Automated Detection of Under-Constrained
Circuits in Zero-Knowledge Proofs

Shankara Pailoor*'8, Yanju Chen*?8, Franklyn Wang?’, Clara Rodriguez*, Jacob
Van Geffen®8, Jason Morton®, Michael Chu’, Brian Gu’, Yu Feng??, Isil Dillig'®

UCSB Y TEXAS

The Uni

T HARVARD &ummsmm UNIVERSITY of

125 UNIVERSITY e COMP UFEENSED: WASHINGTON

ZKonduit ~ qerldlse

0xPARC

* Equal Contribution
1. The University of Texas at Austin; 2. University of California, Santa Barbara; 3. Harvard University;
4. Complutense University of Madrid; 5. University of Washington; 6. ZKonduit; 7. OXPARC; 8. Veridise.

Zero-Knowledge Proofs

A zero-knowledge proof system allows
users to prove statements while using but
not revealing some secret information.

How do you show your friend that you
have knowledge of where Wally is, ga
without giving away his location?

Y

I 1=
L

)

SN .
N i"@ :
| RN AR
I N 3 4 \
-

W AR 2 ¢
wh ry]
O Bl X

5 3 " /»?‘ ™
A %i :.' L A
A8 '

Kericise. u

https://www.circularise.com/blogs/zero-knowledge-proofs-explained-in-3-examples

Real-World Zero-Knowledge Proofs

Privacy in Public Blockchains
° oi e

. i R N

| (“eéidise. n

ZK Circuit Workflow

==>circom / P
HaToZ T

Witness
Generator

/'

Polynomial Field

Equations

Source Code: Witness Generation and Constraints

Witness generation and constraints

should (generally) be equivalent!

Prover f

Verifierf

What is equivalence?

Program: P Set of Constraints: C
Input: x Inputs: x, y
Output: y Output: true or false

For every x and y, P(x) = y if and only if C(x, y) is true.

Every input-output of P

Every (x, y) which satisfies C

must be an input-output pair of P

must satisfy C

- -
e o

-~

ﬁ/How can this be violated?

Equivalence Violations

Iwo Requirements:

(1) Every input-output pair of P satisfies C
(2) For any x and y which satisfy C, P(x) = y

Over-Constrained Bugs

’—____—-~~
- -~y

- ~

-
' d

N
’
/7 Under-Constrained Bugs >
/

Exists x and y where P(x) =y
but C(x,y) is false.

oy

Exists x and y where C(x, y) is true
but P(x) # y.

Most ZK languages (e.g., Circom, Halo2) add

field equations as assertions to circuit!

§~ -

ey

Focus of this talk!

Keridise ﬂ

Why do we care?

— ={ ZK Circuit Workflow |======== == 1

Witness
Generator
P

|

|

|

|

==>circom Prover l
/ / I
\ I
|

|

|

|

Under-constrained bugs: Verifier
can accept bad inputs/outputs.

HaToZ Cc / Verifiers

Polynomial Field
Equations

Tornado Cash
Oct 12,2019 - 3minread - @ Listen

Tornado.cash got hacked. By us. |

BigMod incorrectly omits range checks on the remainder #10 Could be used to
xu3kev merged 1 commit into @xPARC:master from ecnerwala:rangecheckmod ((J on Apr 26 draln a” tOkenS

Disclosure of recent vulnerabilities

We have recently patched two severe bugs in Aztec 2.0. The first was found by an Aztec DOU ble Spend
engineer and the second by community members.

1. Lack of range constraints for the tree_index variable

Simple Example: Under-Constrained Bug

ez

template Num2Bits(n) { Constraints forn = 3
input in;
output out[n]; (- ;
lcl = 0; Input in out, is under-
e2 = 1; output outy, outq, out, constrained
for (i=0; i<n-1; i++) {
out[i] <-- (in >> i) & 1; outy - (outy —1) =0
out[i] * (out[i] - 1) === 0; : N =
lcl += out[i] * e2; outy - (out; — 1) _0
} e2 = e2 + e2; RN | outo + 2-out; =in
lel === in: constraints
} Attacker can pass in any value for out;

Source: https://qithub.com/iden3/circomlib/blob/master/circuits/bitify.circom %ridise n

https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom

Strategies: SMT v.s. Static Analysis

Under-constrained property can Apply pre-defined rules to quickly
be expressed as SMT query. detect if a circuit is properly constrained.

4

3Y1,Y2- Ply1/YI APy [y A Yy # V>

<
e

input x
output y Since y is linear in x and z,
7 =3x + 4 we immediately infer it is

y=2z+2x not under-constrained.

A

SAT means the circuit is Otherwise, we say y is

under-constrained. properly constrained, or
unique.

N
]/ False positives; one-time deal

Keridise n

N
K Too slow; can't scale!

QED?4: An Overview

-| Interactiveloop === mmm e e m = == - ~

—

Shared . .
mKnoﬁfdge Static Analysis

T/ Combine the strengths of static analysis and SMT!

Polynomial Fields
Equations

Static analysis and SMT phases interact in a loop.

Partial results from one phase can be useful for another.

QED?: An Interactive Loop

Set of signals
known unique

Update the set of

signals proven unique

All outputs are

K « K'U{q) unique: /

Polynomial Fields v SMT |:
%
. >\ g > \/ O:C k0 {q}
Equations C—» Uniqueness C Semantic :
Constraint Kl Reasoning >x g € 0, Underconstrained(q)
Ly Propagator Engine

Static Analysis .
1 There’s output signal proven

v New set of signals under-constrained: x
J OCK proven unique

All output signals are proven

unique at this round

No new signal is added; fixed
point reached; terminate

T/ Knowledge from both phases are shared.

Multiple turns scale reasoning up.
%ridise.

Example: Solving Num2Bits

We show how QED? detects the under-constrained
bugs in Num2Bits, and construct a counter-example

as attack vector.

template Num2Bits(n) ({
input in;
output out[n];

unique: #i<set:>.

refined known-set: #<set: 0 4>

refined unknown-set: #i<set: 1 2 3>
propagation (linear lemma): none.
propagation (binaryOl lemma): none.
propagation (basis2 lemma): #<set: 1 2> added.
propagation (aboz lemma): none.
propagation (aboz lemma): none.
propagation (linear lemma): none.
propagation (binaryOl lemma): none.
propagation (basis2 lemma): none.
propagation (aboz lemma) : none.
propagation (aboz lemma): none.
checking: (x3 y3), sat.

HHHHHHHHEHEH®

lcl = 0; # final unknown set #<set: 3>.
e2 = 1; # weak uniqueness: unsafe.

for (i=0; i<n-1; i++) { # counter-example: _

. . . . #hash((ml.main.in . 2) (ml.main.out[0] . 0)

out[i] <-- (in >> i) & 1; (ml.main.out[1] . 1) (ml.main.out[2] . 1)
out[i] * (out[i] - 1) === 0; (m2.main.out[0] . 0) (m2.main.out[1l] . 1)
lcl += Out[l] * @2 (m2 .main.out[2] . 0)).
e2 = e2 + e2;

} Output of QED? showing the bug. Attack Vector

lcl === in;]

} Bug: Any values of out, is accepted.

i

Kricise.

Benchmark Suite: ZKBENCH

We gathered an extensive benchmark suite

from circomlib, the standard library for Circom.

Utility templates for fixed-width integer computation and

commonly used blockchain primitives

circomlib-core

circomlib-utils

In-depth coverage of 50 most security-critical templates

10 e Small

32 e Medium

Benchmark Set | # circuits | Avg. # constraints | Avg. # output signals
circomlib-utils 59 352
circomlib-core 104 6,690

All 163 4,396

24 * large

Key statistics of ZKBENCH.

Three categories:

Keridise

Evaluation: Effectiveness

Solved Benchmarks Solving Time

RQ1: Is QED? effective?

RQ2: Is QED? useful for detecting unknown bugs in real-world circuits?

Benchmark circomlib-utils circomlib-core
. ; . overall
Size small | medium | large | overall | small | medium | large | overall
Total (#) 47 7 5 59 61 23 20 104 163
Avg. Time (s) 9s 10s 9s 9s 8s 13s 18s 10s 9s
v (#) 36 4 3 43 44 10 4 58 101
X (#) 6 0 0 6 7 0 0 7 R
Solved (%) 89% 57% 60% | 83% | 84% 43% 20% 63% |l 70% N
"

Key results for effectiveness evaluation.

QED? solves 70% of the benchmarks,
averaged 18s for each of them.

QED2 finds 8 serious unknown vulnerabilities.

Kricise.

Evaluation: Ablation

RQ3: What's the relative importance of SMT and UCP? I

100
Full-fledged version

QED2-SMT Only performs symbolic
reasoning (SMT)

50—

Solved (%)

QED2-UCP Only performs uniqueness o
constraint propagation

(static analysis)

Ablation
B QED2

83 " QED2-SMT

M QED2-ucP

52

circomlib-utils circomlib-core
Benchmark Set
Comparison between QED? and its ablations.

UCP is crucial in quick verification

SMT is precise in solving difficult circuits.

for large circuits;

Th istic bond between SMT and UCP is effecti I
e synergistic bond between an is effective @ridise.

Conclusions

New algorithm for automatic checking of
under-constrained zero-knowledge circuits

Check out our tool on OGithub!

Lightweight Inference +

SMT-Based Reasoning

ZKBENCH, an open-source benchmark suite
for systematic evaluation of ZK circuits

Our tool: solves 70% benchmarks and detects Qu eStI O n S?

8 unknown under-constrained vulnerabilities

Kridise.

https://github.com/chyanju/Picus/tree/main

