
Automated Detection of Under-Constrained
Circuits in Zero-Knowledge Proofs

Shankara Pailoor*18, Yanju Chen*28, Franklyn Wang37, Clara Rodríguez4, Jacob
Van Geffen58, Jason Morton6, Michael Chu7, Brian Gu7, Yu Feng28, Isil Dillig18

* Equal Contribution
1. The University of Texas at Austin; 2. University of California, Santa Barbara; 3. Harvard University;
4. Complutense University of Madrid; 5. University of Washington; 6. ZKonduit; 7. 0xPARC; 8. Veridise.

ZKonduit

Zero-Knowledge Proofs

2

A zero-knowledge proof system allows
users to prove statements while using but
not revealing some secret information.

Example: Where’s Wally?

How do you show your friend that you
have knowledge of where Wally is,
without giving away his location?

Show Wally through a cutout.

Wally

Credit: https://www.circularise.com/blogs/zero-knowledge-proofs-explained-in-3-examples

https://www.circularise.com/blogs/zero-knowledge-proofs-explained-in-3-examples

Real-World Zero-Knowledge Proofs

3

Voting Systems

IoT Security

Supply Chains

Secured Messaging

Identity Management

Privacy in Banking

Verifiable Computation
Safe Whistle-Blowing

Cryptocurrencies

Gaming

Privacy in Public Blockchains

File System Control

Complex Documentation

ZK Circuit Workflow

4

𝑷

𝑪

Source Code

Witness
Generator

Polynomial Field
Equations

Prover𝒇

Veri*ier𝒇

SNARK

Source Code: Witness Generation and Constraints

Witness generation and constraints
should (generally) be equivalent!

What is equivalence?

5

For every 𝒙 and 𝒚, 𝑷 𝒙 = 𝒚 if and only if 𝑪(𝒙, 𝒚) is true.

Program: 𝑷
Input: 𝒙

Output: 𝒚

Set of Constraints: 𝑪
Inputs: 𝒙, 𝒚

Output: true or false

Every input-output of 𝑃
must satisfy 𝐶

Every (𝑥, 𝑦) which satisfies 𝐶
must be an input-output pair of 𝑃

How can this be violated?

Equivalence Violations

6

Two Requirements:

(1) Every input-output pair of 𝑷 satisfies 𝑪
(2) For any 𝒙 and 𝒚 which satisfy 𝑪, 𝑷 𝒙 = 𝒚

Exists 𝒙 and 𝒚 where 𝑷 𝒙 = 𝒚
but 𝑪(𝒙, 𝒚) is false.

Exists 𝒙 and 𝒚 where C 𝒙, 𝒚 is true
but 𝐏(𝒙) ≠ 𝒚.

Over-Constrained Bugs Under-Constrained Bugs

Most ZK languages (e.g., Circom, Halo2) add
field equations as assertions to circuit!

Focus of this talk!

Why do we care?

7

!

"

Source Code

Witness
Generator

Polynomial Field
Equations

Prover!

Veri*ier!

SNARK

ZK Circuit Workflow
Under-constrained bugs: Verifier
can accept bad inputs/outputs.

Could be used to
drain all tokens

Double spend

Simple Example: Under-Constrained Bug

8

template Num2Bits(n) {
 signal input in;
 signal output out[n];
 var lc1 = 0;
 var e2 = 1;
 for (var i=0; i<n-1; i++) {
 out[i] <-- (in >> i) & 1;
 out[i] * (out[i] - 1) === 0;
 lc1 += out[i] * e2;
 e2 = e2 + e2;
 }
 lc1 === in;
}

Developer-added
constraints

input	𝑖𝑛
output	𝑜𝑢𝑡0, 𝑜𝑢𝑡1, 𝑜𝑢𝑡2
𝑜𝑢𝑡0 6 𝑜𝑢𝑡0 − 1 = 0
𝑜𝑢𝑡1 6 𝑜𝑢𝑡1 − 1 = 0
𝑜𝑢𝑡0 + 2 6 𝑜𝑢𝑡1 = 𝑖𝑛

Constraints for 𝒏 = 𝟑

𝑜𝑢𝑡! is under-
constrained

Attacker can pass in any value for 𝒐𝒖𝒕𝟐

Source: https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom

bitify.circom

https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom

9

Under-constrained property can
be expressed as SMT query.

SMT Strategy

∃𝑦#, 𝑦!. 𝑃[𝑦#/𝑦] ∧ 𝑃[𝑦!/𝑦] ∧ 𝑦# ≠ 𝑦!

SAT means the circuit is
under-constrained.

Otherwise, we say 𝑦 is
properly constrained, or

unique.

V.S.

Apply pre-defined rules to quickly
detect if a circuit is properly constrained.

Static Analysis Strategy

input	𝑥
output	𝑦
𝑧 = 3𝑥 + 4
𝑦 = 𝑧 + 2𝑥

Since 𝑦 is linear in 𝑥 and 𝑧,
we immediately infer it is
not under-constrained.

Too slow; can’t scale! False positives; one-time deal

Strategies: SMT v.s. Static Analysis

Shared
Knowledge

QED2: An Overview

10

Combine the strengths of static analysis and SMT!

Static analysis and SMT phases interact in a loop.

SMT Static Analysis

Interactive Loop

𝑪

Polynomial Fields
Equations

Partial results from one phase can be useful for another.

QED2: An Interactive Loop

11

Polynomial Fields
Equations

New set of signals
proven uniqueAll output signals are proven

unique at this round

Update the set of
signals proven unique

All outputs are
unique:

There’s output signal proven
under-constrained:

No new signal is added; fixed
point reached; terminate

Static Analysis

SMT

Knowledge from both phases are shared.

Multiple turns scale reasoning up.

Set of signals
known unique

...
unique: #<set:>.
refined known-set: #<set: 0 4>
refined unknown-set: #<set: 1 2 3>
 # propagation (linear lemma): none.
 # propagation (binary01 lemma): none.
 # propagation (basis2 lemma): #<set: 1 2> added.
 # propagation (aboz lemma): none.
 # propagation (aboz lemma): none.
 # propagation (linear lemma): none.
 # propagation (binary01 lemma): none.
 # propagation (basis2 lemma): none.
 # propagation (aboz lemma): none.
 # propagation (aboz lemma): none.
 # checking: (x3 y3), sat.
final unknown set #<set: 3>.
weak uniqueness: unsafe.
counter-example:
 #hash((m1.main.in . 2) (m1.main.out[0] . 0)
(m1.main.out[1] . 1) (m1.main.out[2] . 1)
(m2.main.out[0] . 0) (m2.main.out[1] . 1)
(m2.main.out[2] . 0)).

Example: Solving Num2Bits

12

We show how QED2 detects the under-constrained
bugs in Num2Bits, and construct a counter-example
as attack vector.

Output of QED2 showing the bug.

UCP

template Num2Bits(n) {
 signal input in;
 signal output out[n];
 var lc1 = 0;
 var e2 = 1;
 for (var i=0; i<n-1; i++) {
 out[i] <-- (in >> i) & 1;
 out[i] * (out[i] - 1) === 0;
 lc1 += out[i] * e2;
 e2 = e2 + e2;
 }
 lc1 === in;
}

bitify.circom

SMT

Attack Vector

Bug: Any values of 𝒐𝒖𝒕𝟐 is accepted.

Benchmark Suite: ZKBENCH

13

Key statistics of ZKBENCH.

We gathered an extensive benchmark suite
from circomlib, the standard library for Circom.

Utility templates for fixed-width integer computation and
commonly used blockchain primitives circomlib-utils

circomlib-core In-depth coverage of 50 most security-critical templates

Three categories:
• Small
• Medium
• large

Evaluation: Effectiveness

14

QED2 solves 70% of the benchmarks,
averaged 18s for each of them.

QED2 finds 8 serious unknown vulnerabilities.

Solved Benchmarks Solving Time

Key results for effectiveness evaluation.

RQ1: Is QED2 effective? RQ2: Is QED2 useful for detecting unknown bugs in real-world circuits?

Evaluation: Ablation

15

63
52

69

83

64

37

Comparison between QED2 and its ablations.

QED2

QED2-SMT

QED2-UCP

Full-fledged version

Only performs symbolic
reasoning (SMT)

Only performs uniqueness
constraint propagation

(static analysis)

The synergistic bond between SMT and UCP is effective.

RQ3: What’s the relative importance of SMT and UCP?

UCP is crucial in quick verification for large circuits;
SMT is precise in solving difficult circuits.

Conclusions

16

Check out our tool on Github!

https://github.com/chyanju/Picus/tree/main
Lightweight Inference +
SMT-Based Reasoning

Questions?

New algorithm for automatic checking of
under-constrained zero-knowledge circuits

ZKBENCH, an open-source benchmark suite
for systematic evaluation of ZK circuits

Our tool: solves 70% benchmarks and detects
8 unknown under-constrained vulnerabilities

https://github.com/chyanju/Picus/tree/main

