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Zero-Knowledge Proofs
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A zero-knowledge proof system allows 
users to prove statements while using but 
not revealing some secret information.

Example: Where’s Wally?

How do you show your friend that you 
have knowledge of where Wally is, 
without giving away his location?

Show Wally through a cutout.

Wally

Credit: https://www.circularise.com/blogs/zero-knowledge-proofs-explained-in-3-examples 

https://www.circularise.com/blogs/zero-knowledge-proofs-explained-in-3-examples


Real-World Zero-Knowledge Proofs
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Voting Systems

IoT Security

Supply Chains

Secured Messaging

Identity Management

Privacy in Banking

Verifiable Computation
Safe Whistle-Blowing

Cryptocurrencies

Gaming

Privacy in Public Blockchains

File System Control

Complex Documentation



ZK Circuit Workflow
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𝑷

𝑪

Source Code

Witness 
Generator

Polynomial Field 
Equations

Prover𝒇

Veri*ier𝒇

SNARK

Source Code: Witness Generation and Constraints

Witness generation and constraints 
should (generally) be equivalent!



What is equivalence?
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For every 𝒙 and 𝒚, 𝑷 𝒙 = 𝒚 if and only if 𝑪(𝒙, 𝒚) is true.

Program: 𝑷
Input: 𝒙

Output: 𝒚

Set of Constraints: 𝑪
Inputs: 𝒙, 𝒚

Output: true or false

Every input-output of 𝑃 
must satisfy 𝐶

Every (𝑥, 𝑦) which satisfies 𝐶 
must be an input-output pair of 𝑃

How can this be violated?



Equivalence Violations

6

Two Requirements:

(1) Every input-output pair of 𝑷 satisfies 𝑪
(2) For any 𝒙 and 𝒚 which satisfy 𝑪, 𝑷 𝒙 = 𝒚

Exists 𝒙 and 𝒚 where 𝑷 𝒙 = 𝒚 
but 𝑪(𝒙, 𝒚) is false.

Exists 𝒙 and 𝒚 where C 𝒙, 𝒚  is true 
but 𝐏(𝒙) ≠ 𝒚.

Over-Constrained Bugs Under-Constrained Bugs

Most ZK languages (e.g., Circom, Halo2) add 
field equations as assertions to circuit!

Focus of this talk!



Why do we care?

7

!

"

Source Code

Witness 
Generator

Polynomial Field 
Equations

Prover!

Veri*ier!

SNARK

ZK Circuit Workflow
Under-constrained bugs: Verifier 
can accept bad inputs/outputs.

Could be used to 
drain all tokens

Double spend



Simple Example: Under-Constrained Bug
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template Num2Bits(n) {
    signal input in;
    signal output out[n];
    var lc1 = 0;
    var e2 = 1;
    for (var i=0; i<n-1; i++) {
        out[i] <-- (in >> i) & 1;
        out[i] * (out[i] - 1) === 0;
        lc1 += out[i] * e2;
        e2 = e2 + e2;
    }
    lc1 === in;
}

Developer-added 
constraints

input	𝑖𝑛
output	𝑜𝑢𝑡0, 𝑜𝑢𝑡1, 𝑜𝑢𝑡2
𝑜𝑢𝑡0 6 𝑜𝑢𝑡0 − 1 = 0
𝑜𝑢𝑡1 6 𝑜𝑢𝑡1 − 1 = 0
𝑜𝑢𝑡0 + 2 6 𝑜𝑢𝑡1 = 𝑖𝑛

Constraints for 𝒏 = 𝟑

𝑜𝑢𝑡! is under-
constrained

Attacker can pass in any value for 𝒐𝒖𝒕𝟐

Source: https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom

bitify.circom

https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom
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Under-constrained property can 
be expressed as SMT query.

SMT Strategy

∃𝑦#, 𝑦!. 𝑃[𝑦#/𝑦] ∧ 𝑃[𝑦!/𝑦] ∧ 𝑦# ≠ 𝑦!

SAT means the circuit is 
under-constrained.

Otherwise, we say 𝑦 is 
properly constrained, or 

unique.

V.S.

Apply pre-defined rules to quickly 
detect if a circuit is properly constrained.

Static Analysis Strategy

input	𝑥
output	𝑦
𝑧 = 3𝑥 + 4
𝑦 = 𝑧 + 2𝑥

Since 𝑦 is linear in 𝑥 and 𝑧, 
we immediately infer it is 
not under-constrained.

Too slow; can’t scale! False positives; one-time deal

Strategies: SMT v.s. Static Analysis



Shared 
Knowledge

QED2: An Overview
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Combine the strengths of static analysis and SMT!

Static analysis and SMT phases interact in a loop.

SMT Static Analysis

Interactive Loop

𝑪

Polynomial Fields 
Equations

Partial results from one phase can be useful for another.



QED2: An Interactive Loop
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Polynomial Fields 
Equations

New set of signals 
proven uniqueAll output signals are proven 

unique at this round

Update the set of 
signals proven unique

All outputs are 
unique: 

There’s output signal proven 
under-constrained: 

No new signal is added; fixed 
point reached; terminate

Static Analysis

SMT

Knowledge from both phases are shared.

Multiple turns scale reasoning up.

Set of signals 
known unique



...
# unique: #<set:>.
# refined known-set: #<set: 0 4>
# refined unknown-set: #<set: 1 2 3>
  # propagation (linear lemma): none.
  # propagation (binary01 lemma): none.
  # propagation (basis2 lemma): #<set: 1 2> added.
  # propagation (aboz lemma): none.
  # propagation (aboz lemma): none.
  # propagation (linear lemma): none.
  # propagation (binary01 lemma): none.
  # propagation (basis2 lemma): none.
  # propagation (aboz lemma): none.
  # propagation (aboz lemma): none.
  # checking: (x3 y3), sat.
# final unknown set #<set: 3>.
# weak uniqueness: unsafe.
# counter-example:
  #hash((m1.main.in . 2) (m1.main.out[0] . 0) 
(m1.main.out[1] . 1) (m1.main.out[2] . 1) 
(m2.main.out[0] . 0) (m2.main.out[1] . 1) 
(m2.main.out[2] . 0)).

Example: Solving Num2Bits 
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We show how QED2 detects the under-constrained 
bugs in Num2Bits, and construct a counter-example 
as attack vector.

Output of QED2 showing the bug.

UCP

template Num2Bits(n) {
    signal input in;
    signal output out[n];
    var lc1 = 0;
    var e2 = 1;
    for (var i=0; i<n-1; i++) {
        out[i] <-- (in >> i) & 1;
        out[i] * (out[i] - 1) === 0;
        lc1 += out[i] * e2;
        e2 = e2 + e2;
    }
    lc1 === in;
}

bitify.circom

SMT

Attack Vector

Bug: Any values of 𝒐𝒖𝒕𝟐 is accepted.



Benchmark Suite: ZKBENCH
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Key statistics of ZKBENCH.

We gathered an extensive benchmark suite  
from circomlib, the standard library for Circom.

Utility templates for fixed-width integer computation and 
commonly used blockchain primitives circomlib-utils

circomlib-core In-depth coverage of 50 most security-critical templates

Three categories:
• Small
• Medium
• large



Evaluation: Effectiveness
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QED2 solves 70% of the benchmarks,
averaged 18s for each of them.

QED2 finds 8 serious unknown vulnerabilities.

# Solved Benchmarks Solving Time

Key results for effectiveness evaluation.

RQ1: Is QED2 effective? RQ2: Is QED2 useful for detecting unknown bugs in real-world circuits?



Evaluation: Ablation
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63
52

69

83

64

37

Comparison between QED2 and its ablations.

QED2

QED2-SMT

QED2-UCP

Full-fledged version

Only performs symbolic 
reasoning (SMT)

Only performs uniqueness 
constraint propagation 

(static analysis)

The synergistic bond between SMT and UCP is effective.

RQ3: What’s the relative importance of SMT and UCP?

UCP is crucial in quick verification for large circuits; 
SMT is precise in solving difficult circuits.



Conclusions
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Check out our tool on       Github!

https://github.com/chyanju/Picus/tree/main
Lightweight Inference + 
SMT-Based Reasoning

Questions?

New algorithm for automatic checking of 
under-constrained zero-knowledge circuits

ZKBENCH, an open-source benchmark suite 
for systematic evaluation of ZK circuits

Our tool: solves 70% benchmarks and detects 
8 unknown under-constrained vulnerabilities

https://github.com/chyanju/Picus/tree/main

