecting a large number of �les and data structures. A Servo developer
remarked [stshine 2016] that “it took three weeks even before I realize[d] the actual complexity of
the problem.” In the end, the Servo developers decided to delay �xing this bug until a complete
rewrite of the layout engine is done.

Besides the di�culty of changing the layout schedule, designing a correct layout schedule from
the ground up is also di�cult. The semantics of web layout contain complex dependencies and
interacting features, precluding a manual analysis. Thus, even if the layout schedule could be
changed to resolve a speci�c bug, there is little guarantee that the change would not inadvertently
introduce new bugs.

Beyond correctness, ensuring the performance of layout engines is equally important. Speci�cally,
incrementality is crucial to the performance of real-world layout engines: once the attributes on
a layout tree have been computed, small changes should not trigger a full re-layout; instead, an
incremental layout engine should, ideally, only recompute the attributes that are transitively a�ected
by said changes. Engineering correct, e�cient incremental traversals are especially challenging
because developers need to reason about intricate conditions under which recomputation of certain
elements can be safely skipped, while navigating the large space of valid incremental schedules to
�nd an “optimal” one.

We propose to replace this painstaking development process withMedea, a tool for synthesizing
layout engines with correctness guarantees while achieving high-performance via incrementality.
While existing tools likeHecate [Chen et al. 2022] can technically synthesize correct layout engines
by reducing the synthesis problem to satis�ability queries [Torlak and Bodik 2014], they can not
deal with optimization queries required for synthesizing complex, incremental layout engines with
competitive performance.
To use Medea, the developer speci�es the layout semantics using an attribute grammar, and

provides a sketch of the layout schedule containing holes yet to be �lled with attribute computation
rules drawn from the grammar. Both the attribute grammar and the layout schedule are highly
customizable.Medea then proposes incremental layout schedules that are correct (i.e., they respect
all attribute dependencies) and e�cient (i.e., they reduce unnecessary recomputation in re-layouts)
through its optimal synthesis algorithm. To reduce the synthesis time, Medea proposes a novel
algorithm inspired by the successful con�ict-driven learning approach [Feng et al. 2018; Silva and
Sakallah 1997] used by automated theorem provers. Speci�cally, our algorithm analyzes con�icts
that explain the ine�ciency in a schedule and learns useful lemmas to prevent the synthesizer to
repeat the same mistake.
We evaluate Medea on layout speci�cations derived from the Cassius [Panchekha and Tor-

lak 2016] formalization of web layout.Medea successfully synthesizes layout schedules for this
speci�cation, and the resulting layout engines are free from dozens of real-world bugs collected
from the layout engines of Chrome, Firefox, and Safari. Medea is also expressive in that it can
handle complex layout features such as margin collapse, �oating layout, and absolute position. The
incremental layout engine synthesized by Medea achieves up to 1.82× speed-up compared to a
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naive incremental baseline. Finally, we also demonstrate the e�ectiveness of our con�ict-driven
algorithm in that it leads to 2.74× faster schedules compared to a baseline without con�ict analysis.
To summarize, we make the following contributions:

• We show how incremental layout algorithms can be expressed as sketches for non-trivial CSS
features, i.e., how a space of incremental algorithms can be de�ned syntactically.
• We propose an e�cient synthesis algorithm based on con�ict-driven learning.
• We implement a tool called Medea that can synthesize modern layout engines free from dozens
of real-world bugs collected from Chrome, Firefox, and Safari.

2 OVERVIEW

parse HTML to obtain DOM tree construct flow tree

lay out flow treerender flow tree

Fig. 1. Basic workflow of a layout engine

In this section, we illustrate howMedea works
using a running example, adapted from a real-
world layout bug [Walton 2014]. Before doing
so, we �rst give a brief background on browser
layout engines.

Background on browser layout engines. A
browser layout engine transforms a web page
from source code to pixels through successive tree transformations, as illustrated in Figure. 1. First,
the engine transforms a HTML web page into a document object model (DOM) tree that encodes
the structure of the objects contained in the web page. Then, the DOM tree is compiled into a �ow
tree, which abstracts and organizes HTML objects using the box model [W3C 2007]. Afterwards,
styles are applied to the �ow tree to determine, e.g., geometric attributes such as the dimension,
location, and color of each node. Finally, the layout engine renders the page into pixels.
Our motivating example models render trees, which contains nodes with visual elements and

computed structural and styling attributes. A node on a render tree may lay out itself and its children
in various ways, e.g., vertically or horizontally. In this example, we consider a simpli�ed version
of the HTML block-level elements, which are stacked vertically (Figure. 2). When constructing the
render tree, a layout engine computes various visual attributes of each node, such as the width,
height, G- and ~- coordinates, which may have dependencies among themselves and with other
attributes. For example, the layout engine may compute those attributes as follows1:

• The width of a node is the width of the parent minus the node’s left and right margins.
• The height of the parent is the accumulated height of its children.
• The G-coordinate of a node is the G-coordinate of its parent o�set by the node’s left margin.
• The ~-coordinate of a node is the ~-coordinate of its parent o�set by the accumulated height
of its preceding siblings and the node’s top margin. However, real-world layout speci�cation2

introduces the following twist: if the node is the �rst among its siblings , then in some cases its
top margin collapses into its parent’s top margin. This CSS feature is known as margin collapsing,
which is where the aforementioned layout implementation [Walton 2014] gets wrong3.

Note that the above computation rules impose constraints on the order in which the attributes
are computed. For example, the parent’s width must be computed before the computation of each of
the child’s width, while the height of the parent depends on the accumulated height of the children.

1Those computation rules are standardized by the W3C CSS speci�cation [W3C 2007]. Our motivating example slightly

di�er from the standards to simplify the presentation.
2https://www.w3.org/TR/CSS/
3The layout engine is required to determine whether the current node is a block-formatting context. The root cause of the

incorrect implementation is failing to link the overflow: scroll CSS feature with the block-formatting context, thus

resulting in the violation of the speci�cation.
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Fig. 2. A block element lays out its children vertically (le�). Each element contains margins that separate it

from the other elements. However, a feature called margin collapse allows the margins of two elements to

overlap. On the right, the top margin of the parent overlaps with the top margin of its first child.

The layout engine must schedule the attribute computation in a way that respects such constraints.
A correct schedule, e.g., can �rst perform a pre-order traversal over the render tree starting from
the top level block to compute the width, followed by a post-order phase to compute the height.
A layout engine that violates any of those constraints will attempt to read from attributes whose
values are not yet computed. In a realistic render tree, however, manually searching for correct
traversals is challenging, as each tree node may contain hundreds of attributes with intricate
dependencies between them.

Besides correctness, modern layout engines achieve good performance using incremental layout.
The idea of incremental layout is that, although the initial layout needs to compute every attribute,
when a subset of the attributes are modi�ed (due to, for example, external events such as mouse
clicks), a rerun of the traversal only needs to recompute those attributes that transitively depend on
the modi�ed subset. Layout engines commonly implement this idea by introducing an additional set
of attributes, called dirty bits, to keep track of which attributes hold values that might be di�erent
from the previous run. The code for an incremental traversal can be thought of as decorating the
non-incremental traversal with conditionals, which are toggled on or o� based on whether certain
attributes have been marked dirty.
However, “incrementalizing” a layout engine requires careful thought, as they may introduce

both correctness issues and performance overhead. For example, a naive incremental layout engine
can associate every attribute with a unique dirty bit, and guard every attribute computation with
the necessary dirty bits. This kind of incremental traversal achieves optimality in the sense that no
redundant re-computation will be performed. However, it also comes with a prohibitive cost of
maintaining a large number of dirty bits, as the number of attributes on each tree node can be on
the order of hundreds or thousands.

Fortunately, many attributes are semantically related, allowing us to map multiple attributes to
the same dirty bit, and to compute or skip groups of related attributes during an incremental layout.
A smart design of both mappings from dirty bits to attributes and grouping of attribute computation
as conditional blocks can o�er substantial speedup over a “naive” incremental traversal, and is what
makes incremental traversals e�cient in practice. Nevertheless, achieving the best combination
by manually exploring di�erent schedules, while ensuring their correctness at the same time, is
impractical and error-prone.

Layout engine synthesis with Medea. We have developedMedea, a tool that can automatically
synthesize correct and e�cient incremental layout engines. With Medea, the user encodes the
layout semantics declaratively, in the form of attribute grammar [Knuth 1968], together with a
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1 interface Viewport {

2 input w, h : Pixels;

3 output total.h: Pixels;

4 }

5

6 class CViewport : Viewport {

7 children { r : LayoutBox; }

8 rules {

9 r.p.{x, y, w, h} = {0.0, 0.0, w, 0.0};

10 total.h := r.total.h;

11 }

12 }

13

14 interface LayoutBox {

15 input is_first: Bool;

16 input is_bfc: Bool;

17 input margin.{left, right, top, bottom} : Pixels;

18 output uncollapsed_top : Pixels;

19 output should_collapse: Bool;

20 output p.{x, y, w, h, top, is_bfc} : Pixels;

21 output box.{x, y, w} : Pixels;

22 output total.h: Pixels;

23 output h_acc : Pixels;

24 }

25 class Block : LayoutBox {

26 children { cs : [LayoutBox]; }

27 rules {

28 box.x := p.x + margin.left;

29 should_collapse := is_first && !p.is_bfc;

30 uncollapsed_top :=

31 if should_collapse then max(p.top, margin.top) - p.top

32 else 0;

33 box.y := p.y + p.h + uncollapsed_top + p.top;

34 box.w := p.w - (margin.left + margin.right);

35 total.h := h_acc + uncollapsed_top + margin.bottom;

36 cs.p.is_bfc := is_bfc;

37 cs.p.x := box.x;

38 cs.p.y := box.y;

39 cs.p.w := box.w;

40 cs.p.h := @{h_acc};

41 cs.p.top := collapsed_top;

42 h_acc := fold 0 .. @{h_acc} + cs.total.h;

43 }

44 }

45

46

47

48

Fig. 4. The a�ribute grammar that encodes the layout semantics of block elements. An a�ribute grammar

consists of a sequence of interface declarations, which enumerate the available a�ributes, and class

instantiations, which specify the rules for computing the a�ributes. Note that the computation rules are

declarative, i.e., the user does not need to come up with an order the respects all dependencies.

sketch that speci�es the high-level structure of the traversal. Here, a sketch contains holes that will
be �lled with computation rules. The goal of Medea is to �ll in the holes to obtain layout engines
that are both correct and e�cient. Medea’s traversal language allows the user to specify both
the high-level structure of the traversal (e.g., pre-order, post-order, or hybrid) and the low-level
scheduling of individual attribute computations if desired. Notably, Medea also provides traversal
constructs for incrementality via when blocks. A when block encloses the computation of one of
more attributes with a conditional guard, such that the enclosed attributes will only be evaluated if
the guarding expression evaluates to true.

• CSS Specification

• Example HTML
• Traversal

(Symbolic)

Input

Solver
Constraints

Verifier

Analyzer

Conflicts of

Sub-Optimality

Output

Layout

Engine

Counterexample HTML

Fig. 3. Architecture of Medea.

Consider our running example, the render trees for
block elements. To use Medea, the user provides:

• The attribute grammar speci�cation of the layout se-
mantics, shown in Figure. 4. Note that the attribute
grammar does not specify the order in which the at-
tributes should be computed, nor how to “incremental-
ize” the computation.
• A traversal sketch (Figure. 5 (a)) that suggests the high-
level structure of the traversal. In this case, the traversal
�rst performs a case split based on the current node type (i.e., CViewport or Block). Each case
is composed of several components: (a) ], which denotes a hole that can be scheduled with
computation rules from the attribute grammar; (b) when blocks, which denote the conditional
evaluation of groups of attributes; iterate blocks, which iterate over a list of children and enable
accesses to their attributes; (d) recur statements, which recursively performs the overall traversal
on the speci�ed child node.

Given the attribute grammar and the sketch,Medea searches for concrete, incremental layout
engines that are derived from the sketch (e.g., Figure. 5 (b)-(c)), together with a mapping from
dirty bits to attributes (e.g., Figure. 14). To ensure the proposed layout engines are both correct and
e�cient, Medea employs an architecture outlined in Figure. 3:
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Fig. 5. The user of Medea provides a sketch as shown on (a). The sketch contains evaluation holes (i.e. ]) that

can be filled with any number of a�ribute computation rules or dirty bits.Medea searches for concrete layout

engines (e.g., the two candidates in (b) and (c)) that instantiate the sketch. Note that the second candidate

may induce more spurious updates (i.e., it may recompute more a�ributes) than the first candidate, due to a

less e�icient scheduling of when blocks.

(1) From the speci�cation of layout semantics as attribute grammar rules, a traversal sketch, and
an initial HTML tree as an example, Medea symbolically evaluates the sketch into constraints
to be solved by an o�-the-shelf SMT solver [De Moura and Bjørner 2008].

(2) Next,Medea’s veri�er checks solutions for correctness over all possible HTML trees up to some
depth in a standard counter-example-guided inductive synthesis (CEGIS) fashion [Solar-Lezama
et al. 2006]: if the concrete layout engine is incorrect, the counterexample returned by the
veri�er is considered by the symbolic compilation procedure in the subsequent iterations. Note
that the CEGIS loop ensures that the synthesized layout engine is correct not only on the initial
HTML tree but all HTML trees up to some depth.

(3) To �nd a candidate that achieves better incremental performance, the veri�ed layout engine is
sent toMedea’s con�ict analyzer, which statically analyzes the traversal for potential sources
of ine�ciency. Inspired by con�ict-driven SAT solvers [Silva and Sakallah 1997], the analyzer
explains the root cause of ine�ciency using con�ict clauses that prevent the synthesizer from
returning similar ine�cient solutions in future iterations. The optimal synthesis loop (with
respect to our static cost model) eventually returns an e�cient layout engine.
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grammar ::= ( interface | class )∗

interface ::= interface G { ( mode G : . )∗ }

mode ::= input | output

class ::= class . : / { children rules }

children ::= children { ( G : C )∗ }

t ::=

| /

| [ / ]

rules ::= rules { ( 0 := 4 ; )∗ }

4 ::=

| 5 (−→08 )

| 2

| foldl 41 .. 42
0 ::= G | G . G

G,., /, 5 ∈ identi�ers

prog ::= traversal {
−−−−−−−−−−−→
case G8 { BB8 } }

BB ::= n | (B ; BB )

B ::=

| when: 3 { 4B }

| recur G

| iterate G { BB }

3 ::= false | G ∨ 3

4B ::= n | (4 ; 4B )

4 ::=

skip

| eval 0

| ]

0 ::= G | G . G

G ∈ identi�ers

Fig. 6. Syntax for the a�ribute grammar L0 and the traversal language LC . Derived constructs

are colored in gray.

3 PROBLEM FORMULATION

In this section, we formally introduce the problem of incremental traversal synthesis. We �rst de�ne
the attribute grammar language by which the user can specify tree structures and computation
rules (Section. 3.1). We then describe thine language for tree traversals (Section. 3.2) and de�ne
its semantics (Section. 3.3), which solvers can use to derive correct incremental traversals from
sketches.

3.1 A�ribute Grammar
1 interface LayoutBox {

2 input margin.left : Pixels;

3 output p.x : Pixels;

4 output box.x : Pixels;

5 ...

6 }

7 class Block : LayoutBox {

8 children { cs : [LayoutBox]; }

9 rules {

10 box.x := p.x + margin.left;

11 ...

12 }

13 }

Fig. 7. Excerpt of the render tree

a�ribute grammar from Figure. 4.

The attribute grammar language allows the user to specify
permissible tree structures and computation rules in an object-
oriented style. The language is extended from Hecate [Chen
et al. 2022]. Its syntax is shown in Figure. 6.

The tree structure is speci�ed using a combination of inter-
face and class. An interface enumerates the primitive �elds,
called attributes, that are shared by all classes instantiating
said interface. An attribute can be either an input attribute,
whose value is provided by the user and hence do not depend
on any other attribute, or an output attribute, for which a
computation rule must be provided. If an attribute is output,
then it must be computed once and only once during the traversal.
A class speci�es its children and the type of each children in the children section, as well as

rules for computing the interface attributes in the rules section. The rules section consists of
statements that specify how to compute the left-hand side (LHS) attribute using the expression
on the right-hand side (RHS). The only essential aspect of a computation rule is the dependency
between the LHS and the RHS attributes.

Example 3.1. Figure. 7 shows a fragment of the attribute grammar for the render tree example. It
de�nes the LayoutBox interface, instantiated by Block class. Each node of class Block contains
an array of LayoutBox children, and has the box.x attribute which is computed by summing the
output attribute p.x with the input attribute margin.left.
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3.2 Language for Incremental Tree Traversals

The syntax of the tree traversal language LC is de�ned in Figure. 6. At the top level, a tree
traversal program is a case split on the class of the current node. Each case consists of statements s
which can be either a when-block when or a recursive traversal recur into a child of the current
node, or iterating over an array of children. A when-block when contains a sequence of evaluation
e, guarded by a dirty-bit condition expression d, which is a disjunction of boolean-valued dirty
bits. An evaluation can be concrete and computes at most one attribute, or it can be a hole ] that
represent a non-deterministic choice.

De�nition 3.2. We say a traversal program P is symbolic (or, % is a sketch) if it contains at least
one hole, and concrete otherwise. Furthermore, a concrete traversal % is a completion of the symbolic
traversal %∗, if % can be obtained from %∗ by �lling every hole with skip or eval (0) for some 0.

3.3 Semantics for Symbolic Traversal Programs

In this section, we de�ne the semantics for evaluating symbolic traversal programs written in LC

in terms of the SMT constraints that each program construct generates (Figure. 8).

3.3.1 Domains and Functions. The following domains and functions are required to de�ne the
evaluation relations.

• The set A contains the regular attributes, and the set D contains special attributes that serve as
the dirty bits.
• A traversal operates over a set of trees, each containing a set N of nodes and a distinguished
node called the root node. The partial function GetChild identi�es the child node of a given node
by name, if it exists.
• A node = has a class 2 and a set of locations L that hold the runtime values of attributes of said
node. The dereference operator * : A × N ↩→ L returns the location associated with a valid
attribute-node pair. Since each (output) attribute has exactly one computation rule for every node
class, the function U returns the unique computation rule for computing each location. Moreover,
the function IsInput determines whether a location is an input.
• Each traversal contains a sequence I of holes to be �lled with computation rules, and and a
sequence K of guard expression holes, one for every when-block.
• The time domain C ∈ T of non-negative integers is used to enforce the ordering of attribute
computation.
• The function X : A→ D is induced by the dirty bit mapping, which determines the dirty bit that
should be set to true if an attribute is modi�ed.

3.3.2 Predicates. Evaluating a symbolic traversal generates constraints over the following predicate
unknowns, whose solutions correspond to completion of the symbolic traversal.

• f : I × A determines whether attribute 0 ∈ A should be scheduled in slot ] ∈ I.
• W : D × K determines whether dirty bit 1 ∈ D should appear positively in the disjunctive guard
expression for when-block : .
• d : L × T determines if location ; is ready (i.e., was written to) before or at time C ∈ T.

3.3.3 Evaluation Relations. As shown in Figure. 8, there are three di�erent evaluation relations:

• Program evaluation relation: We use judgment of the form ⟨CA ; %⟩ ⇓% � to evaluate traversal %
on tree CA , yielding constraint � .
• Statement evaluation relation: The notation ⟨=, C ; B⟩ ⇓( ⟨�, C

′⟩ means that evaluating statement B
on node = at time C yields constraint � and advances the clock to C ′.
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⟨root(CA ), 0; % ⟩ ⇓( ⟨�, C ⟩ �0 =

∧

; ∈L,;=*(0,=)

(d (;, 0) ⇐⇒ IsInput(0) = true) ∧ d (;, C )

�1 =

∧

0∈A

IsInput(0) = false =⇒

(

∨

]∈I

f (0, ] ) ∧
∧

]∈I

∧

]≠]′∈I

¬
(

f (0, ] ) ∧ f (0, ]′ )
)

)

⟨CA ; % ⟩ ⇓% � ∧�0 ∧�1

E-Prog

ClassOf (=) = G8
⟨=, C ; BB8 ⟩ ⇓( ⟨�, C

′ ⟩

⟨=, C ;
−−−−−−−−−−−→
case G8 { BB8 }⟩ ⇓( ⟨�, C

′ ⟩
E-Case

⟨=, C0; B ⟩ ⇓( ⟨�1, C1 ⟩

⟨=, C1; BB ⟩ ⇓( ⟨�2, C2 ⟩

⟨=, C0; (B ; BB ) ⟩ ⇓( ⟨�1 ∧�2, C2 ⟩
E-SSeq

(=, G ) ∈ dom(GetChild) GetChild(=, G ) = =′

⟨=′, C ; % ⟩ ⇓( ⟨�, C
′ ⟩

⟨=, C ; recur G ⟩ ⇓( ⟨�, C
′ ⟩

E-Recur
⟨=, C, :, C ; 4B ⟩ ⇓ � < = length(4B )

⟨=, C ; when: 2 {4B }⟩ ⇓( ⟨�, C +<⟩
E-When

⟨=, C0, :, CF ; 4 ⟩ ⇓ �1

⟨=, C1, :, CF ; 4B ⟩ ⇓ �2

⟨=, C0, :, CF ; (4 ; 4B ) ⟩ ⇓ �1 ∧�2

E-ESeq
⟨=, C, :, CF ; skip⟩ ⇓ true

E-Skip

; = *(0,=) U (; ) = f (−→08 )

−→
;8 =
−−−−−→
*(08 , =) �1 =

(

∧

8

d (;8 , C )

)

∧ ¬ d (;, C ) ∧ d (;, C + 1) �2 =

∧

8

d (;8 , CF ) =⇒ W (:, X (08 ) )

�3 =

∧

; ′∈L

; ′ ≠ ; ∧ ¬ d (; ′, C ) =⇒ ¬ d (; ′, C + 1) �4 =

∧

; ′∈L

d (; ′, C ) =⇒ d (; ′, C + 1)

⟨=, C, :, CF ; eval 0⟩ ⇓ �1 ∧�2 ∧�3 ∧�4

E-Eval

−−−−−−−−−−−−−−−−−−−→
⟨=, C, :, CF ; eval 08 ⟩ ⇓ �8 for all 08 ∈ A ⟨=, C, :, CF ; skip⟩ ⇓ �B

�8 = f (], 08 ) =⇒ �8 �B = ¬
∧

8

f (], 08 ) =⇒ �B � =

∧

0∈A

∧

0≠0′∈A

¬
(

f (0, ] ) ∧ f (0′, ] )
)

⟨=, C, :, CF ; ]⟩ ⇓
∧

8

�8 ∧�B ∧�
E-Hole

Fig. 8. Semantics for evaluating symbolic traversals in LC .

• Attribute evaluation relation: Finally, ⟨=, C, :, CF ; 4⟩ ⇓ � generates constraint � by evaluating
attribute evaluation expression 4 on node = at time C . In addition, the state tuple encodes the fact
that the expression is placed inside the when-block : �rst entered at time CF .

We assume that traversal program % and tree CA are implicit in the statement and the attribute
evaluation relations.

3.3.4 Program Evaluation. The program evaluation rule (E-Prog) interprets a traversal program %

on tree CA , by passing the arguments to the statement evaluation relation and setting the time to 0.
It also imposes additional constraints on d and f . Speci�cally, it uses �0 to assert that a location is
ready at time 0 if and only if the location is an input, and that all locations must be ready by the
time the traversal is complete. Moreover, it imposes restriction on the meaning of the assignment
operator f , by requiring that every output attribute be scheduled into exactly one hole ] (via �1).

Example 3.3. Consider interpreting the traversal sketch for the render tree example using the
concrete tree shown in Figure. 9. Note that vp.w is an input location, since Viewport.w is declared
as input in the grammar, and r.box.x is an output, as LayoutBox.box.x is declared as an output.
Thus, �0 of rule E-Prog implies that d (vp.w, 0) = true whereas d (r.box.x, 0) = false.

3.3.5 Statement Evaluation. The statement evaluation rules are straightforward:
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:	CViewport
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h

w

Fig. 9. An example render

tree.

1 traversal {

2 case CViewport {

3 when .. {

4 // candidate rules:

5 // r.p.w := w (ok)

6 // total.h := r.total.h (bad)

7 ]0
8 }

9 ...

10 recur r

11 ...

12 }

13 case Block { ... }

14

Fig. 10. Excerpt of the traver-

sal sketch.

1 traversal {

2 case CViewport { ... }

3 case Block {

4 when b0 || b1 {

5 // box.x := p.x + margin.left;

6 eval box.x;

7 // should_collapse := is_first && !p.is_bfc;

8 eval box.should_collapse;

9 }

10 ...

Fig. 11. Excerpt of candidate 2 from Fig-

ure. 5 showing a spurious dependency.

• E-Case performs a case analysis on the class of the current node =, and descends into the correct
branch for its class.
• E-Recur tests if the current node = has a child named G , and if so, recursively performs the
traversal on the child node.
• E-When interprets the attribute evaluation expressions enclosed in its body while recording the
identi�er of the current block : and the entry time CF in the state. When the evaluation �nishes,
the time is updated with the number of attributes evaluated.

3.3.6 A�ribute Evaluation. Besides sequencing, an attribute evaluation expression can be skip,
eval 0 for some attribute 0, or a hole ]. The rule E-Skip returns the trivial constraint. The rule E-Eval
is more involved. On a high-level, this rule is responsible for making sure the read-write dependen-
cies between di�erent attributes are respected. Speci�cally, the following steps are performed to
evaluate an attribute 0:

• Dereference. We �rst dereference 0 on the current node = to obtain a runtime location ; . The rule

for computing ; is retrieved to be f (−→08 ), where each 08 is dereferenced to location ;8 relative to
the current node.
• Read-write dependency. The computation of ; induces read-write dependencies between itself and
each ;8 . To ful�ll them, �1 requires that each ;8 must have, and ; must have not, been computed
before or at time C . Then, ; becomes available at time C + 1.
• Incremental dependency. The ;8 ’s also imply that their dirty bits must appear in the disjunctive
guard expression of the current when-block : . Suppose during an incremental traversal, some ;8
have been modi�ed and its dirty bit X (08 ) marked dirty, which means that we must recompute ; .
If the dirty bit do no appear positively in the guard expression, then current when-block will
be skipped, violating the read-write dependencies between ;8 and ; . Constraint �2 prevents this
from happening by requiring X (08 ) to appear in guard : . It also employs a small optimization
that avoids assigning the dirty bit if ;8 was computed in the same block.
• Invariance. The two lemmas �3 and �4 say that the availability of every location remains the
same at time C + 1, except possibly for ; .

Finally, the rule E-Hole non-deterministically expands an evaluation hole ] into a skip or an eval 08
for every attribute 08 . The result of evaluating each 08 is guarded by the pre-condition f (], 08 ) which
schedules 08 into ] (via �8 ). It also guards the result of evaluating skip with the pre-condition that
no attribute is scheduled into ] (via �B ). Lastly, � asserts that each ] can accommodate at most one
attribute.
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Example 3.4. We �rst illustrate the E-Eval rule using the fragment of traversal sketch shown
in Figure. 10. The �rst hole is denoted by ]0, and can be scheduled with the computation of the
following candidate attributes, among others:

• r.p.w := w, which computes attribute p.w on child r using the input attribute w of the current
node;
• total.h := r.total.h, which computes attribute total.h on the current node using attribute
total.h on child r.

The �rst candidate is valid. The E-Eval rule, if interpreted on node vp shown in Figure. 9, produces
�1 = d (vp.w, 0)∧¬ d (r.p.w, 0)∧d (r.p.w, 1), which is satis�able. The E-Eval additionally produces
�2 = d (vp.w, 0) =⇒ W (F0, X vp.h), i.e., if vp.w was not ready upon entering the when block, then
its dirty bit X vp.h must appear in the guard expression of the current blockF0.
In contrast, the second candidate is invalid: the E-Eval rule produces �′1 = d (r.box.h, 0) ∧

¬ d (vp.h, 0) ∧ d (vp.h, 1), but because r.box.h cannot be determined until it has been recursively
traversed, �1 will be unsatis�able.

Because there are more candidates for ]0 than the two candidates shown above, the E-Hole rule
expands ]0 into the non-deterministic evaluation of at most one of the candidate attributes de�ned
in the CViewport class.

We now state the problem of incremental traversal synthesis.

De�nition 3.5 (Incremental tree traversal synthesis). Given an L0 attribute grammar ! and an
LC traversal sketch %∗, let TR be the set of all trees induced by !. The incremental tree traversal
synthesis problem is to �nd a completion % of %∗ such that for every CA ∈ TR, if ⟨CA ; %⟩ ⇓% � , then
� is satis�ed.

3.4 Spurious Dependencies

De�nition 3.5 ensures that synthesized incremental traversals are correct. However, due to the
presence of dirty bits andwhen-blocks, some traversals will perform less unnecessary recomputation
during an incremental rerun. Concretely, given a tree CA , an attribute grammar induces a dependency
graph over all locations of CA . If we randomly pick a location ; and modify its value, then any
location that transitively depends on ; needs to be recomputed. However, evaluating a traversal on
CA may end up recomputing more locations than necessary, since attributes inside a when-block
are updated in an all-or-none fashion.

De�nition 3.6 (Spurious dependency). If location ; ′ does not depend on ; , but a modi�cation of ;
causes recomputing ; ′, then we say there is a spurious dependency from ; to ; ′.

Example 3.7. Figure. 11 highlights a fragment of candidate B in Figure. 5 that contains spurious
dependencies. Suppose in the dirty bit mapping, all box.x’s RHS attributes are mapped to b0, and
all box.uncollapsed_top’s RHS attributes are mapped to b1. Imagine p.x is modi�ed on node A ,
and b0 marked true. The when-block will be executed since b0 appears in the disjunction. In this
case, box.y is unnecessarily recomputed, since box.y does not depend on p.x (or any attributes
mapped to b0), as per the dependencies induced by the attribute grammar. Hence, we say there is a
spurious dependency from p.x to box.y on node =.

We re�ne the goal of incremental synthesis to be �nding traversals that also minimize the number
of spurious dependencies. However, spurious dependency is a runtime notion: it depends on both
the concrete tree being traversed, and the initial location modi�ed. In the next section, we will
develop a static approximation of spurious dependencies, and an algorithm to search for e�cient
traversals in terms of a static cost model.
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4 CONFLICT-DRIVEN TREE TRAVERSAL SYNTHESIS

In this section, we introduce our con�ict-driven algorithm for incremental tree traversal synthesis.
In what follows, we �rst give a high-level overview of the algorithm, after which we expand on
each major component of the algorithm in turn.

4.1 Overview

Algorithm 1 Con�ict-Driven Layout Engine
Synthesis

Input: Attribute grammar !, sketch %∗,
and example tree CA
Returns: A concrete traversal % , or ⊥

1: procedure Synthesize(!, %∗, CA )
2: Ω ← ∅

3: % ⋄ ← ⊥

4: while true do
5: � ← ⟨CA ; %∗⟩ ⇓% �

6: % ← Solve(SymCompile(�)∧Ω)

7: if % = UNSAT then return ⊥

8: else if timeout then return % ⋄

9: else if Cost(%) < Cost(% ⋄)

then % ⋄ ← %

10: end if

11: Ω ← Ω∪AnalyzeConflicts(%)

12: end while

13: end procedure

Given De�nition 3.5, a naive solution is to encode
the whole synthesis problem as a single SMT for-
mula and send it to an o�-the-shelf solver. However,
it is di�cult to come up with an objective function
that precisely captures dynamic spurious dependen-
cies that lead to e�ciently solvable constraints. To
address this challenge, we design a con�ict-driven
synthesis algorithm that iteratively searches for
better candidates guided by a static cost model. Sec-
tion. 4 shows the high-level structure of the syn-
thesis algorithm. Given an attribute grammar !, a
traversal sketch %∗, and an example tree CA , it at-
tempts to �nd a correct completion % of sketch %∗

that minimizes spurious dependencies.
The core of the algorithm is a con�ict-driven

loop. Internally, the algorithm maintains a knowl-
edge base Ω with con�ict clauses (line 2) learned
from past iterations of the synthesis loop. Intu-
itively, con�ict clauses prevent the solver from re-
visiting a large space of sub-optimal candidate tra-
versals. Initially, Medea leverages the operational
semantics in Section. 3 (line 5) to compile the traversal sketch into SMT constraints. It invokes the
SymCompile procedure (Section. 4.2) to make the constraints e�ciently solved by an o�-the-shelf
solver (line 6). If the constraints can be solved into a concrete traversal % , the algorithm updates
the current candidate % ⋄ with one that has a lower cost (line 9). Afterwards, the algorithm calls the
AnalyzeConflicts routine (line 11) to examine the candidate for potential sources of ine�ciency
due to spurious dependencies. The con�ict analysis (Section. 4.4) provides the knowledge base Ω
with a set of con�icts clauses that explain the cause of ine�ciency and can be used to block a large
space of candidate traversals that are sub-optimal due to similar reasons [Feng et al. 2018]. Once
timed out, the algorithm returns the traversal encountered so far that has the lowest cost.

4.2 Domain-Specific Symbolic Compilation

The SymCompile procedure leverages domain-speci�c symbolic compilation [Chen et al. 2022] to
obtain constraints that are more e�ciently solvable. Recall (Section. 3.3.2) that the constraint set �
generated by the evaluation relation ⇓ % contains three predicates: f (assigning attributes to holes),
W (assigning dirty bits to guard expressions), and d (modeling whether a location has been written
to at each time step). Essentially, SymCompile transforms � into an equivalent �′ that no longer
contains the d predicate. The key insight is that d (;, C), which indicates whether location ; = =.0

for some node = and attribute 0, corresponds to whether there exist a hole ] and time C0 ≤ C such
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Fig. 12. The exxample render tree from Figure. 9.

1 traversal {

2 case Viewport { ... }

3 case Block {

4 when .. { ]0; }

5 when .. { ]1; }

6 iterate cs { ... }

7 when .. { ]2; }

8 }

Fig. 13. An excerpt of the traversal sketch for the

motivating example.

that f (], 0) holds. This allows SymCompile to replace constraints involving d (;, C) with ones that
involve f (], 0)4.

Example 4.1. We illustrate the SymCompile procedure using the traversal sketch shown in
Figure. 13. Suppose we are currently on node r (shown in Figure. 12) at time step C , and are examining
the ]2 hole in the Block case. Assume E-Hole has chosen to expand this hole into eval total.h,
which requires uncollapsed_top to have been computed. Then, one of the constraints we will
obtain is� = f (]2, total.h) =⇒ d (r.uncollapsed_top, C), i.e., if total.h is assigned to ]2, then
the value of its dependency r.uncollapsed_top should be ready at time C . Note, however, that
r.uncollapsed_top can only be ready if it has been written to, i.e., if eval uncollapsed_top was
assigned to a previous hole. Thus, SymCompile transforms � into an equivalent constraint that no
longer mentions d :

�′ ≡ f (]2, total.h) =⇒ (f (]0, uncollapsed_top) ∨ f (]1, uncollapsed_top)) .

4.3 Static Spurious Dependencies and Cost Model

Section 3 introduces spurious dependencies to quantify how much unnecessary recomputation
will be performed by an incremental schedule. In practice, a spurious dependency depends on not
only a concrete tree, but also an initial set of modi�ed locations. Therefore, directly optimizing
over the precise spurious dependency is computationally prohibitive. Thus, in what follows, we
leverage an static approximation, called static spurious dependencies, which emerge from the attribute
dependency graphs.

De�nition 4.2. An attribute dependency graph � = (+ , �) is a graph where

• the vertex set + = A ∪ D includes the attributes and the dirty bits, and
• the edge set � = �2 ∪ �3 contains data- (�3 ) and control-dependent (�2 ) edges among attributes
and dirty bits. There is a data-dependency edge (G,~) if (a) there exists an rule in which G appears
in the RHS expression, and~ is the LHS, or (b) G is the dirty bit for~. There is a control-dependency
edge if there is a when-block in which G appears in the guard expression, and ~ appears as a LHS
in the body.

We use the notation �3 to refer to � with edge set restricted to �3 , and �2 with edge set restricted
to �2 .

De�nition 4.3. Given �2 and �3 , the static spurious dependency graph � ′ is computed as � ′ =

�2 \�3 |D∪AF
. That is,� ′ is obtained by �rst taking graph di�erence between the transitive closure

of �2 with the transitive closure of �3 , and then restricting the vertex set to D ∪ AF , where D is
the set of dirty bits, and AF is the set of attributes that are written to in a when-block.

4In practice, the constraints produced by SymCompile can be encoded as integer linear programming (ILP) constraints to

further improve the solving speed. Here, we stick to the boolean constraint form to simplify the presentation.
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Fig. 14. Illustration of the static cost model and conflict analysis based on the a�ribute dependency graphs.

Example 4.4. The graphs �3 ,�2 in Figure. 14 constitutes the attribute dependency graph, con-
structed from the attribute grammar (a), the dirty bit map (b), and the traversal (c). The data-�ow
dependency graph �3 represents true dependencies: black edges indicate dependencies induced by
the attribute grammar, and blue edges indicate dependencies induced by the dirty bit mapping. The
control-�ow dependency graph�2 introduces potentially spurious dependencies. In this example,
it is obtained by connecting b0 and b1 to each attribute that is being written to in the block. Then,
we obtain static spurious dependency� ′ using the restricted di�erence of the transitive closures of
the two graphs.

De�nition 4.5. A cost model Cost(%) is a function that maps % to its corresponding static cost by
summing up the number of static spurious dependencies of all blocks in % . Thus, the cost of % is
the cardinality of edge set of the static spurious dependency graph � ′ = (+ ′, �′):

Cost(%) = |�′ |

Example 4.6. The when-block shown in Figure. 14 (a) incurs a static cost of 2, since there is a
static spurious dependency from b1 to box.x, and another from b0 to should_collapse.

4.4 Conflict-Driven Clause Learning

Once Medea synthesizes a concrete schedule % , one naive way for getting another schedule % ′

with better performance is to block the current model % , and keep invoking the solver until we get
a better version. With static spurious dependencies and cost model, we can now blame certain bad
scheduling decisions made by the solver. Importantly, the synthesizer can e�ectively avoid a class
of similar scheduling decisions that would otherwise contribute to the same kind of static spurious
dependency by using con�ict clauses (added to the knowledge base) to explain the root cause of
the static spurious dependencies.

To explain the root cause of a static spurious dependency, recall that a static spurious dependency
from dirty bit 1 to attribute 0 arises, if 0 is not reachable from 1 in the dirty-bit-attribute dependency
graph �2 in Figure. 14. However, as 1 is synthesized due to the presence of some source attribute B ,
we know the when-block must also compute some attribute 0′ that depends on B and shares no
common dependencies with 0. If we can schedule attribute 0 into a di�erent block from any such
0′, the static spurious dependent edges may be eliminated. Therefore, the root cause of the static
spurious dependency is the co-existence of both 0 and 0′ in the current when-block. Figure. 14
shows the core idea of AnalyzeConflicts(%) procedure.

Let �′ denote the edge set for the spurious dependency graph. Let (3, 0) ∈ �′ be a spurious static
dependency edge from dirty bit 3 to attribute 0. For every written attribute 0′ that shares the same
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when-block with 0, and has a data dependency with dirty bit 3 according, Medea introduces a
con�ict clause that schedules the computation of 0 into a di�erent block from 0′. Concretely, if IF
is the set of available slots in the current when block, then the constraint

∨

]∈IF

f (], 0′) =⇒ ¬
∨

]∈IF

f (], 0)

asserts that 0 should not be scheduled inside the current when-block if 0′ is present.

Example 4.7. In the con�ict analysis of Figure. 14, consider the static spurious dependency from
b1 to box.x, which can be explained by the co-existence of box.x and should_collapse in the
same when-block. Assuming that the current when-block has slots ]0 and ]1, then the con�ict is
encoded as the following constraint:

f (]0, should_collapse) ∨ f (]1, should_collapse) =⇒ ¬(f (]0, box.x) ∨ f (]1, box.x)) .

5 IMPLEMENTATION

This section discusses the design and implementation details of Medea.
Traversal sketch generation. When the user provides the symbolic traversal, it might di�cult to
know beforehand the most e�cient arrangement of when-blocks. To address this, Medea lets the
user provide a meta sketch that �xes the high-level structure of the traversal without specifying
concrete placement of incremental constructs, as well as a granularity parameter, that controls
the maximum number of when-blocks that can be used in each visitor. The syntax of the meta
sketch is the traversal language (Figure. 6) augmented with meta slots, written as □, that can be
expanded into any number of symbolic when-blocks. From the meta sketch,Medea uses autotuning
to explore all symbolic traversals satisfying the granularity parameter, , and returns a concrete
traversal with the lowest cost.
Integration with browser engines. To measure the end-to-end e�ectiveness of Medea, we
integratedMedea with the Robinson browser engine [Brubeck 2021], a proof of concept prototype
written by core members from the Mozilla layout engine team. We implemented a syntax-guided
code generator that translates the traversal in our tree language into the layout traversal in
Robinson written in Rust.
Subtree skipping.Medea’s synthesized traversals avoid unnecessary recomputation of individual
attributes. Another aspect of incremental layout is subtree skipping: if an incremental change does
not a�ect any attribute in an entire subtree, then an incremental traversal does not need to visit
the subtree. Although Medea’s core traversal language does not include subtree skipping, an
attribute-skipping traversal can be easily adapted into a subtree-skipping traversal during the code
generation phase. Speci�cally, we assume that the browser maintains a damage bit for each node
=, which indicates whether node = bears the initial incremental change, or = is an ancestor of
such a node. We then syntactically guard every recur to children such that the recursive traversal
happens if the child’s damage bit is true or any of the child’s inherited attributes is dirty.

6 EVALUATION

In this section, we describe the results for the experimental evaluation, which is designed to answer
the following key research questions:

• RQ1: Can Medea synthesize fast incremental traversals, and do so e�ciently?
• RQ2:What is the impact of Medea’s con�ict analysis procedure? In particular, how does it a�ect
synthesis e�ciency as well as the performance of synthesized traversals?
• RQ3: IsMedea’s tree language expressive? In particular, can it express important CSS constructs
as attribute grammar and synthesize correct traversals that bypass layout bugs from real-world
layout engines?
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• RQ4: Can one rapidly adapt Medea according to changes in the speci�cation?

6.1 Performance of Synthesized Traversals

In this section, we compare the performance of the incremental traversals synthesized byMedea

against various non-incremental and incremental baselines.

Benchmarks. Due to the lack of standardized benchmarks for evaluating incremental performance,
we run candidate traversals on randomly constructed DOM trees that resemble realistic workload
faced by real-world layout engines. Consistent with common HTML documents, each DOM tree
contains between 200 and 4000 nodes, averaging 1000 nodes per tree.

Experiment set-up. We supply Medea with an attribute grammar that incorporates fundamental
CSS layout constructs using the block layout (see Section. 6.3 for a description of features encoded
in our attribute grammar). We use the code generator of Medea to plug the synthesized traversals
into the Robinson web layout engine [Brubeck 2021]. Synthesis as well experiments are performed
on a MacBook Pro with Intel Core i5 CPU and 16GB of RAM.
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Fig. 15. Average re-layout time for three traversals:

Hecate,Hecate-Inc, andMedea due to an incremental

change to viewport dimensions or style of the root

node.

Variants. We compare the following variants
of incremental traversal in our experiment:

• Hecate is a traversal synthesized by [Chen
et al. 2022] using our attribute grammar.
However, Hecate cannot synthesize incre-
mental traversals, so Hecate always visits
every node and recomputes every attribute.
• Hecate-Inc is a naive incremental traversal
mechanically derived from Hecate: it adds
one dirty bit per attribute and guards every at-
tribute computation rule with a precise dirty
bit condition. As a result, this variant theo-
retically minimizes the number of spurious
updates.
• Medea is the incremental traversal synthe-
sized by our tool using a 60-minute timeout.

In the experiments, we �rst useHecate to perform the initial layout. Then we simulate two kinds
of incremental changes that potentially a�ect all nodes in a layout tree: 1) resizing the browser
viewport to random dimensions, and 2) randomly modifying an CSS attribute of the root element.
Finally, we run each of the three variants to perform a re-layout and measure the running time,
averaged over 1000 trials.

Figure. 15 compares the average re-layout time of each variant. In particular,Medea is 1.24× faster
thanHecate, and 1.64× fasterHecate-Inc for incremental viewport resizing. For incremental style
modi�cation, Medea is 1.22× faster than Hecate, and 1.82× faster than Hecate-Inc. Observe that
the naive strategy of turning non-incremental traversals to incremental traversals (i.e.,Hecate-Inc)
has worse performance than its non-incremental version due to the overhead of (1) maintaining
the large number of dirty bits, and (2) branch misprediction penalty resulting from the excessive
number of conditional statements.

Result for RQ1: Medea synthesizes incremental traversals that are 1.64–1.82× faster than a
naive incremental traversal, and 1.22–1.24× faster than a non-incremental traversal.
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6.2 Impact of Conflict Analysis

In this section, we study the impact of Medea’s con�ict analysis procedure. We compareMedea

againstMedea-NoCon�ict replacesMedea’s AnalyzeConflicts procedure with one that simply
blocks all candidate traversals encountered so far, using the boolean negation of previously seen
models. Essentially,Medea-NoCon�ict performs an enumerative search over valid traversals, and
returns the lowest-cost traversal upon timeout.
In Figure. 16, we show the static cost (described in Section 4.1) of the candidate traversals

proposed by Medea and Medea-NoCon�ict within a 25-minute time period. Because Medea

learns con�ict clauses that prevent future candidates from having the same source of ine�ciency,
overall it is able to propose increasingly lower-cost traversals as time evolves. In contrast, the
candidates proposedMedea-NoCon�ict remain costly as it does not learn from past mistakes. On
average,Medea identi�ed 33 con�icts per iteration.
To compare the end-to-end performance of the best traversals synthesized by Medea and

Medea-NoCon�ict, we run each tool using a 60-minute timeout and use the lowest-cost traversal
found by each tool. We then perform a random incremental change to a randomly chosen node
for each HTML benchmark page, and measure the re-layout time using the incremental traversal
synthesized by each tool compared to a non-incremental baseline. Figure. 17 shows the relative
speedup of each tool. With subtree skipping disabled,Medea achieves a 1.22× speedup over the non-
incremental baseline, compared to a 10% slowdown fromMedea-NoCon�ict. With subtree skip-
ping enabled, the performance gap increases, whereMedea is 2.74× faster thanMedea-NoCon�ict.

Result for RQ2: Medea’s con�ict analysis learns from past mistakes, which leads to e�cient
layout engines compared to a naive synthesis approach. Medea synthesizes incremental
traversals that are 2.74× faster than traversals synthesized without con�ict analysis.

6.3 Correctness in Bypassing Real-World Layout Bugs

In addition to obtain high-performance layout engines through incrementality, we also need to
ensure that the generated layout engines are correct. To evaluate whether the layout engine
synthesized byMedea can bypass real-world bugs, we consolidate a list of 31 layout engine bugs
from mainstreaming browsers, namely, Firefox, Chrome, and Safari. 5 Each benchmark in our data
set needs to satisfy two requirements: 1) the CSS rules that are relevant to the bug are expressible
in our attribute grammar, and 2) the original bug contains at least one test case.

5We use Firefox, Chrome, and Safari to represent their corresponding layout engines, namely, Servo, Chromium, and Webkit.
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CSS 2.0 CSS 2.1 CSS 2.2

Speci�cation (LOC) 384 439 (Δ = 59) 433 (Δ = 68)

Implementation (LOC) 1398 1413 (Δ = 112) 1436 (Δ = 136)

Fig. 18. Three versions of our CSS semantics, di�ering in their margin collapsing implementation (as specified

in CSS 2.0, 2.1, and 2.2 [Bos 2016; Bos et al. 2011, 1998]). The table gives line of code and changes from the

previous version.

Summary of results. The layout engine synthesized by Medea is able to generate the correct
layouts for all benchmarks except for one (10151). The cause of that benchmark is due to an
unstandardized feature in margin collapse and browsers interpret it di�erently [Mozilla 2019].
Details of the results are provided in the Appendix.

Result for RQ3: The language of Medea can express complex CSS semantics, andMedea

can synthesize a layout engine that is able to bypass many real-world layout bugs.

6.4 Adaptability to Specification Changes

Browser layout engines are in constant �ux, adapting to changes in the speci�cation and imple-
menting newly standardized features. For example, in 2017, the tracking website CanIUse.com
lists 10 features newly implemented in Firefox and 11 in Chrome [caniuse 2019], ranging from
display: flow-root to Grid Layout Level 1. Medea assists browser developers with adapting
their browsers to changing requirements: by synthesizing a correct and e�cient layout engine
from a high-level speci�cation, developers usingMedea avoid splitting their attention between
correctness and performance.
Consider the di�erences in margin collapsing behavior between CSS versions 2.0, 2.1, and 2.2

(draft) [Bos 2016; Bos et al. 2011, 1998]. Between version 2.0 and 2.1, for example, elements with zero
height and clearance stopped collapsing with their parent’s bottom margin; between 2.1 and 2.2,
elements with non-zero minimum height but automatically computed height stopped collapsing
with their parent’s bottommargin, but only if the minimum height isn’t binding. Browser developers
must adapt to these changes in speci�cation by modifying their layout engines, adding additional
state and modifying the sequence of layout passes. Furthermore, due to the complex dependencies
between di�erent features (margin collapsing, for example, a�ects height computation), changes to
one feature could require global changes to the structure of the full layout engine. Bugs in existing
layout engines are often left un�xed due to the di�culty of executing the global changes required
to implement �xes [Eklund 2019].

As a case study of adapting browsers to changing speci�cations, we implemented three versions of
our margin-collapsing speci�cation, corresponding to the CSS 2.0, 2.1, and 2.2 semantics. The three
speci�cations were similar, di�ering in only a few lines of code, and layout engines corresponding
to each could be synthesized quickly (see Figure. 18). Despite the similarity of the speci�cation, the
actual implementation code di�ered more dramatically, with many more lines of code changed.

Result for RQ4: Medea readily adapts to changes in speci�cation across CSS 2.0, 2.1, and 2.2.

6.5 Discussion

Coverage of CSS/HTML rules. Although Medea only supports a fragment of CSS/HTML, it
covers all tricky features from the Cassius framework [Panchekha and Torlak 2016], including
absolute position, margin collapses, and �oating layout. Extending Medea to fully support all CSS
is technically feasible but requires a signi�cant amount of engineering e�ort, which is orthogonal
to the core research idea of this project.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 132. Publication date: June 2023.



Conflict-Driven Synthesis for Layout Engines 132:19

Web pages selection. Although we have implemented several challenging CSS features such as
margin collapses and �oating layout, there are other features (e.g., grid, �ex, etc.) and javascript
code that are common in real world web pages whose features are not fully ported byMedea. Thus,
we created random web pages that only use the subset that is currently supported. We believe
supporting most of the common CSS is possible with additional engineering e�ort.

Scalability of page loading time. As we mentioned earlier, a layout engine is only synthesized
for once and is used by all pages. Therefore, the page load time generally scales linearly with the
number of attributes in the underlying attribute grammar. However, with good subtree skipping
(which depends on the traversals having few spurious computations), layout time is orders of
magnitude faster than executing Javascript. Thus, even after adding more attributes to support a
wider subset of CSS, the page load time should not increase signi�cantly.

7 RELATED WORK

General tree traversal synthesis. Medea builds on Hecate [Chen et al. 2022], which performs au-
tomated tree traversal synthesis using domain-speci�c symbolic compilation. By reducing synthesis
problems to constraint solving, Hecate optimizes upon the �nal constraint system to improve
scalability. As Hecate can also be used for synthesis of layout engine,Medea o�ers more �exibility
on incrementality of the synthesized traversal besides correctness.Medea can considerably explores
more optimized solutions with better performance.
Grafter [Sakka et al. 2019] is another synthesizer for general tree traversals. UnlikeMedea,

Grafter is based on static analysis: it generates automata that capture the dependencies induced
from traversal statements, and uses a deterministic algorithm to rewrite and fuse traversals into
more compact ones. While Grafter is fast, extending it to new speci�cations may require extra
expert knowledge to devise new tree fusion theories. Neither Hecate nor Grafter supports
incrementality, and has no notion of optimality for their synthesized traversals.

Browser layout engines. There is a series of works that express and synthesize layouts using
constraint-based systems [Badros et al. 1999; Borning et al. 1997; Hashimoto and Myers 1992;
Sutherland 1964; van Wyk 1982; Zanden and Myers 1991], represent structured graphics using
domain-speci�c languages [Wilkinson 2005], and manipulate SVG [Chugh et al. 2016]. Among them,
Medea adopts the layout semantics from Cassius [Panchekha and Torlak 2016], which together
with VizAssert [Panchekha et al. 2018] extends a subset of layout formalization with �nitization
reductions to support more CSS standards. Meanwhile, the Cornipickle project [Hallé et al. 2015]
represents visual properties using �rst-order modal logic, which was adapted by VizAssert.

There is a rich class of tools for detecting and repairing layout issues [Bigham 2014; Mahajan et al.
2018a, 2017, 2018b; Walsh et al. 2017, 2015]. In particular, an important subclass of those tools aims
to detect inconsistent rendering results between di�erent browsers [Choudhary et al. 2012; Mesbah
and Prasad 2011; Roy Choudhary et al. 2010]. While those tools are designed for web developers
(whereas Medea targets browser developers), their number hints at the challenges of layout bugs
and performance faced by practitioners and at the importance of the problemsMedea addresses.
In fact, practitioners commonly test their web pages against speci�c instances of browsers and
operating systems by loading pages in virtual machine instances [Browserling 2018; Browsershots
2018; Browserstack 2018]. In contrast, Medea aims to synthesize optimal layout engines with
incrementality support in addition to correctness, thus reduces the frequency of manual testing.

Constraint solving. Constraint solving based on Satis�ability Modulo Theories [Nelson and Oppen
1980] has become a powerful tool for symbolic reasoning as practical, high-performance solvers
have become available [Barrett et al. 2011; De Moura and Bjørner 2008; Gurobi Optimization 2019].
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Solver-based veri�cation and synthesis tools have been extensively studies by the programming
languages community [Leino 2010; Schkufza et al. 2013; Solar-Lezama 2008]. Traditional SMT-
based tools use a custom constraint solver or manually translate problems into constraints for
a speci�c existing solver. Solver-aided domain-speci�c languages [Torlak and Bodik 2013; Uhler
and Dave 2014] instead automatically generate solver constraints based on symbolic compilation.
For example, the Rosette framework [Torlak and Bodik 2014] uses Racket’s meta-programming
features to provide a high-level interface to several solvers. Medea is built on top of Rosette, but
leverages Hecate’s domain-speci�c compilation strategy to generate e�cient constraints that lead
to signi�cant improvement in solving time.

Attribute grammar. Many attribute grammar formalism [Knuth 1968] assume dynamic scheduling,
in contrast to the fully static scheduling presented inMedea. Unlike exiting work [Chen et al. 2022;
Meyerovich et al. 2013] that leverages attribute grammars to model simple attribute rules, Medea

signi�cantly extends prior traversal languages by supporting complex features in browser layout
engines such as margin collapse, �oating layout, absolute positioning, and incrementality.

8 CONCLUSION

We proposeMedea, a synthesis-powered framework for building layout engines with correctness
guarantee while supporting incrementality, which is a crucial yet error-prone module that enables
good performance in modern layout engines. We demonstrate Medea on a fragment of HTML
layout covering sophisticated features like margin collapse, �oating layout, and absolute positioning.
Medea successfully synthesizes a layout engine for this fragment. The incremental layout engine
synthesized byMedea achieves up to 1.82× speed-up compared to a naive incremental baseline.
We also demonstrate the e�ectiveness of our con�ict-driven algorithm in that it leads to 2.74×

faster schedules compared to a baseline without con�ict analysis.
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