
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Deduction-Powered Neural Program Synthesis: A Synergistic Perspective

Permalink
https://escholarship.org/uc/item/0hw2k1xv

Author
Chen, Yanju

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0hw2k1xv
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Deduction-Powered Neural Program Synthesis:

A Synergistic Perspective

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yanju Chen

Committee in charge:

Professor Yu Feng, Chair
Professor Işıl Dillig
Professor Nadia Polikarpova
Professor Xifeng Yan

September 2023

The Dissertation of Yanju Chen is approved.

Professor Işıl Dillig

Professor Nadia Polikarpova

Professor Xifeng Yan

Professor Yu Feng, Committee Chair

July 2023

Deduction-Powered Neural Program Synthesis:

A Synergistic Perspective

Copyright © 2023

by

Yanju Chen

iii

Dedicated to my family,

for the days and nights we spent together

in memory, in dreams, and in spirit.

iv

Acknowledgements

I have never stopped questioning myself for pursuing a Ph.D. — for hundreds of

nights I wished I could convince myself of such a foolish mistake and give in — until

my advisor, Yu Feng, picked me up from the desert that I had long immersed myself in,

and showed me the million stars in the sky. From him I learned to imagine, to persist

and to deconstruct, to discover, to compose and to restructure — science and research

to me have never been so fulfilling and rewarding. I treasure the time we spent together

focusing, brainstorming and arguing, and the determinism to succeed from his eyes has

always been the strongest lighthouse in my eternal storms.

I wish I had been stronger, smarter and more confident at the very beginning; but

obviously I’m not the chosen one, and it took time and a great ton of perseverance

and resolution to make even a single step. I’m grateful that my dissertation committee

has been supportive with me and providing valuable and professional feedback while I

paid for those steps. The most insightful conversations are those with Isil Dillig where

words and sentences are articulated precisely to their meanings — I strive to be rigorous

on science disciplines and methodologies just like she does, and it proves to be a great

benefit1; Nadia Polikarpova is the first fan2 of my work and she shows great passion

for life and research that I always look for; Xifeng Yan is the shepherd that guided me

through darkness and crises in both my physical and mental worlds.

The beautiful coastline of Santa Barbara has always been a great relief to any long-

lasting pains and doubts — the perpetual waves understand and consume every piece of

sorrow, return with noise, and bring it to the purple sunset to sink with every peaceful

night. I found many answers here, with more confusions that I’ve learned to live with.

1Just like her cats that do college math well, it feels safe and comforting.
2I appreciate her first reply to my email with generous praise to my work; it had been, for a long

time, the biggest support I ever received from the rest of the community.

v

The other calming hub from the campus is the PLSE lab, where I could usually find

a snatch of joy and fun with my labmates besides a handful of equations and codes. I

cherish the magical acquaintance in one of a million, and I’m grateful for the memory

shared with friends of my life, folks from Veridise, 0xPARC, UT Austin and UW, and

my mentors, collaborators and colleagues.

∗ ∗ ∗

I’ve been having occasional flashbacks of the day I left my hometown for this journey

six years ago, waving goodbye to my family members, when I was so arrogant and full

of ignorance that I didn’t even care to have a closer look at them, while they were still

young and alive. I was such a fool thinking I’d be ready for everything — but obviously

I am not. It was my parents that always stand behind me during the toughest time;

they never complain and they save the best for me in their silent support. I wish I had

known them better and felt things their way, so I’d be strong enough to see through

every challenge ahead and stay true. Likewise, there are a thousand unspoken words

behind a goodbye on every call with my grandparents that they would never let out in

front of me, until they thought they had hanged up; I will never hear grandma’s voice

in tears because she lives with the stars now. This dissertation is dedicated to her: may

this thread reach her.

Summer, 2023

vi

Curriculum Vitæ
Yanju Chen

Education

2023 Ph.D. in Computer Science, University of California, Santa Barbara.

2017 M.S. in Computer Science, Sun Yat-sen University.

2014 B.S. in Computer Science, Sun Yat-sen University.

Publications

1. [USENIX Security’24] Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles,
Shankara Pailoor, Kyle Charbonnet, Isil Dillig, and Yu Feng. Practical security analysis
of zero-knowledge proof circuits. In 33rd USENIX Security Symposium (USENIX Security
24), PHILADELPHIA, PA, August 2024. USENIX Association

2. [ASE’23] Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, and Yu Feng.
Fast and reliable program synthesis via user interaction. In Proceedings of the 38th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’23, New
York, NY, USA, 2024. Association for Computing Machinery

3. [PLDI’23] Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodŕıguez, Jacob
Van Geffen, Jason Morton, Michael Chu, Brian Gu, Yu Feng, and Işıl Dillig. Automated
detection of Under-Constrained circuits in Zero-Knowledge proofs. Proc. ACM Program.
Lang., 7(PLDI), June 2023

4. [PLDI’23] Junrui Liu, Yanju Chen, Eric Atkinson, Yu Feng, and Rastislav Bodik.
Conflict-Driven synthesis for layout engines. Proc. ACM Program. Lang., 7(PLDI), June
2023

5. [ASE’22] Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. Learning con-
tract invariants using reinforcement learning. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’22, New York, NY, USA,
2023. Association for Computing Machinery

6. [OOPSLA’22] Yanju Chen, Yuepeng Wang, Maruth Goyal, James Dong, Yu Feng, and
Işil Dillig. Synthesis-Powered optimization of smart contracts via data type refactoring.
Proc. ACM Program. Lang., 6(OOPSLA2), October 2022

7. [OOPSLA’22] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig.
Automated transpilation of imperative to functional code using Neural-Guided program
synthesis. Proc. ACM Program. Lang., 6(OOPSLA1), April 2022

8. [PLDI’22] Yanju Chen, Xifeng Yan, and Yu Feng. Visualization question answering
using introspective program synthesis. In Proceedings of the 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, PLDI 2022,
pages 137–151, New York, NY, USA, 2022. Association for Computing Machinery

vii

9. [ASPLOS’22] Yanju Chen, Junrui Liu, Yu Feng, and Rastislav Bodik. Tree traversal
synthesis using Domain-Specific symbolic compilation. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’22, pages 1030–1042, New York, NY, USA, 2022. Association
for Computing Machinery

10. [S&P’22] P Bose, D Das, Y Chen, Y Feng, C Kruegel, and G Vigna. SAILFISH: Vetting
smart contract State-Inconsistency bugs in seconds. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1235–1252, Los Alamitos, CA, USA, May 2022. IEEE Computer
Society

11. [ASE’20] B Mariano, Y Chen, Y Feng, S K Lahiri, and I Dillig. Demystifying loops
in smart contracts. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 262–274, Los Alamitos, CA, USA, September 2020.
IEEE Computer Society

12. [CAV’20] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. Pro-
gram synthesis using Deduction-Guided reinforcement learning. In Shuvendu K Lahiri and
Chao Wang, editors, Computer Aided Verification, pages 587–610, Cham, 2020. Springer
International Publishing

13. [FSE’19] Yanju Chen, Ruben Martins, and Yu Feng. Maximal Multi-Layer specifica-
tion synthesis. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2019, pages 602–612, New York, NY, USA, 2019. Association for Computing
Machinery

14. [VLDB’19] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. Trinity:
An extensible synthesis framework for data science. Proceedings VLDB Endowment, 12
(12):1914–1917, August 2019

15. [AAAI’17] Yanju Chen and Rong Pan. Automatic emphatic information extraction
from aligned acoustic data and its application on sentence compression. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pages 3422–3428,
San Francisco, California, USA, 2017. AAAI Press

viii

Abstract

Deduction-Powered Neural Program Synthesis:

A Synergistic Perspective

by

Yanju Chen

Program synthesis has found its unique position in automated programming for both

end-users and developers; it is changing the way that users code. Recent advances in deep

learning and computer-aided reasoning for program synthesis have greatly pushed both

techniques for an open range of domains, e.g., data analysis, high-performance computing,

design and reasoning of complex systems, web3 security and science. While algorithms

from these two paradigms may place different assumptions of the problem (e.g., modality

of specification) and guarantees for the result (e.g., completeness), it is usually difficult

for users to benefit simultaneously from both. In fact, feedback generated by statistical

and logical reasoning algorithms are usually found useful for each other, but they are

seldom integrated in a seamless way for program synthesis due to the aforementioned

difference.

Motivated by these challenges, this dissertation presents a program synthesis frame-

work that unifies the two paradigms of statistical and logical reasoning. Specifically, we

address this problem by three aspects. We first describe a unified interface that encodes

user-provided specification from multi-modalities into machine-readable constraints by a

hybrid approach of reasoning. The framework’s core infrastructure is then powered by

deduction-guided reinforcement learning, a novel approach that seamlessly incorporated

feedback from logical reasoning into statistical models. We further demonstrate the ex-

tent of the framework by a derived system for reasoning and refinement of deep learning

ix

model’s predictions.

We implement the proposed techniques in research prototypes, whose effectiveness is

confirmed by a set of extensive evaluations. Our proposed framework also brings improve-

ments for end-user programming via broaden expressiveness, enhanced explainability and

natural interactivity.

x

Contents

Acknowledgements v

Curriculum Vitae vii

Abstract ix

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Overview . 1
1.2 Multi-Modal Specification . 3
1.3 Deduction-Guided Machine Learning . 5

2 Mars: Program Synthesis Using Multi-Layer Specification 9
2.1 Overview . 13
2.2 Problem Formalization . 17
2.3 Neural Architecture . 20

2.3.1 Sequence-To-Sequence Model . 20
2.3.2 Learning Association Rules . 23
2.3.3 Score Refinement Algorithm . 25

2.4 Maximal Specification Synthesis . 26
2.4.1 Enumerating Maximal Programs 29

2.5 Implementation . 31
2.6 Evaluation . 33

2.6.1 Quality of suggested candidates 33
2.6.2 Effectiveness of hybrid neural architecture 35
2.6.3 Discussion . 38
2.6.4 Threats to Validity . 39

2.7 Summary . 39

xi

3 Concord: Program Synthesis Using Deduction-Guided Reinforcement
Learning 41
3.1 Background on Reinforcement Learning 44
3.2 Problem Formulation . 47
3.3 MDP Formulation of Deduction-Guided Program Synthesis 51
3.4 RL-Based Synthesis Algorithm . 53

3.4.1 Overview of Synthesis Algorithm 54
3.4.2 Sampling Rollouts . 55
3.4.3 Improving the Policy . 55

3.5 Implementation . 58
3.5.1 Deduction Engine . 59
3.5.2 Policy Network . 59
3.5.3 Input Featurization . 61
3.5.4 Optimizations . 61

3.6 Evaluation . 61
3.6.1 Comparison Against Existing Tools 63
3.6.2 Ablation Study . 64

3.7 Summary . 66

4 Poe: Program Synthesis for Neural Prediction Refinement 67
4.1 Overview . 70

4.1.1 A Motivating Example . 70
4.1.2 Explanation Generation . 72
4.1.3 Answer Refinement . 75

4.2 Preliminaries and Problem Statement . 76
4.2.1 Preliminaries . 76
4.2.2 Introspective Program Synthesis 79

4.3 Abstract Program Synthesis with Noisy Specification 83
4.4 Explanation Refinement via Optimal Program Synthesis 87
4.5 Implementation . 92
4.6 Evaluation . 94

4.6.1 Comparison against State-of-the-Arts 96
4.6.2 Benefits of Optimal Alignment and Abstract Synthesis 96
4.6.3 Evaluation on Effectiveness . 98
4.6.4 A User Study on Explainability 98
4.6.5 Discussion . 99

4.7 Summary . 101

5 Related Work 102
5.1 Program Synthesis . 102
5.2 Deduction-Based Reasoning . 104
5.3 Machine Learning . 105

xii

6 Conclusion 110

xiii

List of Figures

1.1 An overview of my dissertation research covering three aspects of a pro-
gram synthesis framework. 2

2.1 A motivating example from StackOverflow.3 11
2.2 The grammar of a DSL for data wrangling tasks in .9513.6dplyr and .9513.6tidyr. 14
2.3 An example of symbolic program. 18
2.4 An example of concrete program. 18
2.5 The hybrid neural architecture in Mars 21
2.6 An example of a bounded symbolic program. 27
2.7 Comparison of run times (in seconds) between n-gram (x-axis, used in

Morpheus) and seq2seq (y-axis, used in Mars) using a logarithmic scale. 36
2.8 Comparison of run times (in seconds) between n-gram (x-axis, used in

Morpheus) and hybrid (y-axis, used in Mars) using a logarithmic scale. 37

3.1 Overview of our synthesis algorithm . 42
3.2 A simple programming language used for illustration. 48
3.3 The architecture of the policy network showing how to roll out the partial

program in Example 4. 60
3.4 Comparison between Concord, Neo, and DeepCoder 63

4.1 Framework overview. 69
4.2 A motivating example on data of opinions for future economic growth for

different countries. 71
4.3 Syntax of a toy DSL for data wrangling. 73
4.4 Example tables showing how one can derive similar programs to get con-

flicting outputs. 79
4.5 System workflow in Poe. 80
4.6 Different granularities that affect the algorithm search space. An input-

output pair is denoted by a triangle. 82
4.7 Performance comparison between the original pipeline from VisQA (base-

line), TaPas and Poe. 96

xiv

List of Tables

2.1 Statistics for different model rankings . 35
2.2 Counts of top-1s and top-3s in different models 35
2.3 Statistics of running time . 35

3.1 Results of ablation study comparing different variants. 65

4.1 Comparison on number of benchmarks solved by different tools across
different types of questions. 97

4.2 Comparison between TaPas and different ablated variants of Poe. . . . 97

xv

Chapter 1

Introduction

With the growing power of computation, program synthesis is gradually changing the

way that users code: it helps automate tedious tasks (e.g., Microsoft FlashFill [49]),

complete code (e.g., OpenAI Codex [23]) and refactor code (e.g., IntelliJ [77]). While

the philosophy behind program synthesis is not restricted to automation of tedious pro-

gramming tasks, it is more about automation of problem solving and solution discovery,

as seen in competitive programming (AlphaCode [61]), math theorem proving (Google

HOList [7]), and more — a thought process broadly required by all sciences.

1.1 Overview

Given a high-level specification of user intent, modern program synthesizers perform

some form of backtracking search to find a program that satisfies the specification [45, 43,

109]. However, due to the enormous size of the search space, synthesizers additionally

use at least one of two other techniques, namely logical and statistical reasoning, to

make this approach practical. While both logical and statistical reasoning have been

shown to dramatically improve search efficiency, there are still key challenges for existing

1

Introduction Chapter 1

approaches:

1. Synthesized programs may not fully match user intent due to the incomplete nature

of a single specification. Additional specifications are needed for refinement of

result.

2. The two modes of reasoning are not tightly combined. For example, feedback from

logical reasoning is often useful but not leveraged by statistical reasoning.

Logical
Reasoning

Statistical
Reasoning

Multi-Modal
Specification

Program

Visualization

Web Browser

more...

CoreInterface Extent

Figure 1.1: An overview of my dissertation research covering three aspects of a pro-
gram synthesis framework.

This dissertation explores new paradigms that broaden the extent of program syn-

thesis algorithms by tackling the aforementioned key challenges. Figure 1.1 shows an

overview of my dissertation research covering three aspects of a program synthesis frame-

work:

• The interface exploits the power of multi-modal specification that allows users

to express their intent in multiple modalities, such as input-output examples, nat-

ural language descriptions, etc. We developed Mars [27], a synthesizer that can

capture user intent beyond classical programming-by-example (PBE) tasks by en-

coding extra specification with statistical reasoning and decoding its output to

guide the logical reasoning for synthesis.

• The core resides with a novel synthesis paradigm that tightly couples logical and

statistical reasoning, denoted as deduction-guided reinforcement learning.

2

Introduction Chapter 1

We developed Concord [28], a synthesizer that utilizes feedback from logical rea-

soning to improve the search performed by statistical reasoning. In particular,

Concord frames a program synthesis problem as an instance of reinforcement

learning, and extends the original learning algorithm to encode results from logical

reasoning as additional training signals during search. The design of the core syn-

thesis algorithm is flexible, in that it also allows improvement on top of statistical

reasoning.

• The extent connects the interface and core with broader interdisciplinary scenar-

ios to push for the boundary and imagination of program synthesis. We developed

Poe [31], a synthesizer that originates and extends from the synergistic bond es-

tablished in Concord: it initiates the logical reasoning to refine the predictions

from off-the-shelf statistical model, by synthesizing a program that best explains

one or more of the predictions. The core insight of Poe is to decipher a predic-

tion by formalizing it as specification for a synthesis problem, thus exposing more

information from the program synthesized that helps with the search.

This dissertation presents the above techniques under a unified framework, whose

core philosophy resides in a synergistic bond between the two paradigms for program

synthesis, namely statistical and logical reasoning. In what follows, we elaborate on the

core aspects of this framework.

1.2 Multi-Modal Specification

Due to the incomplete nature of input-output examples, a synthesizer in a programming-

by-example (PBE) task may generate programs that pass the examples but do not match

the user intent. As a result, the user has to provide additional examples to refine the

3

Introduction Chapter 1

results generated by the synthesizer, which imposes a huge burden to the user as it is

tricky to: 1) figure out the root cause of the wrong candidates and 2) come up with

better examples to refine the output of the synthesizer. In fact, on technical forums like

Stackoverflow, a user typically would describe the problem with a combination of data

from multiple modalities: input-output examples, natural language descriptions, partial

code snippets, etc., which as a whole contributes to the user intent in a more thorough

and accurate way. This motivates Mars [27], a synthesizer that is capable of capturing

user intent in multi-modal specification.

The core ofMars consists of two folds: a logical reasoning engine that prunes program

search space, and a statistical model that learns to prioritize search preference over

promising programs. Mars captures specification of different types in different ways:

• For hard specification that the synthesized program must always satisfy, such as

input-output examples, Mars encodes them directly as logical forms like existing

approaches;

• For soft specification that the synthesized program should try to satisfy, such as nat-

ural language descriptions, Mars captures them using a statistical model (neural

network) since they are mostly noisy. Mars then devises a set of logical predicates

to describe the implication of the output of statistical model, which encodes the

implication of soft specification.

As a result, Mars finds an optimal solution program by solving the problem with

logical forms encoded from both types of specification, i.e., Mars finds programs that

1) satisfy all hard specification, and 2) satisfy the most soft specification. On a set

of 80 challenging real-world data science tasks, Mars demonstrates the effectiveness of

incorporating multi-modal specification by reducing more than 80% of the timeout cases

of state-of-the-art tools and reaches an averaged 15× speedup for solved benchmarks.

4

Introduction Chapter 1

Overall, Mars shows the power of multi-modal specification for enriching the interface

of a typical program synthesis framework, which consolidates a broader spectrum of

inputs for the core algorithms of the synthesis framework, and motivates the exploration

on an in-depth connection between the two components mentioned above for logical and

statistical reasoning.

1.3 Deduction-Guided Machine Learning

Existing synthesizers like Mars [27] contains two modes of reasoning, namely logi-

cal and statistical reasoning. Even though they are proven to be effective for program

synthesis, they are not tightly coupled in existing synthesizers. In particular, feedback

from logical reasoning is not leveraged by statistical models, which deviates from the

intuition of human thought process, where deduction (logical reasoning) and perception

(statistical reasoning) are coupled synergistically in problem solving.

Motivated by such observation, Concord [28] is developed to bridge the gap between

the two modes by combining them in a synergistic way. Similar to prior techniques,

Concord starts with a statistical model (henceforth called a policy) that is trained

offline on a representative set of training problems and uses this policy to guide the search.

However, unlike prior techniques, Concord updates this policy online at synthesis time

and gradually improves the policy by incorporating feedback from a logical reasoning

engine. Specifically, Concord formulates program synthesis as a reinforcement learning

(RL) problem and devises a novel algorithm that converts feedback from logical reasoning

into representative data that is then used for improving the policy. While RL proves to

be a good fit for the problem, standard RL algorithms typically update the policy based

on feedback received on search spaced that is already explored. However, in the context

of program synthesis, logical reasoning can also provide feedback about search space that

5

Introduction Chapter 1

has not been explored. On a set of 100 challenging list processing problems, Concord

is proven effective in that it solves 15% more of them than state-of-the-art synthesizers

with an average of 8.7× faster.

Concord’s core algorithm is dubbed as deduction-guided machine learning. On one

hand, Concord demonstrates the effectiveness of such approach when the user has access

to the statistical model; on the other, such a tight bond also applies to more complex

black-box deep learning models, on a synthesizer I develop called Poe [31]. Poe is

motivated by visualization question answering (VQA) tasks, where a model is required

to answer visualization queries from natural language descriptions. Since annotated data

that contains both queries, logical forms and answers is very expensive, recent state-of-

the-art deep learning models are trained only with queries and answers in exchange for

more data and less manual efforts, which in return, are not always leading to satisfactory

answers. To mitigate this problem, Poe incorporates a synergistic procedure between

the logical and statistical reasoning to refine potentially problematic predictions from

the deep learning model. In particular, Poe generates programs that are consistent

via program synthesis with model predictions as specification, and decides the most

promising prediction by selecting the one that best aligns with the problem context. The

core insight behind Poe is that, even though the statistical model generates a wrong

answer that is derived from a sequence of hidden inference steps, part of them may still

be sensible since training is based on a large corpus; by synthesizing the program that

satisfies the prediction, more information is exposed to help make better predictions.

As a result, Poe’s experiments demonstrate its effectiveness on a set of 629 real-world

challenging VQA tasks, by a 15% improvement on the number of benchmarks solved

than state-of-the-art methods. Poe opens up brand new potentials for coupling the two

modes of logical and statistical reasoning.

6

Introduction Chapter 1

In summary, this dissertation makes the following key contributions:

• We design a customized deep neural network architecture for learning the user’s

preference using an aligned corpus that maps the user’s textual information to

the desired solutions. Based on this architecture, we design a novel multi-layer

specification that allows the end-user to specify her intent using soft and hard

constraints.

• We propose Mars, a Max-SMT based synthesis framework that takes as input a

multi-layer specification and enumerates solutions that are close to the user’s intent.

Our framework is parameterized with the underlying neural networks and the DSL,

which can be easily instantiated to different domains.

• We propose Concord, a synthesizer consisting of: 1) a new synthesis algorithm

based on reinforcement learning that tightly couples statistical and deductive rea-

soning, and 2) an off-policy reinforcement learning technique that uses the output

of the deduction engine to gradually improve its policy.

• We identify and present a new type of program synthesis problem in visualization

question answering, where a deep learning model’s (potentially noisy) output is

used as specification to synthesize programs that explain the model’s behavior,

which is dubbed as introspective program synthesis.

• We propose Poe, a synthesizer equipped with: 1) an abstract program synthesis

algorithm for quickly inducing the search space given noisy specifications from

a deep learning model’s output, and 2) an optimal program synthesis algorithm

for finding programs that best match the consistency constraints implied between

natural language questions and visualizations.

7

Introduction Chapter 1

• Our end-to-end systems – Mars, Concord and Poe– are empirically evaluated

in different program synthesis domains to show the effectiveness of the proposed

techniques and algorithms.

The rest of this dissertation is organized as follows:

• Chapter 2 describes a program synthesis framework Mars that utilizes multi-layer

specification, where statistical outputs are encoded into logical reasoning.

• Chapter 3 presents a program synthesis algorithmConcord that connects deduction-

based reasoning with machine learning.

• Chapter 4 extends the synergistic bond between statistical and logical reasoning

into the Poe framework that provides explanation and refinement for deep learning

models.

• Chapter 5 discusses related work and Chapter 6 concludes.

8

Chapter 2

Mars: Program Synthesis Using

Multi-Layer Specification

In today’s data-centric world, data analytics has become one of the key elements in our

daily life, including science, politics, business, and international relations. On the other

hand, due to the messy nature of data in different application domains, data scientists

spend close to 80% [36] of their time performing data wrangling tasks, which are consid-

ered to be the “janitor work” of data science.

To mitigate this problem, in recent years, there has been significant interest in end-

user program synthesis for data science, in which the goal is to automate tedious data

analytics tasks from informal specifications, such as input-output examples [49, 43] or

natural language [113, 90]. For instance, programming-by-example (PBE) has been used

to automate tedious tasks such as string manipulations in Excel [49], data wrangling tasks

on tabular and hierarchical data [43, 112], and SQL queries [106]. Despite significant

progress in PBE systems, expressing the user intent still remains a major challenge. As a

result, due to the incomplete nature of input-output examples, a synthesizer may generate

programs that pass the examples but do not match the user intent. In that case, the

9

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

user has to provide additional examples to refine the results generated by the synthesizer,

which imposes a huge burden to the end-user as it is tricky to figure out the root cause

of the wrong candidates [82] and come up with new examples to refine the output of the

synthesizer.

To address the above limitation, this chapter aims to design a synthesis framework

that accurately captures the user intent. By looking at hundreds of relevant data an-

alytics questions from StackOverflow, we observe that an end-user typically describes

her problem in a combination of input-output examples, natural language description,

partial code snippet, etc. To give readers our insight, consider an example from Stack-

Overflow in Figure 2.1. Here, the user has an input table and wants to transform it

into an output table with a different shape. As shown in Figure 2.1, the correct solution

(on the right) requires merging two column (i.e., unite), aggregating (i.e., group by,

summarise) the sum of another column, and finally pivoting (spread) the returning table.

To solve this benchmark, it takes Morpheus [43], the state-of-the-art synthesizer for

data wrangling tasks, around five minutes. Moreover, if the program found by Mor-

pheus does not match the user intent, she has to refine the input-output examples and

rerun the synthesizer.

In a lot of cases, the information provided by the end-user typically goes beyond input-

output examples. In most helper forums (e.g., StackOverflow), we observed that people

usually describe problems in the combination of natural language and input-output ex-

amples. For instance, looking at the example in Figure 2.1, the user not only provides

input-output examples, but also indicates a rough “sketch” of the solution through natu-

ral language. For instance, the “reshape” and “count” keywords indicate that the solution

should use library functions that perform pivoting (i.e. spread or gather) and aggrega-

tion (i.e., group by + summarise), respectively. Other keywords such as “total found”

suggest that sum should be used together with summarise, and the keyword “Sp B pos”

10

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

r script to reshape and count columns within dataset

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and
date combo) with columns for total found by species and the fish status (i.e. speciesA_pos,
SpeciesA_neg, Sp_B_pos.. etc).
figured I could use the reshape function but still need to sum within site visits as reshape will take the
first row. My thoughts were to use split/apply/aggregate/for loops etc but tried various combinations
and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

TBL_7=unite(input,`COL`,`species`,`inf_status`)
TBL_3=group_by(TBL_7,`site`,`COL`)
TBL_1=summarise(TBL_3,COL2=sum(`TOT`))
Output=spread(TBL_1,`COL`,`COL2`)

title

description

description

unite

group_by

summarise

sum

spread

SOLUTION

I/O Example

I/O Example

description

Figure 2.1: A motivating example from StackOverflow.1

that the function call unite should be used. If we use arrows to visualize the connection

between text description and function calls from data-wrangling libraries, we can observe

a strong connection between the user intent and the solution.

However, real world textual information is inherently noisy and ambiguous. As a

result, it is very challenging to derive the right mapping from the textual information

to their corresponding function calls. Second, even if we have the right mapping, it is

still unclear how to integrate this information into most existing PBE systems [49, 10,

112, 106, 118], which typically rely on their efficient search algorithms by leveraging the

syntax or semantics of the input-output examples.

We propose Mars, a novel synthesis framework that takes as input a multi-layer

specification that appears in a large class of applications. Here a multi-layer specification

is composed by input-output examples, textual description, and partial code snippets

that express the user intent. To solve a multi-layer specification synthesis (MSS) problem,

Mars encodes input-output examples as hard constraints which have to be satisfied, and

denotes additional preferences (e.g., textual description, partial code snippet, etc) as soft

constraints which are preferably satisfiable. After that, the MSS problem is reduced to

the maximum satisfiability modulo theories (Max-SMT) problem which can be efficiently

1https://stackoverflow.com/questions/39369502

11

https://stackoverflow.com/questions/39369502

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

solved by an off-the-shelf SMT solver [37, 16]. The Max-SMT encoding of the MSS

problem aims to satisfy the input-output constraints and maximize the user intent that

is obtained from natural language, partial code snippet, and intermediate results.

To accurately capture the user intent from noisy and ambiguous description, we pro-

pose a hybrid neural architecture that combines the power of an LSTM-based sequence-

to-sequence (i.e., seq2seq) [101] model and the apriori algorithm [1] for mining association

rules. In particular, our seq2seq model encodes the probability of a symbolic program (i.e.,

a program of which constants are unknown.) given its corresponding textual description.

However, like other deep learning applications, the performance of a seq2seq model heavily

relies on the quality and quantity of the training data. Therefore, as shown in Section 2.6,

for benchmarks of which solutions are complicated and rarely appear in the training set,

our seq2seq model may not suggest the right candidates. To mitigate this problem, we

leverage the apriori algorithm for mining the extra hidden information that can not be

covered by the seq2seq model. Intuitively, through unsupervised learning, the apriori

algorithm is used to mine association rules that indicate the hidden connections between

words and individual functions. After that, we use the association rules for refining the

original rankings of the seq2seq model.

To evaluate the effectiveness of our technique, we instantiate Mars into the data

wrangling domain and compare it against Morpheus [43], the state-of-the-art PBE

synthesizer for data wrangling tasks. We evaluate both approaches on the 80 benchmarks

from Morpheus [46], and show that Mars outperforms Morpheus in terms of running

time and number of benchmarks being solved. For challenging benchmarks, our approach

is on average 15x faster than the Morpheus tool.

To summarize, this chapter focuses on the following key contributions:

• We design a customized deep neural network architecture for learning the user’s

12

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

preference using an aligned corpus that maps the user’s textual information to the

desired solutions.

• We design a novel multi-layer specification that allows the end-user to specify her

intent using soft and hard constraints.

• We propose a Max-SMT based synthesis framework that takes as input a multi-

layer specification and enumerates solutions that are close to the user’s intent. Our

framework is parameterized with the underlying neural networks and the DSL,

which can be easily instantiated to different domains.

• We integrate Mars’s hybrid model into the Morpheus tool and empirically evalu-

ate our approach in the data wrangling domain by showing that Mars outperforms

the state of the art in running time and number of benchmarks solved.

2.1 Overview

In this section, we give an overview of our approach with the aid of the motivating

example in Figure 2.1. Specifically, as shown in Figure 2.2, we use a simplified domain-

specific language (DSL) based on dplyr and tidyr, which are two popular libraries for

data wrangling tasks in R.

In this example, the user wants to perform a complex data wrangling task which

requires concatenating two columns (i.e., unite), aggregation (i.e., summarise), and ta-

ble pivoting (i.e., spread). We now explain the key ideas that enable Mars to solve

this complex problem.We use abstract syntax trees (AST) to represent programs. For

example, Figure 2.3 shows an AST that represents a symbolic program where some of

the nodes are still unknown. A symbolic program can be instantiated in many ways and

can generate several thousand concrete programs. For instance, the concrete program

13

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

T → xi | spread(T, COL,COL) | unite(T, COL, COL)

group by(T, LIST) | summarise(T, AG, COL)

gather(T, LIST) | select(T, LIST)

LIST→ [1] | [1,2] | ... | [4,5]

COL→ 0 | ... | 10

AG→ sum | mean | max | min

Figure 2.2: The grammar of a DSL for data wrangling tasks in dplyr and tidyr.

represented in Figure 2.4 corresponds to the following assignment:

{N1 7→ select, N2 7→ gather, N3 7→ [1,2], N4 7→ x0, N5 7→ [1,3]}

This approach, while being general, has several drawbacks. First, since input-output

examples are imprecise specifications, a synthesizer may generate a candidate that does

not match the user intent, which requires the user to provide additional examples to

refine the result [106, 49]. Second, given a specific task, there can be many candidates

satisfying the input-output examples but only few of them match the user intent. In this

case, a synthesizer typically enumerates solutions according to some heuristic, such as

the size of AST [47], or keywords provided by the user [106]. None of the previous work

proposes a systematic solution for unifying the user intent from different sources.

Mars takes a different step by proposing a multi-layer specification that combines

input-output examples with additional hints from the user. For instance, looking at

the StackOverflow example in Figure 2.1, in addition to the input-output tables, the user

also provides extra hints using natural language and intermediate results. Specifically, the

word “reshape” in the title indicates that the solution should use either spread or gather,

and “count” suggests the occurrence of aggregate functions(i.e., summarise, group by).

14

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

To incorporate the additional information, we propose a novel hybrid neural architec-

ture by leveraging the advantages of a seq2seq [101] model and the apriori algorithm for

learning association rules [2]. In particular, the seq2seq model takes as input the text

description and returns the most likely symbolic program according to a statistical model

trained from a corpus. For the example in Figure 2.1, our seq2seq model suggests some

of the following candidates:

{mutate,group by,summarise,spread} (92)

{group by,summarise,mutate,select} (91)

. . .

{unite,group by,summarise,spread} (79)

. . .

Each item in the list is a pair (P , wi) where P represents a symbolic program that we

learn from the data, and wi denotes the likelihood of being part of the solution. By

leveraging the additional description from the user, the seq2seq model is able to suggest

candidates that are close to the user intent. However, due to the size and quality of

the training data, for complex solutions which rarely appear in the corpus, the seq2seq

model is unlikely to suggest the correct symbolic program. As a result, a synthesizer may

still spend a significant amount of time enumerating wrong candidates. For instance, by

following the ranking generated from the seq2seq model, a synthesizer has to explore 130

symbolic programs before finding the right candidate.

To mitigate the above limitation, we leverage the apriori algorithm [1] for mining

association rules. Intuitively, an association rule, which is learned from a corpus of

data through unsupervised learning, aims to identify the hidden connections among the

15

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

keywords. For instance, given the text description in Figure 2.1, our algorithm is able

to discover the following rule which suggests that spread has a high chance to appear in

the solution:

{reshape, count} ⇒ {spread}

and the following rule indicates that unite should also appear in the solution:

{ , reshape} ⇒ {unite}

Using our refinement algorithm discussed in Section 2.3.3, our system is able to incorpo-

rate the hints from the association rules to adjust the distribution of the seq2seq model.

For instance, after running the refinement algorithm, the previous ranking is adjusted to:

...

{unite, group by, summarise, spread} (109)

...

{mutate, group by, summarise, spread} (96)

{group by, summarise, mutate, select} (94)

Observe that the score of all three candidates get increased as they are connected to

association rules learned from data. The score of the correct candidate increases more

as this candidate matches more rules than others. As a result, a synthesizer only needs

to explore less than 30 symbolic programs before reaching the right one.

To incorporate the above ranking from our statistical model, Mars provides soft con-

straints in the form of (f(s1, ..., sk), wi) where f is a k-nary predicate over DSL constructs

16

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

with likelihood weight wi. For instance, the symbolic program of the correct candidate

can be expressed with the following soft constraints :

(occurs(unite), 109) ∧ (occurs(group by), 109)∧

(occurs(summarise), 109) ∧ (occurs(spread), 109)∧

(hasChild(group by,unite), 109)∧

(hasChild(summarise,group by), 109)∧

(hasChild(spread,summarise), 109)

Here, hasChild(si, sj) is a binary predicate which indicates that the DSL construct si

should be the parent of sj in the solution. Similarly, occurs(si) is a unary predicate

asserting that si should occur in the solution. Given the soft constraints generated by

the hybrid model, the underlying Max-SMT solver in Mars can enumerate candidates

in a way that
∑
ωi is maximized. In other words, Mars always prioritizes candidates

that not only pass the input-output examples, but are also consistent with the user intent

expressed in natural language.

2.2 Problem Formalization

This section proposes a general setting for our synthesis problem, and formally states

the definitions of our multi-layer specification and maximal synthesis.

Given a domain-specific language (DSL) described by a context-free grammar G, our

synthesis framework searches the space of all possible programs up to a given depth.

A DSL is a tuple (Σ, R, S), where Σ, R, and S represent the set of symbols, produc-

tions, and the start symbol, respectively. Each symbol χ ∈ Σ corresponds to our built-in

DSL construct (e.g., +, spread, gather, select, etc.), constants, and variables. Pro-

17

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

gram inputs are expressed as symbols x1, . . . , xk ∈ Σ. Every production p ∈ R has the

form p = (A→ χ(A1, . . . , Ak)), where χ ∈ Σ is a DSL construct and A1, . . . , Ak ∈ Σ are

symbols for the arguments. Symbolic and concrete programs are defined using symbols

from the DSL.

Definition 2.2.1. (Symbolic Program) A symbolic program P is an abstract syntax

tree (AST) where some labels of the AST nodes are represented as symbolic variables yet

to be determined.

Example 2.2.1. Figure 2.3 shows a symbolic program with depth of size two. Here,

s3, s4, and s5 denote symbolic variables which corresponds to unknown symbols. This

symbolic program corresponds to select(gather(?, ?), ?), where the ? denotes sym-

bolic variables that still need to be determined.

Intuitively, a symbolic program P represents partial programs where some of the

symbols are unknown. In Section 2.3, we will introduce a neural architecture for learning

the most likely symbolic programs from a corpus of data.

N1

N2 N3

N4 N5s4

select

gather

s5

s3

Figure 2.3: An example of symbolic program.

N1

N2 N3

N4 N5x0

select

[1,2]gather

[1,3]

Figure 2.4: An example of concrete program.

Definition 2.2.2. (Concrete Program) A concrete program P is an AST where each

node is labeled with a symbol from the DSL.

18

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

Example 2.2.2. Figure 2.4 shows an AST which corresponds to the concrete program:

select(gather(x0, [1,3]), [1,2]).

Definition 2.2.3. (Hard Specification) The hard specification expresses a set of con-

straints that the symbolic program P has to satisfy. In classical PBE systems, we often

refer to the input-output examples as the hard specification. In particular, P(Ein) = Eout.

Example 2.2.3. In Mars, the hard specification is used to encode the input-output

requirement from the end-user. E.g., in Figure 2.1, the input and output tables are

translated into hard constraints in Mars.

Definition 2.2.4. (Soft Specification) The soft specification denotes a set of con-

straints that the symbolic program P preferably satisfies. In particular, each soft con-

straint is denoted by a pair (pr(χ1, . . . , χk), ω) where pr(χ1, . . . , χk) is a k-ary predicate

over the DSL constructs and ω represents the predicate confidence.

Example 2.2.4. In Mars, the soft specification is used to encode the user preference in

the form of natural language. For instance, the unary predicate (occurs(χi), ωi) encodes

that a DSL construct χi should appear in the program with confidence ωi. Similarly, the

binary predicate (hasChild(χi, χj), ωj) denotes that a DSL construct χi should appear

as the parent of χj in the program with confidence ωj. Note that the weight of each

predicate is automatically learned from a corpus of data.

Now we are ready to formally state our synthesis problem.

Definition 2.2.5. (Maximal Multi-layer Specification Synthesis) Given specifica-

tion (E ,Ψ,Σ) where E = (Tin,Tout), Ψ =
⋃

(χi, ωi), and Σ represents all symbols in the

DSL, the Maximal Multi-Specification Synthesis problem is to infer a program P such

that:

• P is a well-typed expression over symbols in Σ.

19

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

• P(Tin) = Tout.

•
∑
ωi is maximized.

2.3 Neural Architecture

In this section, we propose a hybrid neural architecture for inferring the most promis-

ing symbolic programs given the user description. In particular, our architecture incor-

porates a sequence-to-sequence (seq2seq) model and the apriori algorithm for discovering

association rules through unsupervised learning. While the seq2seq model is for estimat-

ing the initial score of a symbolic program, the association rules are further used to adjust

the initial score by mining hidden information that can not be identified by the seq2seq

model.

2.3.1 Sequence-To-Sequence Model

The problem of inferring the most promising symbolic programs from user description

can be viewed as a translation between two different languages. In particular, our goal is

to translate from natural language to symbolic programs expressed in our DSL. Inspired

by the recent success in natural language processing, we apply a seq2seq model with Long

Short-Term Memory (LSTM) [52] cells.

As shown in Figure 2.5, given a question-solution pair (D,S), where a question is a

user description composed by word tokens d:

D = (d1, d2, . . . , dn),

20

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

LSTM
Cell

embedding

...... LSTM
Cell

reshape comment appreciate <SOS> unite group_by summarise

unite group_by summarise spread

encoder decoder

count
......

-0.31 -0.52 -0.69 -0.39
-1.91

unite group_by summarise spread

!": {count}->{group_by, summarise}
!#: {aggregate}->{summarise}
!$: {reshape}->{spread}
!%: {unique}->{filter}
... rule set

programdescriptionreshape count ... comment appreciate

rules applied &', &), …

score

final score 2.3

Figure 2.5: The hybrid neural architecture in Mars

and a solution is a symbolic program composed by a sequence of functions2 si:

S = (s1, s2, . . . , sm),

the seq2seq model is used to estimate the probability of P (S|D), which is then given by:

P (S|D) = P (s1, s2, . . . , sm|d1, d2, . . . , dn) =
m∏
t=1

P (st|v, s1, s2, . . . , st−1),

where v is a fixed-dimensional vector representation of the user description generated by

the encoder.

Internally, the seq2seq model is composed by two components: the encoder and the

decoder. The encoder is an LSTM cell that takes as input a question D and generate its

corresponding vector representation v. At every time step t, we feed each token dt from

the question to the encoder and compute the following functions as given by the LSTM

2Each symbolic program ignores all constant variables and only preserves the name of each function.

21

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

mechanism:

zt = σ(Wz · [ht−1, dt])

rt = σ(Wr · [ht−1, dt])

h̃t = tanh(W · [rt ∗ ht−1, dt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t,

where at time step t, ht is the hidden state, W∗ are network parameters that will later be

learned from data, [,] is the vector concatenation operation, · is matrix multiplication,

and σ (sigmoid) and tanh are both activation functions that are given by:

σ(x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x

The final vector representation of a question is given by the last hidden state: v = hn.

Similar to the encoder, the decoder is also composed by an LSTM cell which takes

as input a symbolic program represented by a sequence of functions. The output of the

decoder is a distribution of functions given the current hidden state hi:

ui = Wu · hi + bu,

whereWu and bu are both learnable parameters, and the probability for a specific function

(for example, the jth function) at time step i is estimated by:

P (si,j) = P (si,j|v, s1, s2, ..., si−1) =
exp(ui,j)∑
j exp(ui,j)

,

22

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

where ui,j is the jth element of the vector.

Finally, we use the back propagation method with negative log likelihood loss to learn

the parameters of the neural network. The probability of a symbolic program given a

question is computed by estimating the product of the probability at each time step. We

take logarithm of every time step to prevent underflow of the final result, which gives the

equation of the probability score as follows:

P (S|D) = P (s1, s2, ..., sm|d1, d2, ..., dn) =
m∑
t=1

logP (st|v, s1, s2, ..., st−1),

where the most promising symbolic programs have higher scores.

2.3.2 Learning Association Rules

As shown later in Section 2.6, due to the quality of the training data, our seq2seq

model alone does not always achieve good performance. Specifically, for complex bench-

marks of which solutions rarely appear in the training data, it is difficult for the seq2seq

model to suggest the right candidates. On the other hand, even though the user cannot

figure out the exact solution for her problem, she may still indicate partial information of

the desired solution using some keywords or phrases. In order to discover hidden infor-

mation that can not be inferred by the seq2seq model, we leverage the apriori algorithm

to mine association rules that will later be used to adjust the rankings from the seq2seq

model.

As shown in Figure 2.5, let Q be the union of all tokens that appear in the questions

and all functions that appear in a solution:

Q = q1, q2, ..., qc,

23

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

and let E be the set of all tokens in a question-solution pair (S,D):

E =
⋃

(si, dj) where si ∈ S, dj ∈ D

An association rule r of a given set E is defined by:

r : X ⇒ Y,

where X, Y ⊆ Q. For example,

{unite,wide} ⇒ {spread}

indicates that if the two keywords ”unite” and ”wide” appear in the question, then the

function spread is also appearing in the corresponding solution. Also, rules can apply on

functions:

{filter, summarise} ⇒ {group by}

which means if both filter and summarise appear in the solution, then the function

group by also appears in the same solution.

To learn the association rules, we run the apriori algorithm on more than 30,000 an-

swers3 from Stackoverflow. Since the apriori algorithm is based on unsupervised learning,

it may generate rules that are not useful. To address this issue, we further filter out the

3An answer towards a specific question is usually composed by some natural language description
and solution code, which fits the prerequisits of association rules mining.

24

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

association rules of which confidence are low according to the following formulas:

supp(X) =
|{e ∈ E,X ⊆ e}|

|E|

conf(X ⇒ Y) =
supp(X ∪ Y)

supp(X)
.

Here, supp indicates the frequency of X that appears in the dataset, and conf represents

how often the rule holds.

2.3.3 Score Refinement Algorithm

In this section, we describe an algorithm that refines the score of the seq2seq model

using the association rules in Section 2.3.2.

As shown in Algorithm 1, the key idea of our refinement procedure is to take as

input a symbolic program S together with its original score c from the seq2seq model, and

produce a new score cr according to the association rules R discussed in Section 2.3.2.

Internally, the refined score cr is computed based on an accumulative boosting ratio b

that is initialized at line 4. Then for each association rule ri, the algorithm updates the

accumulative boosting ratio based on a weight function θ as well as a match function that

decides whether the current rule ri = X ⇒ Y applies to the current symbolic program

together with its description (D,S):

match(r,D, S) =

1 ∀e ∈ X ∪ Y, e ∈ D or e ∈ S

0 otherwise

Furthermore, the weight function θ is used to measure the quality of association rule ri

by taking several factors into account, including the confidence (i.e. conf) and support

(i.e., supp) discussed in Section 2.3.2, number of keywords that appear in rule ri, and

25

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

cost of the DSL construct (e.g. compared to select, mutate is more computationally

intensive).

Algorithm 1 Symbolic Program Score Refinement Algorithm

1: procedure Refinement(R, D, S, c, θ)
2: input: association rule set R, question D, solution S with its corresponding score
c and weight function θ

3: output: refined score cr
4: b← 0 ▷ accumulative boosting ratio
5: for rule ri ∈ R do
6: b← b+ θ(ri) ·match(ri, D, S)

7: cr ← c+ b · |c| ▷ update score
8: return cr

2.4 Maximal Specification Synthesis

In this section, we describe how Mars leverages the statistical information (discussed

in Section 2.3) to enumerate programs that are close to user intent.

As we mentioned earlier, most PBE synthesizers [49, 10, 43, 112, 106, 118] perform

program enumeration until they find a program that satisfies the input-output examples

provided by the user.

In order to perform program enumeration, we first need to represent the set of all

possible programs up to a given depth. Consider a DSLD = (Σ, R, S) where Σm represent

DSL constructs with arity-m and m is the greatest arity between DSL constructs. A

symbolic program P represented by a tree of depth k where each node has exactly m

children can represent all programs that use at most k − 1 production rules. Figure 2.6

shows a 3-ary tree with depth 2 that represents all programs that can be constructed

using at most 1 production rule from the DSL shown in Figure 2.2. Note that m = 3

since the greatest arity between DSL constructs is 3.

26

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

N1

N3 N4N2

Figure 2.6: An example of a bounded symbolic program.

Example 2.4.1. Assigning N1 7→ unite, N2 7→ input, N3 7→ 1, N4 7→ 2 corresponds to

the program “unite(input, 1, 2)” which unites columns 1 and 2 from table input.

Given a symbolic program P and a DSL D, we encode the set of all possible concrete

programs as an SMT formula φ. The Satisfiability Modulo Theories (SMT) problem is

a decision problem for formulas that are composed with multiple theories. To encode

symbolic programs, we use the quantifier free fragment of the theory of Linear Integer

Arithmetic (LIA). A model of φ can be mapped to a concrete program by assigning a

symbol to each node in P .

Variables For each node Ni, we use an integer variable with domain between 0 and

r, where r = |Σ|. Assigning Ni 7→ k means that we assign to Ni the corresponding

symbol. Let idx : Σ→ N0 be a mapping between a symbol and its position. Since some

production rules p may have arity smaller than m, there may exist some children nodes

Nj that are not assigned any symbols. To enforce the invariant that each node is assigned

exactly one symbol, we introduce a special symbol pe with index 0 that is assigned to

nodes without symbols, i.e. Nj 7→ 0.

Example 2.4.2. Consider the DSL in Figure 2.2. idx maps each symbol to a correspond-

ing integer that identifies its position. For example the input xi is mapped to index 1,

27

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

spread to index 2, unite to index 3, etc.

Constraints Let I, O correspond to all symbols that are consistent with the input and

output examples, respectively. To guarantee that all models correspond to well-typed

concrete programs we must enforce the following constraints.

1. The root node N1 of P will be assigned a symbol that is consistent with the output

type:

∨
p∈O

N1 = idx(p).

Example 2.4.3. Let O = {xi, spread, unite, group by, summarise, gather, select}. The

following constraint enforces that the output type is consistent with the output example:

N1 = idx(xi) ∨N1 = idx(spread) ∨N1 = idx(unite) ∨N1 = idx(group by)∨

N1 = idx(summarise) ∨N1 = idx(gather) ∨N1 = idx(select).

2. Let N be the set of all nodes and ChNi
the set of children nodes of Ni ∈ N . Further-

more, let C(p,Ni) be the set of production rules that are consistent with production

p and can be assigned to Ni. If a production rule p = (A → χ(A1, . . . , Ak)) is as-

signed to node Ni then all m children Nj, . . . , Nj+m will have to be consistent with

A1, . . . , Ak:

∧
p∈Σ,Ni∈N

Ni = idx(p) =⇒
∧

Nj∈ChNi

∨
pj∈C(p,Nj)

Nj = idx(pj).

Example 2.4.4. To guarantee that if production p = unite is assigned to node N1 then

28

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

its children are consistent with p, we add the following constraints to φ:

N1 = idx(unite) =⇒
(
N2 = idx(xi) ∨N2 = idx(spread) ∨N2 = idx(unite)∨

N2 = idx(group by) ∨N2 = idx(summarise)∨

N2 = idx(gather) ∨N2 = idx(select)
)
.

Similar constraints are added to guarantee the consistency of N3 and N4 when unite is

assigned to N1.

3. Let L the set of leaf nodes and T the set of terminal symbols. Only terminal

symbols can be assigned to a leaf node:

∧
Ni∈L

∨
p∈T

Ni = idx(p).

Example 2.4.5. Consider the leaf node N2. To restrict the occurrence of terminals in

N2, we add the following constraints:

N2 = idx(xi) ∨N2 = idx([1]) ∨N2 = idx([1,2]) ∨ . . .∨

N2 = idx([4,5]) ∨N2 = idx(0) ∨ . . . ∨N2 = idx(10).

2.4.1 Enumerating Maximal Programs

Enumerating models from the SMT formula φ described in Section 2.4 will corre-

spond to concrete programs. However, this enumeration does not take into consideration

the user intent captured by the neural network described in Section 2.3. To capture

this information, we extend the SMT formula to a Max-SMT (Maximum Satisfiability

Modulo Theories) formula. A Max-SMT formula is composed by a set of hard and soft

29

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

constraints. The Max-SMT problem is to satisfy all hard constraints while maximizing

the number of soft constraints that can be simultaneously satisfied. This problem can

be further generalized to the weighted Max-SMT problem where each soft constraint ci

can be associated a weight wi. As hard constraints, we use the constraints described in

Section 2.4 that guarantee all enumerated programs are well-typed. As soft constraints,

we use the predicates occurs and hasChild encoded as follows.

1. Let predicate (occurs(pi), wi) denote that a production rule pi occurs with likelihood

wi in the final program. This predicate can be encoded into Max-SMT with the

following soft constraints with weight wi.

∧
pi∈Λ

∨
Ni∈N

Ni = idx(pi)

Example 2.4.6. The predicate (occurs(spread), 80) is encoded by adding the following

soft constraint to φ with weight 80:

N1 = idx(spread) ∨N2 = idx(spread) ∨N3 = idx(spread) ∨N4 = idx(spread).

2. Let predicate (hasChild(pi, pj), wi) denote that production pi has production pj as

its children with likelihood wi. This predicate is encoded as follows where all soft

constraints have weight wi.

∧
pi,pj∈Λ,Ni∈N

Ni = idx(pi) =⇒
∧

Nj∈ChNi

Nj = idx(pj)

Example 2.4.7. The predicate (hasChild(summarise, group by), 92) is encoded by adding

30

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

the following constraints to φ with weight 92:

(
N1 = idx(summarise) =⇒ N2 = idx(group by)

)
∧(

N1 = idx(summarise) =⇒ N3 = idx(group by)
)
∧(

N1 = idx(summarise) =⇒ N4 = idx(group by)
)

Maximizing the satisfaction of these soft constraints will guarantee that we enumerate

programs that are closer to the user intent. Note that even though the predicates occurs

and hasChild suffice to capture the information extracted by the neural network, our

approach is not limited to these predicates and can be extended by adding additional

predicates (e.g., happens before).

2.5 Implementation

Data Collection and Preparation We collect 20,640 pages from Stackoverflow [100]

using the search keywords ”tidyr” and ”dplyr” (with testing benchmarks excluded), where

each page contains a single question and multiple solutions. By removing duplicate

contents and questions with no solutions, we obtain 16,459 question-solution pairs. Each

question is pre-processed by a standard NLP pipeline that includes: stop word removal,

lemmatization and tokenization, and a solution is represented as a sequence of DSL

constructs (i.e., function names). The question-solution pairs are then used to train a

seq2seq model. For the association rules mining, we extract descriptions from answers

and their corresponding solutions and totally obtain 37,748 transactions as the input

to the Apriori algorithm. To ensure the validity of our experiments, we remove all the

benchmarks from the collected data.

31

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

Neural Network and Hybrid Architecture We build a seq2seq neural network

using the PyTorch framework [81]. The hyper parameters (e.g., numbers of dimensions

of the word/function embedding layer and LSTM hidden layer) are obtained through

a simple grid search. For the seq2seq model in Mars, we set both the dimensions of

word/function embedding layer and LSTM hidden layer to be 256, where the embedding

layer maps 25,004 words and 14 functions4 to vectors of the dimension 256. Furthermore,

a single layer perceptron is connected to the hidden layer of each output time step in the

decoder, mapping from a dimension of 5125 to 14, which is used to predict the probability

of each function given the previous hidden state and the current input.

As for the association rule mining, we apply the Efficient-Apriori [41] package to

discover useful association rules that can be further applied to refine the original ranking

generated by the seq2seq model. We then select valid rules according to the following

criteria:

• confidence ≥ 0.9 or support ≥ 0.003.

• Each valid rule should have at least 1 word and 1 function. And the number of

functions in the rules shall not exceed 2.

• Each valid rule should not contain any stop words, which builds upon the En-

glish stop words and includes additional words and functions that we consider less

indicative.

By filtering out less relevant rules, we obtain 187 association rules.

4There are 25,000 natural language words in the word vocabulary and 10 functions in the function
vocabulary. Each vocabulary contains 4 special helper tokens, namely namely ”<PAD>” (empty place-
holder), ”<SOS>” and ”<EOS>” (the start and end of a sequence), ”<UKN>” (out-of-vocabulary
word).

5Since we are using separate seq2seq structures for title and question, the concatenation of the hidden
layers from both are of a dimension of 256*2=512.

32

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

Machine Configuration We train our seq2seq model on a machine from Google Cloud

Platform with a 2.20GHz Intel Xeon CPU and an NVIDIA Tesla K80 GPU. All synthesis

tasks were run on a laptop equipped with Intel Core i5 CPU and 16GB memory. Since

the Morpheus tool is only available on a virtual machine [46], we used this virtual

machine to run all program synthesis experiments. It took around 8 hours to train our

hybrid model.

2.6 Evaluation

We evaluated Mars by conducting experiments that are designed to answer the

following questions:

• Q1: Do our multi-layer specification and neural architecture suggest candidates

that are close to the user intent?

• Q2: What is the impact of the neural architecture in Mars on the performance of

a state-of-the-art synthesizer for data wrangling tasks?

• Q3: How is the performance of Mars affected by the quality of the corpus?

2.6.1 Quality of suggested candidates

To evaluate the benefit of the multi-layer specification and neural architecture in

Mars, we instantiate the tool to the data wrangling domain, where data scientists tend

to spend about 80% of their time doing tedious and repetitive tasks. In particular,

we use the data in Section 2.5 to train the n-gram model from Morpheus [43], the

seq2seq model discussed in Section 2.3.1, and the hybrid neural architecture described in

Figure 2.5. Since the output of each model is a distribution of symbolic programs, we run

all three models on the original benchmarks from Morpheus, which contains 80 data

33

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

wrangling tasks using two popular R libraries, namely, tidyr and dplyr. In particular,

the data wrangling DSL contains 60 production rules and can induce a gigantic search

space of the symbolic programs, posing a challenge for state-of-the-art synthesizers. As

shown inMorpheus’ user study, data scientists solved on average two benchmarks in one

hour. For each benchmark, we then use the seq2seq model and hybrid neural architecture

to enumerate symbolic programs and record the ranking of the correct candidate that

matches the user intent. Finally, we manually checked all solutions synthesized by MARS

and made sure that they are semantically equivalent to the reference solutions. Because

the n-gram model in Morpheus only considers programs in the posts on StackOverflow

and ignore user description, it provides a global ranking shared by all benchmarks.

Results As shown in Table 2.1, the average ranking and standard deviation of the

n-gram model are 42 and 70, respectively. In other words, a synthesizer would need to

explore 42 symbolic programs on average. Recall that a symbolic program may corre-

spond to several thousands concrete programs. The standard deviation is used to quantify

stability of the model. In contrast, by incorporating the user descriptions, the seq2seq

model achieves an average ranking of 25 and a standard deviation of 39. Finally, with

the help of the association rules, the hybrid model obtains the best performance with an

average ranking of 18 and a standard deviation of 26. The result shows that our hybrid

model not only suggests candidates that are close to user intent (i.e., low average), and

it is also more stable (i.e., low standard deviation) across different benchmarks.

We further look into the number of top-1 and top-3 candidates that are correctly

suggested by each model. As shown in Table 2.2, without user descriptions, the n-gram

model fails to predict any correct candidates in top-1 and only suggests correct candidates

in top-3 for two benchmarks. By leveraging user descriptions, the seq2seq model is able

to figure out the right top-1 and top-3 candidates for 8 and 18 benchmarks, respectively.

34

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

Table 2.1: Statistics for different model rankings

model n-gram seq2seq hybrid

average* 42 25 18
std.*1 70 39 26

1 standard deviation.
* computed based on the rankings of the
correct solutions.

Table 2.2: Counts of top-1s and top-3s in different models

model n-gram seq2seq hybrid

Top-1 total* 0 8 11
Top-3 total* 2 18 29

* computed based on the rankings of the cor-
rect solutions.

Finally, our hybrid model successfully suggests top-1 and top-3 candidates for 11 and 29

benchmarks.

2.6.2 Effectiveness of hybrid neural architecture

In this section, we further investigate the impact of a better ranking on the end-to-

end performance of a synthesizer. Specifically, we integrate the previous three statistical

models into Morpheus, a state-of-the-art synthesizer for data wrangling tasks.

Table 2.3: Statistics of running time

model avg. speedup1 #timeouts∗

ngram 1x 11
seq2seq 6x 8
hybrid 15x 2

1 average speedup on challenging solved bench-
marks.

* number of timeouts on all benchmarks.

35

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

10−2 10−1 100 101 102
10−2

10−1

100

101

102
n-gram is better

seq2seq is better

Figure 2.7: Comparison of run times (in seconds) between n-gram (x-axis, used in
Morpheus) and seq2seq (y-axis, used in Mars) using a logarithmic scale.

Results Figure 2.7 and Figure 2.8 show the results of running Morpheus on its orig-

inal 80 benchmarks with three different models (namely n-gram model in original Mor-

pheus and seq2seq/hybrid model in Mars) and a time limit of 300 seconds. In partic-

ular, each dot in the figure represents the pairwise running time of a specific benchmark

under different models. As a result, the dots near the diagonal indicates that the per-

formance of two models is similar on those benchmarks. For instance, Figure 2.8 shows

the comparison between the n-gram model and our hybrid model in terms of running

time. Specifically, our hybrid model outperforms Morpheus’ original n-gram model in

58 of 80 benchmarks. In the meantime, Morpheus times out on 11 benchmarks with

the n-gram model, whereas it only times out on 2 benchmarks with our hybrid model.

The performance of the seq2seq model is between the above two models by outperform-

ing Morpheus n-gram model in 47 of 80 benchmarks and timing out on 8 benchmarks.

Table 2.3 shows the average speedup for challenging benchmarks (i.e. > 3 library calls)

with respect to the n-gram model for benchmarks that can be solved by both models.

On average, the seq2seq model is 6x faster than the n-gram model and the hybrid model

is 15x faster than the n-gram model. The result further confirms that a statistical model

36

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

10−2 10−1 100 101 102
10−2

10−1

100

101

102
n-gram is better

hybrid is better

Figure 2.8: Comparison of run times (in seconds) between n-gram (x-axis, used in
Morpheus) and hybrid (y-axis, used in Mars) using a logarithmic scale.

that accurately captures user intent tends to have a better performance in running time.

Remarks To understand the cases where our technique runs significantly faster, we

manually look into some of the benchmarks. We notice that our technique performs

especially well if the user states her problem in a clear way. For instance, in this post

from StackOverflow, 6 although the user does not know the exact solution for her complex

task, she is still able to convey the transformations using keywords (e.g., “count” and

“unique”) and partial code snippets. Even with these discrete signals, our hybrid model

manages to guide Morpheus to the correct program in less than a second:

1 TBL_7 = filter(p25_input1, "b">1)

2 TBL_3 = unite(TBL_7, key_ab, "a", "b")

3 TBL_1 = group_by(TBL_3, "key_ab")

4 morpheus = summarise(TBL_1, e=n())

In contrast, Morpheus with its original n-gram model takes several minutes to find the

right candidate.

6https://stackoverflow.com/questions/33549927

37

https://stackoverflow.com/questions/33549927

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

2.6.3 Discussion

Like any other technique, our approach also has its own limitations. For instance, in

Figure 2.8, there are still some benchmarks where n-gram performs better, we manually

inspect all these cases and notice that the issue is caused by the following reasons:

Insufficient Text In this post, 7 the user only provides input-output examples but

her description barely contains any useful signals that allow our hybrid model to make a

good prediction.

Contextual Text In this post, 8 the user explicitly states that she does not want to

use the mutate function:

“... I can solve my problem using dplyr’s mutate but it’s a time-intensive,

roundabout way to achieve my goal. ...”

However, after tokenizing the natural description and removing all the stop words (e.g.,

“but”), our hybrid model loses the contextual information and takes mutate as the key-

word.

Misleading Text In contrast to the previous example, in this post, 9 the user explicitly

wants to use the mutate function:

“... I want to use mutate to make variable d which is mean of a,b and c.

...”

However, since we directly adopt the DSL fromMorpheus and the DSL does not support

this special usage of mutate, our hybrid model proposes candidates that do not lead to

the correct solution.
7https://stackoverflow.com/questions/26733449
8https://stackoverflow.com/questions/29447325
9https://stackoverflow.com/questions/33401788

38

https://stackoverflow.com/questions/26733449
https://stackoverflow.com/questions/29447325
https://stackoverflow.com/questions/33401788

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

2.6.4 Threats to Validity

Corpus Quality Even though the hybrid neural architecture is more resilient to the

limitation of the existing data set, the performance of Mars is still sensitive to the

quality of the training data. To mitigate this concern, we train our statistical model

using all relevant posts from StackOverflow. In the future, we also plan to leverage

transfer learning to incorporate resources written in other languages (e.g., Python and

Matlab).

Benchmark Selection Due to the expressiveness of the DSL, in terms of complexity,

the benchmarks from Morpheus [43] may not represent the actual distribution of the

questions on StackOverflow. While the comparison on the Morpheus benchmarks may

not completely unveil the benefit of our hybrid neural architecture, and a representative

test suite may provide a more comprehensive view, we believe our comparison is sufficient

to show the strength of our technique. Furthermore, since both our neural architecture

and the enumerator are designed in domain-agnostic way, we also believe our technique

can generalize to other domains.

2.7 Summary

In this chapter, we proposed Mars, a novel synthesis framework that takes as input

a multi-layer specification which combines input-output examples, textual description,

and partial code snippets to capture the user intent. To solve a multi-layer specification

synthesis (MSS) problem, Mars encodes input-output examples as hard constraints and

denotes additional preferences (e.g., textual description, partial code snippet, etc) as soft

constraints. The MSS problem is reduced to a Max-SMT formula which can be solved by

an off-the-self solver [37, 16]. To accurately capture user intent from noisy and ambiguous

39

Mars: Program Synthesis Using Multi-Layer Specification Chapter 2

descriptions, we propose a novel hybrid neural architecture that combines the power of a

sequence-to-sequence model and the apriori algorithm for mining association rules. We

instantiate our hybrid model to the data wrangling domain and compare its performance

against Morpheus on its original 80 benchmarks. Our results show that our approach

outperforms Morpheus and it is on average 15x faster for challenging benchmarks.

40

Chapter 3

Concord: Program Synthesis Using

Deduction-Guided Reinforcement

Learning

Due to its potential to significantly improve both programmer productivity and soft-

ware correctness, automated program synthesis has gained enormous popularity over the

last decade. Given a high-level specification of user intent, most modern synthesizers

perform some form of backtracking search in order to find a program that satisfies the

specification. However, due to the enormous size of the search space, synthesizers ad-

ditionally use at least one of two other techniques, namely deduction and statistical

reasoning, to make this approach practical. For example, many recent synthesis tech-

niques use lightweight program analysis or logical reasoning to significantly prune the

search space [45, 109, 43, 85]. On the other hand, several recent approaches utilize a sta-

tistical model (trained off-line) to bias the search towards programs that are more likely

to satisfy the specification [6, 43, 12, 20]. While both deductive and statistical reasoning

have been shown to dramatically improve synthesis efficiency, a key limitation of existing

41

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Initial policy

Specification

 Take action Deduce

 Update policy

P

Program

Figure 3.1: Overview of our synthesis algorithm

approaches is that they do not tightly combine these two modes of reasoning. In par-

ticular, although logical reasoning often provides very useful feedback at synthesis time,

existing synthesis algorithms do not leverage such feedback to improve their statistical

model.

We propose a new synthesis algorithm that meaningfully combines deductive and

statistical reasoning. Similar to prior techniques, our approach starts with a statistical

model (henceforth called a policy) that is trained off-line on a representative set of training

problems and uses this policy to guide search. However, unlike prior techniques, our

method updates this policy on-line at synthesis time and gradually improves the policy

by incorporating feedback from a deduction engine.

To achieve this tight coupling between deductive and statistical reasoning, we for-

mulate syntax-guided synthesis as a reinforcement learning (RL) problem. Specifically,

given a context-free grammar for the underlying DSL, we think of partial (i.e., incom-

plete) programs in this DSL as states in a Markov Decision Process (MDP) and actions

as grammar productions. Thus, a policy of this MDP specifies how a partial program

should be extended to obtain a more specific program. Then, the goal of our reinforce-

ment learning problem is to improve this policy over time as some partial programs are

proven infeasible by an underlying deduction engine.

While the framework of reinforcement learning is a good fit for our problem, standard

RL algorithms (e.g., policy gradient) typically update the policy based on feedback re-

42

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

ceived from states that have already been explored. However, in the context of program

synthesis, deductive reasoning can also provide feedback about states that have not been

explored. For example, given a partial program that is infeasible, one can analyze the

root cause of failure to infer other infeasible programs [45, 110]. To deal with this dif-

ficulty, we propose an off-policy reinforcement learning algorithm that can improve the

policy based on such additional feedback from the deduction engine.

As shown schematically in Figure 3.1, our synthesis algorithm consists of three con-

ceptual elements, indicated as “Take action”, “Deduce”, and “Update policy”. Given

the current policy π and partial program P , “Take action” uses π to expand P into a

more complete program P ′. Then, “Deduce” employs existing deductive reasoning tech-

niques (e.g., Neo [45], Trinity [69]) to check whether P ′ is feasible with respect to the

specification. If this is not the case, “Update policy” uses the feedback provided by the

deduction engine to improve π. Specifically, the policy is updated using an off-policy

variant of the policy gradient algorithm, where the gradient computation is adapted to

our unique setting.

We have implemented the proposed method in a new synthesis tool called Concord

and empirically evaluate it on synthesis tasks used in prior work [45, 6]. We also compare

our method with several relevant baselines as well as two existing synthesis tools. Notably,

our evaluation shows that Concord can solve 15% more benchmarks compared to Neo

(a state-of-the-art synthesis tool), while being 8.71× faster on benchmarks that can

be solved by both tools. Furthermore, our ablation study demonstrates the empirical

benefits of our proposed reinforcement learning algorithm.

To summarize, this chapter focuses on the following key contributions:

• We propose a new synthesis algorithm based on reinforcement learning that tightly

couples statistical and deductive reasoning.

43

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

• We describe an off-policy reinforcement learning technique that uses the output of

the deduction engine to gradually improve its policy.

• We implement our approach in a tool calledConcord and empirically demonstrate

its benefits compared to other state-of-the-art tools as well as ablations of our own

system.

The rest of this chapter is structured as follows. First, we provide some backgound on

reinforcement learning and MDPs (Section 3.1) and introduce our problem formulation

in Section 3.2. After formulating the synthesis problem as an MDP in Section 3.3, we

then present our synthesis algorithm in Section 3.4. Section 3.5 and Section 3.6 describe

our implementation and evaluation respectively.

3.1 Background on Reinforcement Learning

At a high level, the goal of reinforcement learning (RL) is to train an agent, such

as a robot, to make a sequence of decisions (e.g., move up/down/left/right) in order

to accomplish a task. All relevant information about the environment and the task is

specified as a Markov decision process (MDP). Given an MDP, the goal is to compute a

policy that specifies how the agent should act in each state to maximize their chances of

accomplishing the task.

In the remainder of this section, we provide background on MDPs and describe the

policy gradient algorithm that our method will build upon.

Markov Decision Process We formalize a Markov decision process (MDP) as a tuple

M = (S,SI ,ST ,A,F ,R), where:

• S is a set of states (e.g., the robot’s current position),

44

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

• SI is the initial state distribution,

• ST is a set of the final states (e.g., a dead end),

• A is a set of actions (e.g., move up/down/left/right),

• F : S ×A → S is a set of transitions,

• R : S → R is a reward function that assigns a reward to each state (e.g., 1 for

reaching the goal and 0 otherwise).

In general, transitions in an MDP can be stochastic; however, for our setting, we only

consider deterministic transitions and rewards.

Policy A policy for an MDP specifies how the agent should act in each state. Specifi-

cally, we consider a (stochastic) policy π : S × A → R, where π(S,A) is the probability

of taking action A in state S. Alternatively, we can also think of π as a mapping from

states to distributions over actions. Thus, we write A ∼ π(S) to denote that action A is

sampled from the distribution for state s.

Rollout Given an MDPM and policy π, a rollout is a sequence of state-action-reward

tuples obtained by sampling an initial state and then using π to make decisions until a

final state is reached. More formally, for a rollout of the form:

ζ = ((S1, A1, R1), ..., (Sm−1, Am−1, Rm−1), (Sm,∅, Rm)),

we have Sm ∈ ST , S1 ∼ SI (i.e., S1 is sampled from an initial state), and, for each

i ∈ {1, ...,m− 1}, Ai ∼ π(Si), Ri = R(Si), and Si+1 = F(Si, Ai).

45

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

In general, a policy π induces a distribution Dπ over the rollouts of an MDP M.

Since we assume that MDP transitions are deterministic, we have:

Dπ(ζ) =
m−1∏
i=1

π(Si, Ai).

RL Problem Given an MDPM, the goal of reinforcement learning is to compute an

optimal policy π∗ forM. More formally, π∗ should maximize cumulative expected reward :

π∗ = argmax
π

J(π)

where the cumulative expected reward J(π) is computed as follows:

J(π) = Eζ∼Dπ

[
m∑
i=1

Ri

]

Policy Gradient Algorithm The policy gradient algorithm is a well-known RL al-

gorithm for finding optimal policies. It assumes a parametric policy family πθ with

parameters θ ∈ Rd. For example, πθ may be a deep neural network (DNN), where θ

denotes the parameters of the DNN. At a high level, the policy gradient algorithm uses

the following theorem to optimize J(πθ) [102]:

Theorem 3.1.1. We have

∇θJ(πθ) = Eζ∼Dπθ
[ℓ(ζ)] where ℓ(ζ) =

m−1∑
i=1

(
m∑

j=i+1

Rj

)
∇θ log πθ(Si, Ai). (3.1)

In this theorem, the term ∇θ log πθ(Si, Ai) intuitively gives a direction in the param-

eter space that, when moving the policy parameters towards it, increases the probability

of taking action Ai at state Si. Also, the sum
∑m

j=i+1Rj is the total future reward after

taking action Ai . Thus, ℓ(ζ) is just the sum of different directions in the parameter

46

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

space weighted by their corresponding future reward. Thus, the gradient ∇θJ(πθ) moves

policy parameters in a direction that increases the probability of taking actions that lead

to higher rewards.

Based on this theorem, we can estimate the gradient ∇θJ(πθ) using rollouts sampled

from Dπθ
:

∇θJ(πθ) ≈
1

n

n∑
k=1

ℓ(ζ(k)), (3.2)

where ζ(k) ∼ Dπθ
for each k ∈ {1, ..., n}. The policy gradient algorithm uses stochastic

gradient ascent in conjunction with Equation (3.2) to maximize J(πθ) [102].

3.2 Problem Formulation

We focus on the setting of syntax-guided synthesis [4]. Specifically, given a domain-

specific language (DSL) L and a specification ϕ, our goal is to find a program in L that

satisfies ϕ. In the remainder of this section, we formally define our synthesis problem

and clarify our assumptions.

DSL We assume a domain-specific language L specified as a context-free grammar

L = (V,Σ, R, S), where V,Σ denote non-terminals and terminals respectively, R is a set

of productions, and S is the start symbol.

Definition 3.2.1. (Partial Program) A partial program P is a sequence P ∈ (Σ∪V)∗

such that S
∗⇒ P (i.e., P can be derived from S via a sequence of productions). We refer

to any non-terminal in P as a hole, and we say that P is complete if it does not contain

any holes.

Given a partial program P containing a hole H, we can fill this hole by replacing

47

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

S → N | L
N → 0 | . . . | 10 | xi
L → xi | take(L,N) | drop(L,N) | sort(L)

| reverse(L) | add(L,L) | sub(L,L) | sumUpTo(L)

Figure 3.2: A simple programming language used for illustration. Here, take (resp.
drop) keeps (resp. removes) the first N elements in the input list. Also, add (resp.
sub) compute a new list by adding (resp. subtracting) elements from the two lists
pair-wise. Finally, sumUpTo generates a new list where the i’th element in the output
list is the sum of all previous elements (including the i’th element) in the input list.

H with the right-hand-side of any grammar production r of the form H → e. We use

the notation P
r⇒ P ′ to indicate that P ′ is the partial program obtained by replacing

the first occurrence of H with the right-hand-side of r, and we write Fill(P, r) = P ′

whenever P
r⇒ P ′.

Example 3.2.1. Consider the small programming language shown in Figure 3.2 for

manipulating lists of integers. The following partial program P over this DSL contains

three holes, namely L1, L2, N1:

add(L1, take(L2, N1))

Now, consider the production r ≡ L → reverse(L). In this case, Fill(P, r) yields the

following partial program P ′:

add(reverse(L1), take(L2, N1))

Program Synthesis Problem Given a specification ϕ and language L = (V,Σ, R, S),

the goal of program synthesis is to find a complete program P such that S
∗⇒ P and P

satisfies ϕ. We use the notation P |= ϕ to indicate that P is a complete program that

satisfies specification ϕ.

48

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Deduction Engine In the remainder of this chapter, we assume access to a deduction

engine that can determine whether a partial program P is feasible with respect to spec-

ification ϕ. To make this more precise, we introduce the following notion of feasibility.

Definition 3.2.2. (Feasible Partial Program) Given a specification ϕ and language

L = (V,Σ, R, S), a partial program P is said to be feasible with respect to ϕ if there

exists any complete program P ′ such that P
∗⇒ P ′ and P ′ |= ϕ.

In other words, a feasible partial program can be refined into a complete program

that satisfies the specification. We assume that our deduction oracle over-approximates

feasibility. That is, if P is feasible with respect to specification ϕ, then Deduce(P, ϕ)

should report that P is feasible but not necessarily vice versa. Note that almost all de-

duction techniques used in the program synthesis literature satisfy this assumption [109,

45, 58, 47, 43, 47].

Example 3.2.2. Consider again the DSL from Figure 3.2 and the specification ϕ defined

by the following input-output example:

[65, 2, 73, 62, 78] 7→ [143, 129, 213, 204, 345]

The partial program add(reverse(x), take(x,N)) is infeasible because, no matter what

production we use to fill non-terminal N , the resulting program cannot satisfy the pro-

vided specification for the following reason:

• Given a list l and integer n where n < length(l), take(l, n) returns the first n

elements in l. Thus, the length of take(l, n) is smaller than that of l.

• The construct reverse(l) reverses its input; thus, the size of the output list is the

same as its input.

49

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

• Finally, add(l1, l2) constructs a new list by adding the elements of its input lists

pair-wise. Thus, add expects the two input lists to be the same size.

• Since the outputs of reverse and take do not have the same size, we cannot

combine them using add.

Several techniques from prior work (e.g., [43, 45, 109, 85]) can prove the infeasibility of

such partial programs by using an SMT solver (provided specifications are given for the

DSL constructs).

Beyond checking feasibility, some deduction techniques used for synthesis can also

provide additional information [45, 110, 69]. In particular, given a partial program P

that is infeasible with respect to specification ϕ, several deduction engines can generate a

set of other infeasible partial programs P1, . . . , Pn that are infeasible for the same reason

as P . To unify both types of feedback, we assume that the output of the deduction oracle

O is a set S of partial programs such that S is empty if and only if O decides that the

partial program is feasible.

This discussion is summarized by the following definition:

Definition 3.2.3. (Deduction Engine) Given a partial program P and specification

ϕ, Deduce(P, ϕ) yields a set of partial programs S such that (1) if S ̸= ∅, then P is

infeasible, and (2) for every P ′ ∈ S, it must be the case that P ′ is infeasible with respect

to ϕ.

Example 3.2.3. Consider again the same infeasible partial program P given in Exam-

ple 3.2.2. Since drop(l, n) drops the first n elements from list l (where n < length(l)), it

also produces a list whose length is smaller than that of the input. Thus, the following

partial program P ′ is also infeasible for the same reason as P :

P ′ ≡ add(reverse(x), drop(x,N))

50

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Thus, Deduce(P, ϕ) may return the set {P, P ′}.

3.3 MDP Formulation of Deduction-Guided Program

Synthesis

Given a specification ϕ and language L = (V,Σ, R, S), we can formulate the program

synthesis problem as an MDPMϕ = (S,SI ,ST ,A,F ,R), where:

• States S include all partial programs P such that S
∗⇒ P as well as a special label

⊥ indicating a syntactically ill-formed partial program

• SI places all probability mass on the empty program S, i.e.,

SI(P) =

 1 if P = S

0 if P ̸= S

• ST includes complete programs as well as infeasible partial programs, i.e.,

P ∈ ST ⇐⇒ IsComplete(P) ∨ Deduce(P, ϕ) ̸= ∅ ∨ P = ⊥

• Actions A are exactly the productions R for the DSL

• Transitions F correspond to filling a hole using some production i.e.,

F(P, r = (H → e)) =

 ⊥ if H is not a hole in P

Fill(P, r) otherwise

• The reward function penalizes infeasible programs and rewards correct solutions,

51

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

i.e.,

R(P) =

1 if P |= ϕ

−1 if P = ⊥ ∨Deduce(P, ϕ) ̸= ∅ ∨ (IsComplete(P) ∧ P ̸|= ϕ)

0 otherwise1.

Observe that our reward function encodes the goal of synthesizing a complete program

P that satisfies ϕ, while avoiding the exploration of as many infeasible programs as

possible. Thus, if we have a good policy π for this MDP, then a rollout of π is likely to

correspond to a solution of the given synthesis problem.

Example 3.3.1. Consider the same specification (i.e., input-output example) ϕ from

Example 3.2.2 and the DSL from Example 3.2.1. The partial program

P ≡ add(reverse(x), take(x,N))

is a terminal state of Mϕ since Deduce(P, ϕ) yields a non-empty set, and we have

R(P) = −1. Thus, the following sequence corresponds to a rollout ofMϕ:

(S, S → L, 0), (L,L→ add(L,L), 0), (add(L1, L2), L→ reverse(L), 0)

(add(reverse(L1), L2), L→ x, 0), (add(reverse(x), L), L→ take(L,N), 0)

(add(reverse(x), take(L,N)), L→ x, 0), (add(reverse(x), take(x,N)),∅,−1).

Simplified Policy Gradient Estimation forMϕ Since our synthesis algorithm will

be based on policy gradient, we will now derive a simplified policy gradient for our MDP

1Note that the rewards are usually tailored and optimized to fit different real-world scenarios. For
example, small positive rewards can be assigned to (feasible) intermediate states to stabilize the learning
process as well as preventing policy divergence.

52

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Mϕ. First, by construction ofMϕ, a rollout ζ has the form

(P1, r1, 0), ..., (Pm,∅, q)

where q = 1 if Pm |= ϕ and q = −1 otherwise. Thus, the term ℓ(P) from Equation (3.1)

can be simplified as follows:

ℓ(Pm) =
m−1∑
i=1

q · ∇θ log πθ(Pi, ri), (3.3)

where Pm ∼ Dπθ
is a final state (i.e., complete program or infeasible partial program)

sampled using πθ. Then, Equation (3.1) is equivalently

∇θJ(πθ) ≈
1

n

n∑
k=1

ℓ(P (k)), (3.4)

where P (k) ∼ Dπθ
for each k ∈ {1, ..., n}.

3.4 RL-Based Synthesis Algorithm

In this section, we describe our synthesis algorithm based on reinforcement learning.

Our method is an off-policy variant of the standard (on-policy) policy gradient algorithm

and incorporates additional feedback – in the form of other infeasible programs – provided

by the deduction engine when improving its policy parameters. We first give a high-level

overview of the synthesis algorithm and then explain how to update the policy.

53

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Algorithm 2 Deduction-Guided Reinforcement Learning for Program Synthesis

1: procedure Synthesize(L, ϕ, π0)
2: input: Domain-specific language L = (V,Σ, R, S)
3: input: Specification ϕ; initial policy π0
4: output: Complete program P such that P |= ϕ
5: πθ ← π0
6: while true do
7: (P, C)← GetRollout(L, ϕ, πθ)
8: if C = ∅ then return P
9: else πθ ← UpdatePolicy(πθ, C)

10: procedure GetRollout(L, ϕ, πθ)
11: P ← S
12: while true do
13: C ← Deduce(P, ϕ)
14: if C ̸= ∅ then return (P, C)
15: choose r ∼ πθ(P) ∧ Lhs(r) ∈ Holes(P)
16: P ← Fill(P, r)
17: if IsComplete(P) then
18: if P |= ϕ then return (P,∅)
19: else return (P, {P})

20: procedure UpdatePolicy(πθ, C)
21: for k′ ∈ {1, ..., n′} do
22: P (k′) ∼ Uniform(C)
23: θ′ ← θ + η

∑n′

k′=1 ℓ(P
(k′)) · Dπθ

(P (k′))

1/|C|
24: return πθ′

3.4.1 Overview of Synthesis Algorithm

Our RL-based synthesis algorithm is presented in Algorithm 2. In addition to spec-

ification ϕ and domain-specific language L, this algorithm also takes as input an initial

policy π0 that has been trained off-line on a representative set of training problems2. In

each iteration of the main synthesis loop, we first obtain a rollout of the current policy

by calling the GetRollout procedure at line 7. Here, each rollout either corresponds

2We explain how to train this initial policy in Section 3.5.

54

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

to a complete program P or an infeasible partial program. If P is complete and satis-

fies the specification, we return it as a solution in line 8. Otherwise, we use feedback C

provided by the deduction engine to improve the current policy (line 9). In the follow-

ing subsections, we explain the GetRollout and UpdatePolicy procedures in more

detail.

3.4.2 Sampling Rollouts

The GetRollout procedure iteratively expands a partial program, starting from

the start symbol S of the grammar (line 11). In each iteration (lines 12–19), we first check

whether the current partial program P is feasible by calling Deduce. If P is infeasible

(i.e., C is non-empty), then we have reached a terminal state of the MDP; thus, we return

P as the final state of the rollout. Otherwise, we continue expanding P according to the

current policy πθ. Specifically, we first sample an action (i.e., grammar production) r

that is applicable to the current state (i.e., the left-hand-side of r is a hole in P), and,

then, we expand P by calling the Fill procedure (defined in Section 3.2) at line 16.

If the resulting program is complete , we have reached a terminal state and return P ;

otherwise, we continue expanding P according to the current policy.

3.4.3 Improving the Policy

As mentioned earlier, our algorithm improves the policy by using the feedback C pro-

vided by the deduction engine. Specifically, consider an infeasible program P explored by

the synthesis algorithm at line 7. Since Deduce(P, ϕ) yields a set of infeasible programs,

for every program P ′ ∈ C, we know that the reward should be −1. As a consequence, we

should be able to incorporate the rollout used to construct P into the policy gradient esti-

mate based on Equation (3.3). However, the challenge to doing so is that Equation (3.4)

55

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

relies on on-policy samples – i.e., the programs P (k) in Equation (3.4) must be sampled

using the current policy πθ. Since P
′ ∈ C is not sampled using πθ, we cannot directly use

it in Equation (3.4).

Instead, we use off-policy RL to incorporate P ′ into the estimate of ∇θJ(πθ) [59].

Essentially, the idea is to use importance weighting to incorporate data sampled from a

different distribution than Dπθ
. In particular, suppose we are given a distribution D̃ over

final states. Then, we can derive the following gradient:

∇θJ(πθ) = EP∼Dπθ
[ℓ(P)] = EP∼D̃

[
ℓ(P) · Dπθ

(P)

D̃(P)

]
.

Intuitively, the importance weight
Dπθ

(P)

D̃(P)
accounts for the fact that P is sampled from

the “wrong” distribution.

Now, we can use the distribution D̃ = Uniform(Deduce(P ′, ϕ)) for a randomly

sampled final state P ′ ∼ Dπθ
. Thus, we have: 3

Theorem 3.4.1. The policy gradient is

∇θJ(πθ) = EP ′∼Dπθ
,P∼Uniform(Deduce(P ′,ϕ))

[
ℓ(P) · Dπθ

(P)

1/|Deduce(P ′, ϕ)|

]
. (3.5)

Proof. Note that

∇θJ(πθ) = EP ′∼Dπθ
[∇θJ(πθ)]

= EP ′∼Dπθ
,P∼Uniform(Deduce(P ′,ϕ))

[
ℓ(P) · Dπθ

(P)

1/|Deduce(P ′, ϕ)|

]
,

as claimed.

3Technically, importance weighting requires that the support of D̃ contains the support of
Dπθ

. We can address this issue by combining D̃ and Dπθ
—in particular, take D̃(P) = (1 − ϵ) ·

Uniform(Deduce(P ′, ϕ))(P) + ϵ · Dπθ
(P), for any ϵ > 0.

56

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

The corresponding estimate of ∇θJ(πθ) is given by the following equation:

∇θJ(θ) ≈
1

n

n∑
k=1

1

n′

n′∑
k′=1

ℓ(P (k,k′)) · Dπθ
(P (k,k′))

1/|Deduce(P (k), ϕ)|
,

where P (k) ∼ Dπθ
and P (k,k′) ∼ Uniform(Deduce(P (k), ϕ)) for each k ∈ {1, ..., n} and

k′ ∈ {1, ..., n′}. Our actual implementation uses n = 1, in which case this equation can

be simplified to the following:

∇θJ(θ) ≈
1

n′

n′∑
k′=1

ℓ(P (k′)) · Dπθ
(P (k′))

1/|Deduce(P, ϕ)|
, (3.6)

where P ∼ Dπθ
and P (k′) ∼ Uniform(Deduce(P, ϕ)) for each k′ ∈ {1, ..., n′}.

Now, going back to our synthesis algorithm from Algorithm 2, the UpdatePolicy

procedure uses Equation (3.6) to update the policy parameters θ. Specifically, given a

set C of infeasible partial programs, we first sample n′ programs P (1), . . . , P (n′) from C

uniformly at random (line 22). Then, we use the probability of each P (k) being sampled

from the current distribution Dπθ
to update the policy parameters to a new value θ′

according to Equation (3.6).

Example 3.4.1. Suppose that the current policy assigns the following probabilities to

these state, action pairs:

πθ((add(reverse(x), L)), L→ take(L,N)) = 0.3,

πθ((add(reverse(x), L)), L→ drop(L,N)) = 0.3,

πθ((add(reverse(x), L)), L→ sumUpTo(L)) = 0.1.

57

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Furthermore, suppose that we sample the following rollout using this policy:

P ≡ add(reverse(x), take(x,N)).

This corresponds to an infeasible partial program, and, as in Example 3, Deduce(P ,ϕ)

yields {P, P ′} where P ′ ≡ add(reverse(x), drop(x,N)). Using the gradients derived by

Equation (3.6), we update the policy parameters θ to θ′. The updated policy now assigns

the following probabilities to the same state, action pairs:

πθ′((add(reverse(x), L)), L→ take(L,N)) = 0.15,

πθ′((add(reverse(x), L)), L→ drop(L,N)) = 0.15,

πθ′((add(reverse(x), L)), L→ sumUpTo(L)) = 0.2.

Observe that the updated policy makes it less likely that we will expand the partial pro-

gram add(reverse(x), L)) using the drop production in addition to the take production.

Thus, if we reach the same state add(reverse(x), L) during rollout sampling in the next

iteration, the policy will make it more likely to explore the sumUpTo production, which

does occur in the desired program

add(reverse(x), sumUpTo(x))

that meets the specification from Example 2.

3.5 Implementation

We have implemented the proposed algorithm in a new tool called Concord written

in Python. In what follows, we elaborate on various aspects of our implementation.

58

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

3.5.1 Deduction Engine

Concord uses the same deduction engine described by Neo [45]. Specifically, given

a partial program P , Concord first generates a specification φ of P by leveraging the

abstract semantics of each DSL construct. Then, Concord issues a satisfiability query

to the Z3 SMT solver [37] to check whether φ is consistent with the provided specification.

If it is not, this means that P is infeasible, and Concord proceeds to infer other partial

programs that are also infeasible for the same reason as P . To do so, Concord first

obtains an unsatisfiable core ψ for the queried formula, and, for each clause ci of ψ

originating from DSL construct fi, it identifies a set Si of other DSL constructs whose

semantics imply ci. Finally, it generates a set of other infeasible programs by replacing all

fi’s in the current program with another construct drawn from its corresponding set Si.

3.5.2 Policy Network

Architecture As shown by Figure 3.3, Concord represents its underlying policy using

a deep neural network (DNN) πθ(r | P), which takes as input the current state (i.e., a

partial program P) and outputs a probability distribution over actions (i.e., productions

r in the DSL). We represent each program P as a flat sequence of statements and use

a recurrent neural network (RNN) architecture, as this is a natural choice for sequence

inputs. In particular, our policy network is a gated recurrent unit (GRU) network [33],

which is a state-of-the-art RNN architecture. Our policy network has one hidden layer

with 256 neurons; this layer is sequentially applied to each statement in the partial

program together with the latent vector from processing the previous statement. Once

the entire partial program P has been encoded into a vector, πθ has a final layer that

outputs a distribution over DSL productions r based on this vector.

59

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

Spec
Encoder

GRU
(t=0)

GRU
(t=1)

GRU
(t=2)

S L→ L add(L1,L2)→ L reverse(L)→

L add(L1,L2)

S L add(L1, L2)

……

fill fill fill

add(reverse(L1),L2)

Figure 3.3: The architecture of the policy network showing how to roll out the partial
program in Example 4.

Pretraining of Initial Policy Recall from Section 3.4 that our synthesis algorithm

takes a input an initial policy network that is updated during the synthesis process. One

way to initialize the the policy network would be to use a standard random initializa-

tion of the network weights. However, a more effective alternative is to pretrain the

policy on a benchmark suite of program synthesis problems [96]. Specifically, consider

a representative training set Xtrain of synthesis problems of the form (ϕ, P), where ϕ is

the specification and P is the desired program. To obtain an initial policy, we augment

our policy network to take as input an encoding of the specification ϕ for the current

synthesis problem – i.e., it has the form πθ(r | P, ϕ)4. Then, we use supervised learning

to train πθ to predict P given ϕ —i.e.,

θ0 = argmax
θ

∑
(ϕ,P)∈Xtrain

|P |−1∑
i=1

πθ(ri | Pi, ϕ).

We optimize θ using stochastic-gradient descent (SGD) on this objective.

Given a new synthesis problem ϕ, we use πθ0 as the initial policy. Our RL algorithm

then continues to update the parameters starting from θ0.

4Including the specification as an input to πθ is unnecessary if we do not use pretraining, since ϕ does
not change for a single synthesis problem.

60

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

3.5.3 Input Featurization

As standard, we need a way to featurize the inputs to our policy network – i.e., the

statements in each partial program P , and the specification ϕ. Our current implementa-

tion assumes that statements are drawn from a finite set and featurizes them by training

a different embedding vector for each kind of statement. While our general methodology

can be applied to different types specifications, our implementation featurizes the spec-

ification under the assumption that it consists of input-output examples and uses the

same methodology described by Balog et al. [6].

3.5.4 Optimizations

Our implementation performs a few optimization over the algorithm presented in

Section 3.4. First, since it is possible to sample the same rollout multiple times, our

implementation uses a hash map to check whether a rollout has already been explored.

Second, in different invocations of the GetRollout procedure from Algorithm 2, we

may end up querying the feasibility of the same state (i.e., partial program) many times.

Since checking feasibility requires a potentially-expensive call to the SMT solver, our

implementation also memorizes the results of feasibility checks for each state. Finally,

similar to Chen et al. [25], we use a 3-model ensemble to alleviate some of the randomness

in the synthesis process and return a solution as soon as one of the models in the ensemble

finds a correct solution.

3.6 Evaluation

In this section, we describe the results from our experimental evaluation, which is

designed to answer the following key research questions:

61

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

1. How does Concord compare against existing synthesis tools?

2. What is the impact of updating the statistical model during synthesis? (i.e., is

reinforcement learning actually useful)?

3. How important is the proposed off-policy RL algorithm compared to standard policy

gradient?

4. How important is it to get feedback from the deduction engine when updating the

policy?

Benchmarks We evaluate the proposed technique on a total of 100 synthesis tasks used

in prior work [6, 45]. Specifically, these synthesis tasks require performing non-trivial

transformations and computations over lists using a functional programming language.

Since these benchmarks have been used to evaluate both Neo [45] and DeepCoder [6],

they provide a fair ground for comparing our approach against two of the most closely-

related techniques. In particular, note that DeepCoder uses a pre-trained deep neural

network to guide its search, whereas Neo uses both statistical and logical reasoning (i.e.,

statistical model to guide search and deduction to prune the search space). However,

unlike our proposed approach, neither Neo nor DeepCoder update their statistical

model during synthesis time.

Training Recall that our algorithm utilizes a pre-trained initial policy. To generate the

initial policy, we use the same methodology described in DeepCoder [6] and adopted in

Neo [45]. Specifically, we randomly generate both programs and inputs, and we obtain

the corresponding output by executing the program. Then, we train the DNN model

discussed in Section 3.5 on the Google Cloud Platform with a 2.20GHz Intel Xeon CPU

and an NVIDIA Tesla K80 GPU using 16GB of memory.

62

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

0 10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

#Benchmarks

T
im

e

Concord
Neo
DeepCoder

Figure 3.4: Comparison between Concord, Neo, and DeepCoder

3.6.1 Comparison Against Existing Tools

To answer our first research question, we compare Concord against both Neo and

DeepCoder on the 100 synthesis benchmarks discussed earlier. The result of this com-

parison is shown in Figure 3.4, which plots the number of benchmarks solved within a

given time limit for each of the three tools. As we can see from this figure, Concord

outperforms DeepCoder and Neo both in terms of synthesis time as well as the num-

ber of benchmarks solved within the 5-minute time limit. In particular, Concord can

solve 82% of these benchmarks with an average running time of 36 seconds, whereas Neo

(resp. DeepCoder) solves 71% (resp. 32%) with an average running time of 99 seconds

(resp. 205 seconds). Thus, we believe these results answer our first research question in

a positive way.

63

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

3.6.2 Ablation Study

To answer our remaining research questions, we perform an ablation study in which

we compare Concord against three variants:

• Concord-noRL: This variant does not use reinforcement learning to update its

policy during synthesis. However, it still uses the pre-trained policy to guide search,

and it also uses deduction to prune infeasible partial programs. In other words,

Concord-noRL is the same as the synthesis algorithm from Algorithm 2 but

it does not invoke the UpdatePolicy procedure to improve its policy during

synthesis.

• Concord-NoDeduce: This variant uses reinforcement learning; however, it does

not incorporate feedback from the deduction engine. That is, rather than checking

feasibility of partial programs, it instead samples complete programs and uses the

percentage of passing input-output examples as the reward signal. Note that this

variant of Concord essentially corresponds to the technique proposed by Si et

al [96].5

• Concord-StandardPG: Recall that our algorithm uses an off-policy variant of

the standard policy gradient algorithm to incorporate additional feedback from the

deduction engine. To evaluate the benefit of our proposed approach, we created a

variant called Concord-StandardPG that uses the standard (i.e., on-policy) policy

gradient algorithm. In other words, Concord-StandardPG implements the same

synthesis algorithm from Algorithm 2 except that it uses Theorem 1 to update θ

instead of Theorem 2.

5We reimplement the RL algorithm proposed in [96] since we cannot directly compare against their
tool. Specifically, the policy network in their implementation is tailored to their problem domain.

64

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

solved Delta to Neo Avg. time (s) Speedup over Neo

Concord-noRL 56 -21% 48 1.63×
Concord-NoDeduce 65 -8% 21 3.66×
Concord-StandardPG 65 -8% 27 2.88×
Concord 82 +15% 9 8.71×

Table 3.1: Results of ablation study comparing different variants.

The results from this evaluation are summarized in Table 3.1. Here, the first column

labeled “# solved” shows the number of solved benchmarks, and the second column

shows percentage improvement over Neo in terms of benchmarks solved. The third

column shows average synthesis time for benchmarks that can be solved by all variants

and Neo. Finally, the last column shows speed-up in terms of synthesis time compared

to Neo.

As we can see from this table, all variants are significantly worse than Concord in

terms of the number of benchmarks that can be solved within a 5-minute time limit 6.

Furthermore, as we can see from the column labeled “Delta to Neo”, all of our proposed

ideas are important for improving over the state-of-the-art, as Neo outperforms all three

variants but not the full Concord system, which solves 15% more benchmarks compared

to Neo.

Next, looking at the third column of Table 3.1, we see that all three variants of

Concord are significantly slower compared to Concord in terms of synthesis time.

While both Concord and all of its variants outperform Neo in terms of synthesis time

(for benchmarks solved by all tools), Concord by far achieves the greatest speed-up

over Neo.

In summary, the results from Table 3.1 highlight that all of our proposed ideas (i.e.,

(1) improving policy at synthesis time; (2) using feedback from deduction; and (3) off-

6To understand the improvement brought by the pre-trainedd policy, we also conduct a baseline
experiment by using randomly initialized policy in Concord. Given the setting, Concord can solve
as many as 27% of the benchmarks in the given 5-minute time limit.

65

Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning Chapter 3

policy RL) make a significant difference in practice. Thus, we conclude that the ablation

study positively answers our last three research questions.

3.7 Summary

In this chapter, we presented a new program synthesis algorithm based on reinforce-

ment learning. Given an initial policy trained off-line, our method uses this policy to

guide its search at synthesis time but also gradually improves this policy using feedback

obtained from a deductive reasoning engine. Specifically, we formulated program synthe-

sis as a reinforcement learning problem and proposed a new variant of the policy gradient

algorithm that is better suited to solve this problem. In addition, we implemented the

proposed approach in a new tool called Concord and evaluated it on 100 synthesis

tasks taken from prior work. Our evaluation shows that Concord outperforms a state-

of-the-art tool by solving 15% more benchmarks with an average speedup of 8.71×. In

addition, our ablation study highlights the advantages of our proposed reinforcement

learning algorithm.

There are several avenues for future work. First, while our approach is applicable to

different DSLs and specifications, our current implementation focuses on input-output

examples. Thus, we are interested in extending our implementation to richer types

of specifications and evaluating our method in application domains that require such

specifications. Another interesting avenue for future work is to integrate our method

with other types of deductive reasoning engines. In particular, while our deduction

method is based on SMT, it would be interesting to try other methods (e.g., based on

types or abstract interpretation) in conjunction with our proposed RL approach.

66

Chapter 4

Poe: Program Synthesis for Neural

Prediction Refinement

Due to the prevalence of non-trivial visualization tasks across different application do-

mains, recent years have seen a growing number of libraries that aim to automate complex

visualization tasks. Despite all these efforts, data visualization still remains a daunting

task that requires considerable expertise.

As many end-users typically lack the expertise to write complex queries in declarative

query languages such as SQL or R programs, techniques that can answer visualization

queries from natural language (NL) descriptions are more compelling. However, be-

cause natural language is inherently ambiguous, mainstream NL-based techniques try to

achieve high precision by training the system on a specific semantic parser [13] where

the question is translated to a logical form that can be executed against the visualiza-

tion to retrieve the correct denotation. Unfortunately, semantic parsers heavily rely on

supervised training data that pairs natural language questions with logical forms, but

such data is very expensive to annotate. Although recent state-of-the-arts [51] slightly

mitigate this challenge through weak supervision without explicitly annotating data with

67

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

logical forms, their performance is far from satisfactory [51, 56] due to the quality and

quantity of the training data required to infer the hidden logical connections for deriving

the answers.

We provide an introspective program synthesis technique and its implementation in

a tool called Poe, for synthesizing data visualization queries from natural language.

Our key insight is based on a synergistic integration of statistical model and logic-based

reasoning shown in Figure 4.1. Specifically, Poe starts with answers from an off-the-shelf

statistic model that is trained through weak supervision. Since such a model only relies

on pairs of question-answer instead of explicit logical programs, it significantly reduces

the effort of labeling data thus achieves better performance through a large corpus [51].

However, in the case of long-tailed queries, the statistical model may still generate wrong

answers. This is where our key insight comes from: even though the statistical model

generates a wrong answer that is derived from a sequence of hidden inference steps

represented by neural network, part of the hidden steps may still be sensible since they

are learnt from a large corpus. But we can not access the hidden inference steps from

the neural network since it is trained directly from question-answer pairs. To get an

interpretable explanation that deciphers the answer of a statistical model, we leverage

a synthesis procedure to generate programs that are consistent with the specification,

which contains a visualization query and its answer. Because the original answer may

be wrong, the generated programs may all be problematic. Here, each program can be

viewed as an explanation for the decision, which contains partial correct derivations to

the correct answer. After that, Poe further turns this into an optimal synthesis problem

whose goal is to pick a candidate program and refine it into a concrete program that is

likely to be correct.

There are two caveats we need to conquer in this project. First, for each candidate

answer proposed by the statistic model, there could be multiple programs that are con-

68

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Deep Learning Model

Abstract Synthesis

Optimal Synthesis

Answers Explanations

Refined Explanation + Refined AnswerSpecification

<inference> <synthesis>

<repair> + <interpretation>

Figure 4.1: Framework overview.

sistent with the specification and generating each program is slow since it has to solve a

non-trivial synthesis problem. Second, even with a set of programs as the explanations of

the answer, we still need to define an objective function that guides the optimal synthesis

to obtain the desired solution.

To address the first caveat, we design an abstract synthesizer whose job is to generate

the most general partial programs that are consistent with the specification. Here, we

prefer partial programs that are most general because 1) they are faster to find, and 2)

they offer a compact representation of the explanation (i.e., search space). To mitigate

the second caveat, we leverage a multi-modal optimal synthesis procedure whose objec-

tive function is to encode fine-grained semantic constraints that are difficult to learn by

off-the-shelf statistical models. In particular, Poe encodes 1) a novel triangle alignment

constraint that denote semantic consistency among three parties, namely, natural lan-

guage, visualizations, and candidate programs; 2) well-typed constraints that are enforced

by the semantics of the DSL.

To evaluate the effectiveness of our technique, we evaluate Poe on 629 visualization

benchmarks and compare it against VisQA [56], the state-of-the-art synthesizer for vi-

sualization queries. Our experiment shows that Poe outperforms VisQA by improving

the accuracy from 44% to 59%. Our ablation study clearly demonstrates the benefits of

69

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

our abstract synthesizer and optimal synthesis using triangle alignments.

To summarize, this chapter focuses on the following key contributions:

• We identify and present a new type of program synthesis problem in visualization

question answering, where a deep learning model’s (potentially noisy) output is

used as specification to synthesize programs that explain the model’s behavior,

which is dubbed as introspective program synthesis.

• We describe an abstract program synthesis technique for quickly inducing the search

space given noisy specifications from a deep learning model’s output.

• We describe an optimal program synthesis technique for finding programs that best

match the consistency constraints implied between natural language questions and

visualizations.

• We implement our approach in an end-to-end system called Poe and evaluate it on

629 visualization question answering tasks of different types. In particular, we show

that our approach improves the state-of-the-art performance from 44% to 59%.

4.1 Overview

In this section, we give an overview of our approach with the aid of a simple motivating

example.

4.1.1 A Motivating Example

Figure 4.2 (left) shows a stacked bar chart that represents the opinions for future eco-

nomic growth for different countries. Here, Alice describes her query in natural language:

“Which country’s economy will get most worse over next 12 months?”

70

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

%

...

Data

Query
Which country's economy will get most worse
over next 12 months?

Explanation#2

T0 = pivot(T, "opinion", "%")

T1 = select(T0, "Worsen", eqmax, null)

T2 = project(T1, ["Country"])

Explanation#1

T0 = pivot(T, "opinion", "%")

T1 = select(T0, "Improve", eqmax, null)

T2 = project(T1, ["Country"])

Visualization

Figure 4.2: A motivating example on data of opinions for future economic growth for
different countries. Left: A visualization of stacked bar chart for illustrating the data
distribution; Middle: The corresponding table format of the data; Right: Example
checking semantic consistency between three parties: data, query and explanation.
Explanation#1 doesn’t fit since no keyword in the query shares similar meaning with
Improve in the data and Improve in the explanation; Explanation#2 satisfies semantic
consistency.

By reading the visualization on the length of the red bar for every country, human beings

can locate the correct answer: “Greece”, because it has the longest bar that represents the

opinion of “Worsen”, which corresponds to the keyword “most worse” from the query.

To automate data visualization tasks, weakly-supervised approaches [51] employ neu-

ral programming that mimics the above procedure by directly estimating the probability

of each potential answer extracted from the visualization. For example, a typical output

ranking (by probability) from such models would look like:

(0.78, Brazil), (0.67, Japan), (0.55, Greece), ...

where each tuple is composed by a candidate answer and its corresponding probability

estimation. Compared to approaches based on semantic parsing that require additional

labeling of intermediate logical forms, weakly-supervised approaches save the efforts of

manual labeling by skipping the logical forms and moving directly from query to answer,

71

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

thus benefiting from a larger source of available training data. However, it becomes

non-trivial to track and fix problematic answers proposed by these models, since weakly-

supervised approaches do not utilize intermediate logical forms that give hints about the

implicit reasoning process. For example, according to the above output ranking, the

correct solution “Greece” has a lower probability than “Brazil”. However, because the

model does not generate logical forms to explain the answers, it is difficult to figure out

which one is the correct answer.

To address this, Poe employs a two-staged program synthesis procedure to refine the

candidate answers immediately proposed from weakly-supervised models. First, for can-

didate answers, Poe generates potential explanations (i.e., abstract programs) using an

abstract program synthesis algorithm. Then, Poe tries to refine the explanations based

on information from the data and user-provided query by optimal synthesis techniques.

Finally, Poe proposes the most promising candidate answer based on the newly refined

ranking.

4.1.2 Explanation Generation

To reason about the visualization, without loss of information from data, Poe applies

a visualization-to-table conversion procedure similar to previous work [56] to obtain a

compact representation, as shown in Figure 4.2 (middle). To explain the candidate

answers using program synthesis, we first introduce a simple domain-specific language

(DSL) for common data wrangling tasks. As shown in Figure 4.3, the DSL supports

a subset of relational algebra such as projection (project) and selection (select) with

aggregation (aggregate), as well as pivoting (pivot) from typical data wrangling tasks.

The abstract synthesis engine of Poe can explain the candidate answers by looking

for DSL programs that generate the corresponding answers. In particular, for a given

72

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

⟨Table⟩ ::= project(⟨Table⟩, ⟨ColList⟩)
| select(⟨Table⟩, ⟨BoolOp⟩, ⟨ColInt⟩, ⟨ConstVal⟩)
| pivot(⟨Table⟩, ⟨ColInt⟩, ⟨ColInt⟩)
| aggregate(⟨Table⟩, ⟨ColList⟩, ⟨AggrOp⟩, ⟨ColInt⟩)

⟨AggrOp⟩ ::= count | min | max | sum | mean

⟨BoolOp⟩ ::= <| <= | == | >= | >| != | eqmax | eqmin

⟨Table⟩ ∈ tables, ⟨ConstV al⟩ ∈ constants
⟨ColInt⟩ ∈ columns, ⟨ColList⟩ ∈ columnsn

Figure 4.3: Syntax of a toy DSL for data wrangling.

table T (converted from its visualization) and the proposed top-k candidate answers

A0, A1, ..., Ak, Poe treats them as multiple programming-by-example (PBE) problems

where the input example is T and the output example is Ai, one for each candidate

answer as shown below:

(T,A0), (T,A1), (T,A2), ...

where A0 =“Brazil”, A1 =“Czech Rep.”, A2 =“Greece”, etc., and synthesizes their cor-

responding DSL programs. For example, for A0 =“Brazil”, there can be multiple expla-

nations:

1 project(select(T, "%", ==, 84), ["Country"])

2 project(select(pivot(T, "opinion", "%"), "Improve", eqmax, null), ["Country"])

3 ...

and for A2 =“Greece” the explanations would look like:

1 project(select(pivot(T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

2 ...

Instead of directly synthesizing the above concrete programs, which may not be scalable in

practice, Poe synthesizes abstract programs that are consistent with their corresponding

IO examples. So the explanations for A0 =“Brazil” would look like:

1 project(select(T, ⋄, ⋄, ⋄), ⋄)

73

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

2 project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

3 ...

and similar to A2 =“Greece”:

1 project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

2 ...

where ⋄ denotes a hole in the program yet to be determined. Such an abstract program

can be further refined to concrete programs by filling up the holes. Thus, each of them

represents a broader search space of concrete programs.

Strategically, since the program

project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

satisfies at least 2 of the examples, i.e., (T,A0) (where A0 =“Brazil” which corresponds

to the country with the highest “Improve” opinion) and (T,A2) (where A2 =“Greece”

which corresponds to the country with highest “Worsen” opinion), it’s included as one of

the potential abstract programs. Besides, Poe seeks to expand the bag of such abstract

programs. For example, the following program

project(select(T, ⋄, ⋄, ⋄), ⋄)

also satisfies multiple examples (e.g., (T,A0) and (T,A1) so it’s also included.

As a result, Poe’s abstract synthesis procedure constructs a bag of abstract programs

that satisfy the top-k examples:

1 project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

2 project(select(T, ⋄, ⋄, ⋄), ⋄)

3 ...

and provides it to the optimal synthesis for further refinement.

74

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

4.1.3 Answer Refinement

Given the list of program sketches above, Poe’s optimal synthesis engine fills in the

holes by combination of type-directed synthesis and multi-modal information from the

original data and query. In particular, Poe infers constraints from the original data and

query and encode them as objectives that guide the optimal synthesis procedure.

Note that the query from the user has two keywords highlighted automatically1, i.e.,

“country” and “most worse”. Poe composes constraints from different guiding principles

in practice. For example, semantic consistency should be maintained among three parties,

namely data, query and explanation, which we denote by triangle alignment. In particular

for the keyword “country” in the query, triangle alignment produces constraints that

ensure the existence of table contents that have similar meanings with “country”, as well

as existence of similar DSL constructs in the explanation programs.

Figure 4.2 (right) depicts the meaning of semantic consistency via triangle alignment.

For a concrete program refined from the bag of abstract programs such as:

project(select(pivot(T, "opinion", "%"), "Improve", eqmax, null), ["Country"])

we can find Country as an argument provided to project and “Country” as a column

name in the original table. However, the semantic consistency for “most worse” is broken

since we cannot find any language construct in the program that is similar to it, even

though “Worsen” as an opinion in the original table builds up the similarity connection

between the data and the query. If we switch the language construct that causes the

inconsistency from “Improve” to “Worsen”, the resulting program:

project(select(pivot(T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

now satisfies the semantic consistency, where Worsen from the program now connects with

“Worsen” in the query and Worsen in the data. Actually, this turns out to be the exact

1Keyword discovery can be approached by a template-based method or by data-driven methods (e.g.,
TFIDF weighting).

75

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

program that best executes the user intent and generates the desired answer “Greece”.

Besides triangle alignment, Poe also encodes other guiding principles as soft con-

straints into an optimal synthesis problem and generates a ranking list of preferences of

concrete programs in accordance to how well they fit into different constraints. Eventu-

ally, Poe executes the top-ranked program and returns the refined answer.

4.2 Preliminaries and Problem Statement

In this section, we first provide some background that will be used throughout the

chapter. After that, we describe the architecture of our introspective synthesis algorithm

and explain each of its components in detail. However, because both the abstract syn-

thesis and optimal refinement are the main focus of this chapter, we defer a detailed

discussion to Section 4.3 and Section 4.4, respectively.

4.2.1 Preliminaries

DSL We assume a domain-specific language L specified as a context-free grammar

L = (V,Σ, R, S), where V,Σ denote non-terminals and terminals respectively, R is a set

of productions, and S is the start symbol.

Partial Program A partial program (or abstract program) P is a sequence P ∈ (Σ∪V)∗

such that S
∗⇒ P (i.e., P can be derived from S via a sequence of productions). We refer

to any non-terminal in P as a hole ⋄, and we say that P is complete if it does not contain

any holes.

Given a partial program P containing a hole ⋄, we can fill this hole by replacing ⋄

with the right-hand-side of any grammar production r of the form ⋄ → e. We use the

76

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

notation P
r⇒ P ′ to indicate that P ′ is the partial program2 obtained by replacing the

first occurrence of ⋄ with the right-hand-side of r, and we write Fill(P, r) = P ′ whenever

P
r⇒ P ′.

Example 4.2.1. Consider the following partial program P :

project(⋄, ⋄)

and production r ≡ ⋄ → select(⋄, ⋄, ⋄, ⋄). In this case, Fill(P, r) yields the following

partial program P ′:

project(select(⋄, ⋄, ⋄, ⋄), ⋄)

Deduction Engine Motivated by prior work [43, 45, 28] in deductive synthesis, we

assume access to a deduction engine that can determine whether a partial program P

is feasible with respect to specification ϕ. To make this more precise, we introduce the

following notion of feasibility.

Definition 4.2.1. (Feasible Partial Program) Given a specification ϕ and language

L = (V,Σ, R, S), a partial program P is said to be feasible with respect to ϕ if there

exists any complete program P ′ such that P
∗⇒ P ′ and P ′ |= ϕ.

In other words, a feasible partial program can be refined into a complete program

that satisfies the specification. We assume that our deduction engine over-approximates

feasibility through abstract semantics. That is, if P is feasible with respect to specification

ϕ, then the feasibility check should report that P is feasible but not necessarily vice versa.

Note that almost all deduction techniques used in the program synthesis literature satisfy

this assumption [109, 45, 58, 43, 47].

2We also call P ′ as the refinement of P .

77

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Example 4.2.2. Consider the following input-output example in list manipulation:

ein : [74, 39, 40, 53, 89, 10] 7→ eout : [78, 80, 106]

We use the length of the list as the abstract domain [45]. Thus, the partial program

P : reverse(map(ein, ⋄)) is infeasible (i.e., P ̸|= e). In other words, the program won’t

satisfy the given IO example, no matter how we fill hole ⋄, because:

• The map construct takes as input a function (yet to be determined by the synthe-

sizer) and applies it over every element of ein, which yields an output list with equal

length to that of the input list ein.

• The reverse construct reverses the order of elements of its input, which makes no

changes to its length; thus, the output list has the same length with the input list.

• Since the output returned by reverse does not have the same length as the desired

output eout, we derive an inconsistency, i.e., size(ein) == size(eout)∧ size(ein) ==

6 ∧ size(eout) == 3 is UNSAT.

Statistical Model We consider a weakly supervised statistical model π [51] used to

prioritize the search order. Given a visualization I and its query Q, the model directly

assigns probabilities π(A|I,Q) to every candidate answer A ∈ A.

Rendering Visualization as Table For simplicity of the presentation, we will repre-

sent a visualization by its equivalent table format, which can be manipulated by existing

DSLs for data wrangling or relational algebra. In particular, given a visualization I, we

leverage an off-the-shelf procedure [56] to convert I into its tabular format. Please refer

to Section 4.5 for more details.

78

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Figure 4.4: Example tables showing how one can derive similar programs to get
conflicting outputs.

4.2.2 Introspective Program Synthesis

In this section, we state the problem of introspective program synthesis, as well

as an overview of our proposed approach. At a higher level, our approach aims at

boosting the performance of deep learning models in visualization question answering

by explaining their predictions using programs and performing consistency refinements

over the explanations, where we use explanations, partial programs, or abstract programs

interchangeably. Because mainstream weakly supervised models that directly predict

answers rather than generating intermediate logical forms, it is non-trivial for human

beings to understand how the decisions are made and provide potential improvements.

Our approach automates such a task by synthesizing and refining the answers using

program synthesis. This makes our problem different from a typical PBE setting, where

our specification is noisy in that 1) not all the predictions are correct, and 2) predictions

may conflict with each other.

Example 4.2.3. Figure 4.4 (right) shows a visualization query, where the user asks:

“Which country has highest Improve value?”

which expects the ground truth reasoning process to be similar to:

project(aggregate(I, null, max, ⋄), ["Country"])

79

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Deep Learning Model

Abstract Search Spaces

Abstract Synthesis

Optimal Synthesis

Interpreter...

DSL

introspective program synthesis

Answer 1

Answer 2

Answer k

QuestionVisualization

Optimal Explanation

Optimal Answer

Figure 4.5: System workflow in Poe.

where different hole fillings for ⋄ will result in different answers, namely “Brazil” (when

⋄=“Improve”) or “Japan” (when ⋄=“Worsen” or ⋄=“Remain the same”).

Introspective Program Synthesis Given 1) a visualization question answering task

T = (I,Q) where I is the visualization and Q is the question in English, 2) a domain-

specific language L = (V,Σ, R, S), and 3) a weakly supervised deep learning model π that

predicts top-k answers A = π(I,Q), the goal of introspective program synthesis is to find

a complete program P such that S
∗⇒ P and P optimizes the following objectives O:

P ∗ = argmax
P

JT ,π(P) = argmax
P

∑
o∈O

θo · o(I,Q,A, P),

where P ∗ is the optimal program, J is a cumulative term of weighted objectives o ∈ O.

In particular, we leverage objectivesO to solve amulti-model synthesis problem where

O encodes 1) consistency properties among three parties, namely, the visualization, the

question, and the program, and 2) naturalness of the program.

80

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Key Insight Given a weakly-supervised deep learning model π trained from a large

corpus, Poe starts from the top-k answers of π. Our observation on many deep learn-

ing models indicates that, even though the model’s top predictions may look different

and sometimes may not even contain the correct answer, they share inherent semantics

through implicit reasoning processes, which establish certain confidence drew from the

training data. Therefore, our key insight is to unravel the implicit reasoning process by

decompiling the answers of π while resisting fine-grained details that are error-prone due

the limitation of noisy data.

Example 4.2.4. As shown in Figure 4.4, given an question:

“Which country has highest Improve value?”

according to the above key insight, the following ordered predictions will be proposed by

an off-the-shelf deep learning model [51]:

“Brazil”, “Japan”, “China”, “U.S.”, ...

since the first three answers can be explained by the following partial program:

project(aggregate(I, null, ⋄, ⋄), ["Country"])

while the answer of “U.S.” can not be obtained because none of its values of the three

opinions aligns with the maximum or minimum value which the program is able find.

Thus, “Brazil”, “Japan” and “China” share some inherent similarity from the perspective

of how they are reasoned, even though they look unrelated on the surface.

System Overview Figure 4.5 shows the system workflow of Poe. Specifically, given

a DSL L, a visualization I, and a question Q, Poe first collects the top-k answers by

querying the deep learning model π with the visualization task. Due to the noisiness of

the answers, they will be sent to the abstract synthesis module to interpret the implicit

reasoning process behind the answers.

81

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

granularitycoarse fine

Figure 4.6: Different granularities that affect the algorithm search space. An in-
put-output pair is denoted by a triangle.

Abstract Synthesis Given the top-k noisy answers from the deep learning model as

well as a DSL L for generating visualization query programs, the abstract synthesis mod-

ule performs a relaxed version of deduction over the noisy answers to quickly converge to

a roughly feasible search space, which is represented by a set of partial/abstract programs

P . We defer a detailed discussion of abstract synthesis to Section 4.3.

Optimal Refinement Since each abstract program P ∈ P can not be concretely

executed to obtain the answer, Poe further invokes the optimal refinement procedure

to generate a concrete program. In particular, the optimal refinement module is an

instance of optimal synthesis whose goal is to optimize several objectives ranging over

consistency among multiple parties as well as perplexity of the programs. Finally, the

module will interpret the optimized program and return the final answer. We defer a

detailed discussion of optimal refinement to Section 4.4.

82

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

4.3 Abstract Program Synthesis with Noisy Specifi-

cation

In this section, we describe a novel abstract synthesis algorithm that can efficiently

quantify the relevant search space given noisy specification from the deep learning model.

Intuition Due to the uncertainty of an off-the-shelf deep learning model, it may pro-

duce noisy answers that fail to capture the user intent. Therefore, before we generate the

precise answer, we first need to efficiently quantify relevant search space that explains

the outputs from the statistical model. However, this is quite challenging. As shown

in Figure 4.6, given a set of input-output examples E, a naive way (at the left) is to

generate a coarse-grained abstract program ⋄ that is consistent with all input-output

examples. However, this option is useless because the search space also includes a huge

amount of undesired programs. On the other extreme at the right, we can also perform

fine-grained synthesis by synthesizing a concrete program P per each input-output exam-

ple e ∈ E. However, the fine-grained option has at least two drawbacks: first, it requires

invoking multiple instances of PBE (programming-by-example) tasks, which may not be

feasible for the end user. Second, such a fine-grained option may also lead to overfitting,

especially if none of the input-output examples matches the user intent.

Our Solution Our goal is to compute a set of abstract programs that achieve a good

balance between generality and specificness (The middle one in Figure 4.6). In other

words, our abstract programs should be relatively specific to provide sufficient informa-

tion to derive the correct solution. In the meantime, they should also achieve certain

degree of generality with information that go beyond the current input-output examples.

We first introduce an auxiliary function that will be used by the abstract synthesis

83

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

algorithm.

Definition 4.3.1. (Relaxed Feasibility) Given a partial program P as well as a set

of IO examples E, we use the CountConsist function to count the number of examples

in E that is consistent with program P :

CountConsist(P,E) =
∑
∀e∈E

1(P |= e)

where 1 is the boolean predicate function3.

Example 4.3.1. Consider the table shown in Figure 4.4 (right) as input, and the fol-

lowing partial program P :

project(aggregate(I, null, ⋄, ⋄), ["Country"])

For the given set of model predictions as outputs:

“Brazil”, “Japan”, “China”, “U.S.”

Invoking CountConsist(P,E) will return 3. Because only “U.S.” cannot be generated

by any derivations of the partial program, which makes P consistent with three out of

the four input-output examples.

Abstract Program Synthesis Algorithm 3 shows the high-level structure of our syn-

thesis algorithm, which takes as input a specification E that must be satisfied by the

synthesized program, a domain-specific language with syntax L, as well as a hyperpa-

rameter q that balances the generality and specificness, which we denote as a balance

coefficient. The output of the AbsSynth procedure is either a set of partial/abstract

programs P in the DSL or ⊥, meaning that there is no DSL program that satisfies E.

3A boolean predicate function 1(A) is defined as 1(A) =

{
1 if A
0 if ¬A .

84

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Internally, our synthesis algorithm maintains a worklist data structures W . The

worklistW is a set of abstract programs that will eventually be returned by the procedure.

In particular, the AbsSynth procedure initializes W with a single root node labeled

with the start symbol S (line 2); thus, W initially contains an abstract program P that

represents any syntactically legal DSL program.

In each iteration of the while loop (lines 3–16), we pick an abstract program P from

W (line 5) and iteratively compute all possible refinements P ′ using the production rules

defined by L (line 6). For each candidate refinement P ∗, we invoke the CountConsist

procedure to compute the number of examples N in E that is consistent with P ∗ (line 7).

if n is greater than the threshold q, it means P ∗ is still too abstract thus requires further

refinement. In this case, we add P ∗ to the worklist W (line 9) so that the program gets

refined again in the near future. In the second case where n is no greater than q (line 10),

it indicates that P ∗ is too specific and may lead to overfitting. In this case, we include

P , which is the abstract program from which P ∗ is refined, to the worklist W (line 11).

Finally, the algorithm terminates when the worklist W reaches a fixed-point (line 14).

In other words, for all programs P ∈ W , any refinement on P will lead to programs that

are too specific (i.e., CountConsist(P ′, E) ≤ q).

Example 4.3.2. Following Example 4.3.1, for the same given IO examples, Algorithm 3

iteratively finds out a set of feasible partial programs given the threshold q = 3. We go

over the algorithm with a few concrete iterations:

1. The algorithm starts from a start symbol of hole W = {⋄} and P = ⋄, which is

feasible for all examples.

2. The algorithm derives P with well-typed production rules (line 6). For example,

one of the P ∗ could be:

project(⋄)

85

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Algorithm 3 Abstract Synthesis with Noisy Specification
Input: DSL L, IO Examples E, Balance Coefficient q
Output: Set of Partial Programs P or ⊥

1: procedure AbsSynth(L, E, q)
2: W ← {Root(S)}
3: while true do
4: W ′ ←W
5: W ←W − {P}
6: for P ∗ ∈ {P ′ | ∀d ∈ L, P d→ P ′} do
7: n← CountConsist(P ∗, E)
8: if n > q then
9: W ←W ∪ {P ∗}
10: else if n ≤ q then
11: W ←W ∪ {P}
12: if W =W ′ then return W

which is also feasible for all the IO examples (line 7), i.e., n = 4. In this case, since

n > q, the above program is added to the worklist (line 8-9).

3. The derivation continues until P becomes:

project(aggregate(I, null, ⋄0, ⋄1), ["Country"])

From the previous example we know currently P satisfies only three of the IO

examples, i.e., n = 3, but not sure whether it can be further refined, so we add P

to the worklist and continue with the iteration.

4. The algorithm attempts to fill ⋄0 with max, which yields:

project(aggregate(I, null, max, ⋄1), ["Country"])

and finds out it’s only feasible for IO with outputs of “Brazil” and “Japan”, i.e.,

n = 2. In this case since n ≤ q, the previous P (before derivation) is added.

5. The procedure continues until the worklist W reaches a fixed point. (line 14).

86

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

4.4 Explanation Refinement via Optimal Program

Synthesis

In this section, we describe our algorithm for synthesizing the optimal explanations

that best match the consistency constraints implied between natural language questions

and visualizations. We first define a relational operator to formalize the optimal synthesis

problem:

Near-Synonym Linguistic Engine First, we assume access to a linguistic engine

that can specifically determine whether two linguistic units are near-synonyms [40], which

constitutes to one of the major constraints of triangle alignment. A call to the near-

synonym linguistic engine NSyn(r, s) ∈ [0, 1] returns the degree of two linguistic units r

and s sharing common senses, where 1 indicates identical and 0 indicates irrelevant. In

other words, a near-synonym linguistic engine tells the “similarity”4 between linguistic

units, e.g., words, phrases, etc..

Example 4.4.1. Consider the following words: “high”, “highest”, “low”, we have:

NSyn(“high”, “highest”) > NSyn(“high”, “low”)

which means “high“ is more similar to “highest” than “low”.

ILP Formulation A 0-1 Integer Linear Programming (ILP) consists of a set of linear

constraints C over boolean variables and an objective function c. The goal is to find an

assignment such that all constraints are satisfied and the value of the objective function

c is optimized.

4Note that similarity techniqes based on distributional hypothesis [50], e.g., word2vec [71] and
glove [83], are observably not suitable for distinguishing synonyms and antonyms.

87

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Definition 4.4.1. (0-1 Integer Linear Programming) The 0-1 ILP problem is de-

fined as follows:

min c :
∑
j

cjxj s.t. C :
∧
i

∑
j

ai,jxj ∆ bi,

with ∆ := {≤,=,≥}, xj ∈ {0, 1}, and coefficients cj, ai,j, and bi are all integers.

We formulate the problem of finding an optimal triangle alignment using 0-1 ILP.

Specifically, constraints C encode mappings M among entities from three parties: the

question Q, the program P , and the visualization I. The objective function expresses

that we want to minimize the cost of the mappings. In what follows, we describe our

encoding in more detail.

Domains The domains contains entities from three parties. In particular, each question

Q contains a set of linguistic units w ∈ Vw, each visualization consists of a set of cells

t ∈ Vt, and each P has a set of holes h ∈ Vh that need to be filled. Finally, we also have

a set of abstract programs P ∈ VP generated by Algorithm 3. Formally, the triangle

alignments among entities from three parties are encoded as the conjunctions of the

following boolean variables:

Variables The variables in our 0-1 ILP formulation correspond to all possible mappings

among three parties:

• xtw: the boolean variable indicates a one-to-one mapping from a linguistic unit w

from the question Q to a cell value t from the data source (i.e., visualization).

• yth: the boolean variable indicates a one-to-one mapping from a hole h of an abstract

program to a terminal of cell value t. I.e., the hole h is filled with terminal t.

• zhP : the boolean variable indicates a mapping from an abstract program P to a hole

h. In other words, zhP evaluates to 1 if hole h belongs to abstract program P .

88

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

• uP : The boolean variable indicates the abstract program P (chosen from Algo-

rithm 3.) is used to derive the final solution.

Example 4.4.2. The optimal mapping for Explanation#2 from Figure 4.2 given the

following program P :

project(select(pivot(T, ⋄0, ⋄1), ⋄2, ⋄3, ⋄4), ⋄5)

can be represented by the following variables:

• xCountry
country = true, xWorsen

most worse = true

• yCountry
⋄5 = true, yWorsen

⋄2 = true

• ∀i ∈ {0, 1, 2, 3, 4, 5}, z⋄iP = true

• uP = true

Observe that the number of variables used in the encoding grows quadratically for

the number of words in the question Q as well as the number of holes in the abstract

program. However, since the number of words and holes is usually small, our encoding

introduces a manageable number of variables in practice.

Constraints While the variables describe all possible mappings among entities from

different parties, not all mappings can occur simultaneously. For example, we must

enforce that any satisfying assignment to C corresponds to a mapping from entities in

visualization v to holes in P . Furthermore, types also impose hard constraints that

limit which variables in V can be mapped to which ones in H. We enforce these hard

constraints by generating a system of linear constraints C as follows:

1. (Well-typed Terminals) If two parameters h ∈ H and t ∈ T are not compatible

due to their types, the boolean variables where these parameters occur are always

89

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

set to 0.

yth = 0 if the types of t and h are incompatible.

2. For each hole h ∈ H, we impose that there is exactly one terminal t that maps to

h:

∀h ∈ Vh,
∑
∀t∈Vt

yth = 1

Effectively, these constraints enforce that any solution of C corresponds to a sur-

jective mapping.

3. In a similar way, we also impose that there is exactly one abstract program P that

will be chosen: ∑
∀P∈VP

uP = 1

Furthermore, each hole h can belong to exactly one abstract program p:

∀h ∈ Vh,
∑

∀P∈VP

zhP = 1

4. For each entity t ∈ Vt, we impose that there is at most one mapping in the question

Q that contains t:

∀t ∈ Vt,
∑
w∈Vw

xtw ≤ 1

5. Finally, we ensure that a mapping only gets activated if its corresponding abstract

program P is chosen:

∀h ∈ Vh,∀t ∈ Vt, −yht + uP + zhP ≥ 1

90

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Example 4.4.3. Following Figure 4.2 and Example 4.4.2, we can construct the corre-

sponding constraint system by defining the set of holes Vh and set of cell values Vt, which

are given by:

Vh = {⋄i|i = 0, 1, ...}, Vt = {Country, opinion, ...}.

Objective Function We borrow the notion of perplexity from information theory to

measure how common a candidate abstract program is observed. Given a program P ,

assuming we have function PPL(P) that computes the perplexity of P using an off-the-

shelf statistical model, then the goal of the objective function c in our ILP formulation is

to find an optimal alignment with the lowest cost and perplexity. Specifically, we define

the objective function c as follows:

∑
w∈Vw

∑
t∈Vt

(1−NSyn(w, t)) · xtw +
∑
p∈VP

PPL(P) · uP .

Each mapping has an associated cost using linguistic distances defined at the begin-

ning, and the perplexity score will bias the objective function to prefer more promising

candidates.

Example 4.4.4. Following Example 4.4.3, suppose eventually we want to find out the

optimal explanation from the following two programs (denoted by P1 and P2):

1 project(select(pivot(T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

2 project(select(pivot(T, "opinion", "%"), "Improve", eqmax, null), ["Country"])

91

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Note that the linguistic engine has the following returned scores:

NSyn(Country, country) = 1,

NSyn(Worsen,most worse) = 0.6,

with other scores not mentioned omitted (since they are mostly shared between the two

programs and won’t affect the final result), and the computed perplexity of both programs

are PPL(P1) = 3.93 and PPL(P2) = 3.99. Both costs can be computed by:

cost(P1) = (1− 1) · 1 + (1− 0.6) · 1 + 3.93 = 4.33,

cost(P2) = (1− 1) · 1 + (1− 0) · 1 + 3.94 = 4.94.

Obviously P1 has lower cost and the optimal synthesis will propose it as the optimal

candidate explanation.

4.5 Implementation

We have implemented the proposed framework in a tool called Poe, which consists

of approximately 6,000 lines of Python code. Poe is built on top of the Trinity [69]

framework. In particular, our component specifications are expressed (Section 4.2) in

quantifier-free Presburger arithmetic. More specifically, we use a similar DSL for the

data wrangling domain and the same specifications considered in prior work [43]. The

linguistic engine is built using NLTK (with WordNet interface) [15] and spaCy [73]. In

what follows, we elaborate other key implementation details.

92

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Deep Learning Model Given a visualization query in English as well as a table that

corresponds to the visualization, Poe incorporates the pre-trained weakly supervised

model from the TaPas tool, to generate the top-k answers as the starting point of the

system.

Rendering Visualization as Table Similar to VisQA [56] and Viser [108], Poe

also needs to convert a visualization into its table representation, with additional visual

properties attached, such as colors, shapes, etc.. In particular, Poe invokes the Vega-

Lite [93] visualization tool to render the visualization from the benchmark specification

with extra accessible rich internet application (ARIA) attributes [104], and retrieves them

by parsing together with additional visual properties as a compact table. This reduces

the complex visualization to its succinct tabular format that is amendable to existing

data wrangling DSL.

Other Optimizations Our implementation performs extra optimizations in addition

to the algorithms presented in Section 4.3 and Section 4.4. First, following the Occam’s

razor principle, Poe explores abstract programs in increasing order of size. In the mean-

time, if the size of the candidate answers is a large number k, Poe may end up exploring

many abstract programs. In practice, we have found that a better strategy is to exploit

the inherent parallelism of our algorithm. Specifically, Poe uses multiple threads to

search for abstract programs for different answers.

Our deduction engine is inspired by prior works [43, 45], whose core procedures in-

clude: (1) every DSL construct is attached with its abstract semantics in form of first-

order formulas describing the input-output behavior, (2) the semantics of a partial pro-

gram is computed by conjoining the side effects of each individual construct, and (3) an

SMT query is issued to encode the consistency between the abstract semantics and the

93

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

user intent via implication.

Motivated by the Neo system [45], our implementation of CountConsist performs

an additional optimization over Algorithm 3: Since different partial programs may share

the same SMT specification, Algorithm 3 ends up querying the satisfiability of the same

SMT formula multiple times. Thus, our implementation memoizes the result of each

SMT call to avoid redundant Z3 queries.

Finally, since using a “universal DSL” for all visualization queries may significantly

increase the search space of the synthesizer, motivated by the Lift framework [3], Poe

will refine the DSL constructs on-the-fly and filter out irrelevant or redundant constructs

with respect to the query and the visualization. In particular, Poe starts with a smaller

DSL with constants that are relevant to the question, and to ensure completeness it

gradually increases the DSL constructs on-the-fly if it fails to find any feasible candidate

programs using the current DSL.

Perplexity Computation Recall that in Section 4.4, our optimal synthesis relies on

computing the perplexity of each candidate abstract program. Because perplexity mea-

surement of an abstract P requires a background probability model of P , we adapt a

similar statistical model from the Morpheus system [43], which uses a 2-gram model

trained on 15,000 code snippets collected from StackOverflow. Since Poe’s search strat-

egy always starts with an abstract program P derived from abstract synthesis, PPL(P)

is weighted slightly higher than NSyn(P) in order to balance the objective function.

4.6 Evaluation

In this section, we describe the results for the experimental evaluation, which is

designed to answer the following key research questions:

94

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

1. RQ1 (Performance): How does Poe compare against state-of-the-art tools on

visualization queries?

2. RQ2 (Effectiveness): Can Poe rectify wrong answers proposed by other tools?

3. RQ3 (Explainability): Does Poe synthesize explanations that well capture the

question intentions and make sense to human end-users?

4. RQ4 (Ablation): How significant is the benefit of abstract synthesis (Section 4.3)

and optimal alignment (Section 4.4)?

Benchmarks We evaluate Poe on a total number of 629 visualization question-

answering tasks used in VisQA [56]. Specifically, these tasks contain visualizations col-

lected from different real-world data sources and non-trivial questions in natural language

proposed by real users from Mechanical Turk. The types of questions cover including

retrieval, aggregation, assertion, and comparison, etc.

Experimental Setup To evaluate the effectiveness of Poe, we choose two state-of-

the-arts, VisQA and TaPas [51]. In particular, TaPas leverages a weakly supervised

model and provides an end-to-end way to directly predict the answer without explicitly

generating logic forms, where Poe collects top-30 answers from TaPas as input to its

abstract synthesis component. VisQA is an automatic pipeline for answering natural

language questions about visualizations and it builds on top of Sempre [13], a question-

answering system for relational data tables.

All experiments are performed on Amazon EC2 platform with a t3a.xlarge instance.

The time limit for a single task is 5 mins. We set the balance coefficient q = 3 by default5.

5Note that in practice q may need to be adjusted dynamically depending on the quality of candidate
programs derived from abstract synthesis. For example, for some benchmarks the statistical model may
not produce enough candidate answers and q needs to shrink accordingly so as to prevent generating
programs that are too abstract.

95

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

200 250 300 350 400 450
#solved

TaPas

VisQA

POE(top-1)

POE(top-3)

POE(top-5)

229 (36%)

274 (44%)

370 (59%)

397 (63%)

402 (64%)

POE(top-1)
POE(top-3)
POE(top-5)
TaPas
VisQA

tool

Figure 4.7: Performance comparison between the original pipeline from VisQA (base-
line), TaPas and Poe.

4.6.1 Comparison against State-of-the-Arts

To answer RQ1, we compare Poe against VisQA and TaPas on all the 629 VisQA

benchmarks discussed earlier. We measure the total number of benchmarks solved, which

is shown in Figure 4.7. As we can see, within given time limit, Poe solves 370 (59%)

benchmarks, whereas VisQA solves 274 (44%) and TaPas solves 229 (36%). By com-

parison, Poe solves 11% more benchmarks than VisQA and 23% than TaPas.

Additionally, we show more details of the comparison with respect to different ques-

tions types, as shown in Table 4.1. Poe solves on average 35% (resp. 25%) more

benchmarks across different types of questions compared to VisQA (resp. TaPas), and

has a lower variance on performance of different types of questions, whereas TaPas only

supports and is good at a restricted portion of questions. Thus, we believe these results

answer RQ1 in a positive way.

4.6.2 Benefits of Optimal Alignment and Abstract Synthesis

To study the effectiveness of abstract synthesis and optimal alignment, we further

perform an ablation study in which we compare Poe against two of its other variants:

• PoeO: This variant only performs optimal synthesis on the full search space.

96

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Table 4.1: Comparison on number of benchmarks solved by different tools across
different types of questions.

question type total
VisQA

(baseline)
TaPas

Poe
(top-1)

retrieval
183

(29%)
101

(55%)
98

(54%)
123

(67%)

comparison
87

(14%)
50

(57%)
0

(0%)
71

(82%)

aggregation
253

(40%)
92

(36%)
119

(47%)
161

(64%)

other
106

(17%)
31

(29%)
12

(11%)
15

(14%)

total
629

(100%)
274

(44%)
229

(36%)
370

(59%)

Table 4.2: Comparison between TaPas and different ablated variants of Poe.
variant TaPas Poe PoeA PoeO

solved
delta (%)

229
(+0%)

370
(+23%)

194
(-5%)

357
(+21%)

#timeout - 36 586 58

• PoeA: This variant only performs abstract synthesis followed by an enumerative

search to pick the first feasible concrete program.

The results from this evaluation are summarized in Table 4.2 with given timeout

of 5 mins. As we can see, without abstract synthesis procedure, PoeO is still able to

solve a certain number of benchmarks (357) since the consistency constraints provide

very strong hints that greatly reduce the search space. While for PoeA without optimal

synthesis, majority of the synthesis calls are timed out. Without prioritization provided

by optimal synthesis, PoeA finds it difficult to reach the optimal solution quickly even

after search space pruning. The full version of Poe combines both the benefits of the

abstract synthesis and optimal synthesis and thus reaches the best results among the

variants. Thus, we conclude that the ablation study provides positive evidence for RQ4

and shows the necessity of both procedures.

97

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

4.6.3 Evaluation on Effectiveness

To answer RQ2, we specifically measures the flip rate of Poe over TaPas, i.e., the

percentage of the benchmarks that Poe can rectify on top of TaPas. We compute flip

rate of tool A over tool B according to the following equation:

FLIP (
A

B
) =
|SUCC(A) ∩ FAIL(B)|

|FAIL(B)|
,

where SUCC returns the set of successfully solved benchmarks and FAIL returns the

set of failed benchmarks. Our results show that Poe has a flip rate of 39% over TaPas,

which means it can successfully “fix” 39% of the benchmarks that TaPas fails to solve.

In particular, for retrieval (resp. aggregation, comparison) type of questions, the flip rate

is 36% (resp. 37%, 78%). In summary, we believe our proposed techniques in Poe are

effective and thus RQ2 is answered in a positive way.

4.6.4 A User Study on Explainability

To answer RQ4, we carry out a simple user study on a comparison of the usability

and explainability between TaPas and Poe. The design of the user study is inspired by

the one carried out by VisQA [56]. Specifically, 3 students with elementary background

of data analytics are asked to use Poe and TaPas and perform the following evaluations

given real-world visualizations (and their corresponding parsed tables):

• Task 1 (Usability): Ask a question regarding the given visualization and evaluate

which tool returns the accurate desired answers.

• Task 2 (Explainability): Inspect the returned answer together with the expla-

nation generated by Poe and tell whether the answer is well explained and aligns

with the user intent.

98

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

In particular, 3∼5 individual questions were asked in each task, and the participants

were asked to make a choice between Poe and TaPas for each question based on the

usability and explainability of the answers given by both tools.

As a result, the participants indicate in our results that Poe is demonstrating better

usability than TaPas in that it solves more questions asked by users. Out of all the

visualization question answering tasks they issued, Poe finds the correct explanations

that well match their original intents of the questions in majority of the cases. Thus, for

RQ3, we believe the user study provides positive evidence about the usability of Poe

and explainability of the explanations generated.

4.6.5 Discussion

Like any other techniques, our approach also has its own limitations. Based on the

result in Figure 4.7, we manually inspect all these cases and notice that the issue is

caused by the following reasons:

Timeout Poe uses a timeout of 5 mins similar to previous works [45, 43]. As a result,

5% of difficult benchmarks do not terminate within the given timeout.

Incomprehensible Question Since the natural questions from VisQA benchmarks

are obtained from Amazon Mechanical Turk, some of the questions are found to be

incomprehensible, e.g.:

• “What is highestt change in income?” – typo.

• “In which year investors of all age groups took bigger risks?” – “bigger” should be

“biggest”.

• “Who has roughly 5 votes?” – factual error; no one has 5 votes in the visualization.

99

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

Such benchmarks create difficulties for all of the tools we experiment on.

Fallback Strategy Poe starts its core synthesis algorithm based on the top-k answers

from TaPas. In some cases, the top-k answers may all be wrong and do not provide any

hints to derive the correct solution. Then Poe has to leverage a simple fallback strategy

to dynamically increase the size of k, which may lead to timeout.

Limitation of NLP Modules Some of the benchmarks are found to be also challeng-

ing for the current NLP techniques that the tools depend on. For example:

• “How many countries in Asia will have their economy improved based on major-

ity votes?” – requires a knowledge base backend for inferring the implication of

“countries in Asia”.

• “How many teams are in the Central Division?” – requires alignment with entities

from the visualization to the range of “Central Division”.

• “What month has the least recorded weather?” – requires aligning a implicit sum-

mary of more than one weather types to represent the weather before aggregation.

Despite the aforementioned limitations, our core technique is not restricted to visu-

alization tasks. We anticipate that a similar idea can be instantiated to other tasks with

multi-layer specifications (e.g., text, table, code, visual objects, etc.) that combine a

top-down search procedure with an off-the-shelf statistical model. For instance, video

understanding, structural-object queries, data wrangling, etc.

There are various directions that Poe can be extended to handle a broader spectrum

of visualization queries. For example: 1) An extended version of the DSL that considers

more data wrangling operations that cover more long-tailed queries in our benchmark;

100

Poe: Program Synthesis for Neural Prediction Refinement Chapter 4

2) A more sophisticated linguistic engine, 3) A better deep learning model trained from

a better dataset.

4.7 Summary

In this chapter, we proposed a new methodology for synthesizing programs from nat-

ural language and applied it to the problem of answering visualization queries. Starting

with a few tentative answers obtained from an off-the-shelf statistical model, our approach

first invokes an abstract synthesizer that generates a set of sketches that are consistent

with the answers. Then we design an instance of optimal synthesis to complete one of

the candidate sketches by satisfying common type constraints and maximizing the con-

sistency among three parties, i.e., natural language, the visualization, and the candidate

program.

We implement the proposed idea in a system called Poe that can answer visualization

queries from natural language. Our method is fully automated and does not require

users to know the underlying schema of the visualizations. We evaluate Poe on 629

visualization queries and our experiment shows that Poe outperforms state-of-the-arts

by improving the accuracy from 44% to 59%.

101

Chapter 5

Related Work

In this chapter, we discuss prior research that is most related to the addressed topics

of this dissertation, including a long line of work on program synthesis, deduction-based

reasoning and machine learning, as well as cross-cutting techniques.

5.1 Program Synthesis

Over the past decade, there has been significant interest in automatically synthesizing

programs from high-level expressions of user intent [99, 49, 85, 6, 18, 47, 86, 54]. Some

of these techniques are geared towards computer end-users and therefore utilize informal

specifications such as input-output examples [49, 86, 106], natural language [113, 115, 53,

94], or a combination of both [24, 27]. On the other hand, program synthesis techniques

geared towards programmers often utilize additional information, such as a program

sketch [99, 103, 42, 76] or types [85, 72] in addition to test cases [44, 65] or logical

specifications [103, 18]. While techniques proposed in this dissertation can, in principle,

be applied to a broad set of specifications, the particular featurization strategy we use in

our implementation is tailored towards input-output examples.

102

Related Work Chapter 5

Programming by Example Our techniques are related to a line of work on

programming-by-example (PBE) [49, 10, 43, 112, 106, 118]. PBE has been widely applied

to different domains such as string manipulation [49, 10], data wrangling [43, 112], and

SQL queries [106, 118]. Among these techniques:

• Morpheus [43] is directly related to the data wrangling client to whichMars is in-

stantiated. However, unlike Morpheus that is specialized to table transformation,

the techniques in Mars can be generalized to other synthesis tasks. Compared to

existing PBE systems, Mars proposes a novel neural architecture that can learn

user preferences from natural language.

• Neo [45] reflects the conflict-driven learning philosophy shared by the core algo-

rithm in Concord. While Neo manages the knowledge base following an explicit

style of deductive reasoning, Concord extends and transplants it to a machine

learning model that learns to both prune and propose, thus also reducing extra

overheads caused by management. We defer a detailed related work discussion to

Section 5.2 and Section 5.3.

• Poe’s problem setting extends PBE notion by permitting the violation of provided

examples, due to the nature of the noisy predictions generated by machine learning

models. As a result, Poe also shares similar objectives as Mars as they both

consider extra layers of specification for determining optimal results.

Programming by Natural Language Programming-by-natural-language (PBNL)

is another paradigm [38, 90, 113, 87, 57] that is related to our techniques. Specifically,

SQLizer [113] takes input as natural language and generates its corresponding query

in SQL. There are other PBNL systems that translate natural language into simple

commands in smartphone [57], IFTTT scripts [87], and scripts for text editing [38, 90].

103

Related Work Chapter 5

Compared to previous PBNL systems, our neural architecture can reasonably capture the

user intent even in the presence of low quality training data. Furthermore, in addition

to natural language, the multi-layer specification in Mars also accepts input-output

examples as hard constraints which provide a strong guarantee in correctness. Meanwhile,

natural languages also play an important role in Poe’s encoding of consistency metric

between the queries, program constructs and visualizations, as they reflect user intents

in synthesis problems.

Interactive Program Synthesis The goal of our techniques also aligns with tools

in interactive program synthesis [82, 9, 17], where the goal is to iteratively refine user

intent through incorporating user decision in the synthesizer loop. While Mars and

Poe leverages natural language to capture user intent, we believe the idea of interactive

synthesis is complementary to our techniques and can further refine the distribution of

the machine learning model.

5.2 Deduction-Based Reasoning

There are many techniques that utilize logical reasoning to perform the core search-

ing and pruning for program synthesis, where the problem is usually formulated a

constraint solving instance. Techniques such as conflict-driven learning [14, 117] and

counterexample-guided inductive synthesis loop (CEGIS) [4, 60, 98] are closely related

to the techniques proposed in this dissertation.

Deduction-Based Pruning The techniques from this dissertation are built upon

a line of prior work on using deduction to prune the search space of programs in a

DSL [85, 43, 45, 109, 47]. Some of these techniques utilize type-information and type-

directed reasoning to detect infeasible partial programs [85, 47, 44, 78, 48]. On the

104

Related Work Chapter 5

other hand, other approaches use some form of lightweight program analysis to prune

the search space [109, 43, 45]. Concretely, Blaze [109] uses abstract interpretation

to build a compact version space representation capturing the space of all feasible pro-

grams [109]; Morpheus [43] and Neo [45] utilize logical specifications of DSL constructs

to derive specifications of partial programs and query an SMT solver to check for feasi-

bility; Scythe [106] and Viser [108] use deductive reasoning to compute approximate

results of partial programs to check their feasibility. Our techniques learn from deduction

feedback to improve search efficiency — the deductive reasoning engines used in our im-

plementation for Mars, Concord and Poe are similar to the latter category; however,

they can, in principle, be used in conjunction with other deductive reasoning techniques

for pruning the search space.

Learning from Failed Synthesis Attempts The techniques proposed in this dis-

sertation can utilize feedback from the deduction engine in the form of other infeasible

partial programs. This idea is known as conflict-driven learning and has been recently

adopted from the SAT solving literature [14, 117] to program synthesis [45]. Specifically,

Neo uses the unsat core of the program’s specification to derive other infeasible partial

programs that share the same root cause of failure, and we use the same idea in our

implementation of the deduction engines. While we use logical specifications to infer

other infeasible programs, there also exist other techniques (e.g., based on testing [110])

to perform this kind of inference.

5.3 Machine Learning

There has been significant interest in automatically synthesizing programs given high-

level specifications of different granularity [99, 49, 85, 6, 18, 47, 86, 54], such as program

105

Related Work Chapter 5

sketches [99, 103, 42], types [85, 72], logical forms [103, 18] and natural languages [27,

24, 113, 115, 94]. Recently, machine learning is extensively used for better prioritization

of programs for search-based approaches [6, 12, 27, 24, 45]. On the other end, program

synthesis techniques and formal methods are also used to provide rich and generalizable

feedback for machine learning models [95, 8, 28, 5, 120]. For example, SQLizer [113]

performs program repairs based on type-directed program synthesis; Probe [8] utilizes

guided bottom-up search to bootstrap machine learning model for synthesis; Metal [96]

uses graph-based models of reinforcement learning for synthesis with rewards from SMT

solvers.

Machine Learning for Program Synthesis The neural architecture in Mars is

relevant to two major directions for applying machine learning to program synthesis. In

particular, The first line of work is to directly generate programs from inputs in the form

of natural language or input-output examples [74, 75], which is inspired by the seq2seq

model in machine translation. Although we also incorporates a seq2seq model as part of

the neural architecture, we further leverage the apriori algorithm for mining association

rules to mitigate the quality of training data.

The second approach [70] incorporates statistical information to guide a program

synthesizer. In other words, a statistical model is used to suggest the most promising

candidates a synthesizer has to explore. For instance, DeepCoder [6] uses a deep neural

network that can directly predict programs from input-output examples. TheMorpheus

tool [43] adopts an n-gram model for synthesizing data wrangling tasks. Similarly, the

SLANG [88] tool integrates an n-gram model for code completion. Raychev et al. [89]

extends the previous approach to obtain a statistical model that can guide a synthesizer in

the presence of noisy examples. TheNeo [45] synthesizer generalizes previous approaches

by incorporating an arbitrary statistical model as its “decider” to guide the enumerative

106

Related Work Chapter 5

search. While Mars proposes a novel neural architecture to suggest the most promising

candidates, it can also leverage advanced techniques from previous work, such as pruning

infeasible candidates through deduction [43] and conflict-driven learning [45].

Another other approach from this dissertation, Concord, is also related to a long

line of work on using machine learning for program synthesis. Among these techniques,

some of them train a machine learning model (typically a deep neural network) to directly

predict a full program from the given specification [74, 75, 27, 39]. Many of these ap-

proaches are based on sequence-to-sequence models [101], sequence to tree models [115],

or graph neural networks [94] commonly used in machine translation.

A different approach, sometimes referred to as learning to search, is to train a statisti-

cal model that is used to guide the search rather than directly predict the target program.

For example, DeepCoder [6] uses a deep neural network (DNN) to predict the most

promising grammar productions to use for the given input-output examples. Similarly,

R3NN [80] and NGDS [55] use DNNs to predict the most promising grammar productions

conditioned on both the specification and the current partial program. In addition, there

has been work on using concrete program executions on the given input-output examples

to guide the DNN [25, 107]. Our technique for pretraining the initial policy network is

based on the same ideas as these supervised learning approaches; however, their initial

policies do not change during the synthesis algorithm, whereas we continue to update

the policy using RL.

While most of the work at the intersection of synthesis and machine learning uses su-

pervised learning techniques, recent work has also proposed using reinforcement learning

to speed up syntax-guided synthesis [21, 96, 66, 62]. These approaches are all on-policy

and do not incorporate feedback from a deduction engine. In contrast, in our problem

domain, rewards are very sparse in the program space, which makes exploration highly

challenging in a on-policy learning setting. Concord addresses this problem using off-

107

Related Work Chapter 5

policy RL to incorporate feedback from the deduction engine. Our ablation study results

demonstrate that our off-policy RL is able to scale to more complex benchmarks.

Finally, different from prior work [113, 56] that rely on a semantic parser whose train-

ing data is difficult and expensive to obtain, the other approach from this dissertation,

Poe, focuses more on interpreting and rectifying the direct answers from weakly super-

vised machine learning models by synthesizing programs as explanations. Such models

become increasingly popular due to the ease of obtaining training data.

Reinforcement Learning for Formal Methods There has been recent interest

in applying reinforcement learning (RL) to solve challenging PL problems where large

amounts of labeled training data are too expensive to obtain. For instance, Si et al. use

graph-based RL to automatically infer loop invariants [95], Singh et al. use Q-learning

(a different RL algorithm) to speed up program analysis based on abstract interpreta-

tion [97], Dai et al [35] uses meta-reinforcement learning for test data generation, and

Chen et al. [22] uses RL to speed up relational program verification. However, these ap-

proaches only use RL offline to pretrain a DNN policy used to guide search. In contrast,

Concord performs reinforcement learning online during synthesis. Bastani et al. has

used an RL algorithm called Monte-carlo tree search (MCTS) to guide a specification

inference algorithm [11]; however, their setting does not involve any kind of deduction.

Model Interpretability Despite their popularity, machine learning models are often

applied as black boxes. How to interpret the predicted results remains an important, yet

challenging task. Ribeiro et al. [91] proposed a method to explain models by present-

ing representative individual predictions and their explanations. In deep learning, there

are efforts to perturb the input to a neural network and visualize its influence to the

output. Clark et al. [34] analyzed the attention mechanisms of pre-trained models and

108

Related Work Chapter 5

demonstrated syntactic information captured in these models. Petroni et al. [84] consid-

ered language models as knowledge bases. However, none of them can achieve rigorous

explanation like what a synthesized program (e.g. generated by Poe) does.

Visualization / Table Question Answering Semantic parsing of natural language

queries to SQL has attracted increasing interest since the release of datasets like Wik-

iSQL [119] and Spider [116]. Their leaderboards have been frequently updated by newly

developed encoder and decoder architectures. For example, RAT-SQL [105] included

schema encoding, schema linking, and feature representation in a unified relation-aware

self-attention framework. Both autoregressive AST-based top-down (e.g., Yin and Neu-

big [114]) and bottom-up parsers (e.g., SMBOP [92]) have been proposed. Most of the

those studies assume the existence of datasets that map natural language queries to logic

forms or intermediate representation, which could be used to train encoders and decoders.

Recently, weakly supervised approaches like TaPas [51] that do not rely on annotating

logic forms, can be trained on larger corpora, thus outperform state-of-the-arts. Our

evaluation of Poe shows that our introspective synthesis approach that reconciles the

power of symbolic reasoning and machine learning can significantly push the boundary

of visualization queries.

109

Chapter 6

Conclusion

This dissertation proposes a synergistic framework that bridges statistical and logical

reasoning for program synthesis. We presents the key insights of the framework via three

aspects: the interface, the core and the extent. The interface, encodes user-provided

specification of multi-modalities into machine-readable constraints, via a hybrid design

that exploits the power of both statistical and logical reasoning. The core, resides with

a synergistic solution that tightly couples statistical and logical reasoning in program

synthesis, where logical feedback is seamlessly incorporated into the search of statistical

learning via the new paradigm of deduction-guided reinforcement learning. The extent,

shows the potential of the framework by connecting the interface and core with broader

interdisciplinary scenarios, where we demonstrates its power by refinement of deep learn-

ing model’s predictions via program synthesis. We have implemented the framework in

three tools, namely Mars, Concord and Poe, and we show in evaluations that they

are effective for the core task of program synthesis, as well as in improving experience for

end-user programming via broaden expressiveness, enhanced explainability and natural

interactivity.

110

Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
international conference on Management of data - SIGMOD ’93, New York, New
York, USA, 1993. ACM Press.

[3] Maaz Bin Safeer Ahmad and Alvin Cheung. Leveraging parallel data processing
frameworks with verified lifting. In Ruzica Piskac and Rayna Dimitrova, editors,
Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada,
July 17-18, 2016, volume 229 of EPTCS, pages 67–83, 2016.

[4] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M K Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis. In 2013 Formal Methods
in Computer-Aided Design, pages 1–8, October 2013.

[5] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization
and abstraction: A synergistic approach for analyzing neural network robustness.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, pages 731–744, New York, NY, USA,
2019. Association for Computing Machinery.

[6] Matej Balog, Alexander Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. DeepCoder: Learning to write programs. In Proceedings of ICLR’17,
March 2017.

[7] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox.
HOList: An environment for machine learning of higher order logic theorem prov-
ing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 454–463. PMLR, 2019.

111

[8] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for
bottom-up enumerative synthesis. Proc. ACM Program. Lang., 4(OOPSLA):1–29,
November 2020.

[9] Shaon Barman, Rastislav Bodik, Satish Chandra, Emina Torlak, Arka Bhat-
tacharya, and David Culler. Toward tool support for interactive synthesis. In
2015 ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward!), Onward! 2015, pages 121–136,
New York, NY, USA, 2015. Association for Computing Machinery.

[10] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. FlashRelate:
extracting relational data from semi-structured spreadsheets using examples. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, pages 218–228, New York, NY, USA, June
2015. Association for Computing Machinery.

[11] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Active learning of
points-to specifications. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, pages 678–692,
New York, NY, USA, June 2018. Association for Computing Machinery.

[12] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. Au-
toPandas: neural-backed generators for program synthesis. Proc. ACM Program.
Lang., 3(OOPSLA):1–27, October 2019.

[13] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing
on Freebase from Question-Answer pairs. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1533–1544, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics.

[14] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Conflict-driven
clause learning SAT solvers. Handbook of Satisfiability, Frontiers in Artificial In-
telligence and Applications, pages 131–153, 2008.

[15] Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceed-
ings of the ACL Interactive Poster and Demonstration Sessions, pages 214–217,
Barcelona, Spain, July 2004. Association for Computational Linguistics.

[16] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - an optimizing SMT
solver. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 194–199, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[17] Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung,
Shaon Barman, and Casey Rodarmor. Programming with angelic nondeterminism.

112

In Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’10, pages 339–352, New York, NY, USA,
January 2010. Association for Computing Machinery.

[18] James Bornholt and Emina Torlak. Synthesizing memory models from framework
sketches and litmus tests. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, pages 467–481,
New York, NY, USA, June 2017. Association for Computing Machinery.

[19] P Bose, D Das, Y Chen, Y Feng, C Kruegel, and G Vigna. SAILFISH: Vetting
smart contract State-Inconsistency bugs in seconds. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 1235–1252, Los Alamitos, CA, USA, May 2022.
IEEE Computer Society.

[20] Marc Brockschmidt, Miltos Allamanis, Alex Gaunt, and Alex Polozov. Generative
code modeling with graphs. In International Conference on Learning Representa-
tions, May 2019.

[21] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet
Kohli. Leveraging grammar and reinforcement learning for neural program synthe-
sis. In International Conference on Learning Representations, 2018.

[22] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. Relational verifica-
tion using reinforcement learning. Proc. ACM Program. Lang., 3(OOPSLA):1–30,
October 2019.

[23] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

[24] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-modal
synthesis of regular expressions. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2020, pages
487–502, New York, NY, USA, June 2020. Association for Computing Machinery.

113

[25] Xinyun Chen, Chang Liu, and Dawn Song. Execution-Guided neural program
synthesis. In International Conference on Learning Representations, 2019.

[26] Yanju Chen and Rong Pan. Automatic emphatic information extraction from
aligned acoustic data and its application on sentence compression. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pages
3422–3428, San Francisco, California, USA, 2017. AAAI Press.

[27] Yanju Chen, Ruben Martins, and Yu Feng. Maximal Multi-Layer specification syn-
thesis. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2019, pages 602–612, New York, NY, USA, 2019. Association for
Computing Machinery.

[28] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. Program
synthesis using Deduction-Guided reinforcement learning. In Shuvendu K Lahiri
and Chao Wang, editors, Computer Aided Verification, pages 587–610, Cham, 2020.
Springer International Publishing.

[29] Yanju Chen, Junrui Liu, Yu Feng, and Rastislav Bodik. Tree traversal synthesis
using Domain-Specific symbolic compilation. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, pages 1030–1042, New York, NY, USA, 2022.
Association for Computing Machinery.

[30] Yanju Chen, Yuepeng Wang, Maruth Goyal, James Dong, Yu Feng, and Işil Dillig.
Synthesis-Powered optimization of smart contracts via data type refactoring. Proc.
ACM Program. Lang., 6(OOPSLA2), October 2022.

[31] Yanju Chen, Xifeng Yan, and Yu Feng. Visualization question answering using
introspective program synthesis. In Proceedings of the 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, PLDI
2022, pages 137–151, New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[32] Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, and Yu Feng. Fast
and reliable program synthesis via user interaction. In Proceedings of the 38th
IEEE/ACM International Conference on Automated Software Engineering, ASE
’23, New York, NY, USA, 2024. Association for Computing Machinery.

[33] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using RNN Encoder–Decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing

114

(EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for Compu-
tational Linguistics.

[34] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What
does BERT look at? an analysis of BERT’s attention. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 276–286, Florence, Italy, August 2019. Association for Computa-
tional Linguistics.

[35] Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang, and Push-
meet Kohli. Learning transferable graph exploration. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems. Curran As-
sociates Inc., Red Hook, NY, USA, 2019.

[36] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data
Cleaning. John Wiley & Sons, August 2003.

[37] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer
Berlin Heidelberg, 2008.

[38] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, Sailesh R, and Subhajit Roy. Program synthesis using natural language.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 345–356, New York, NY, USA, May 2016. Association for Computing
Machinery.

[39] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-Rahman
Mohamed, and Pushmeet Kohli. RobustFill: Neural program learning under noisy
I/O. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 990–998. PMLR, 2017.

[40] Philip Edmonds and Graeme Hirst. Near-synonymy and lexical choice. Comput.
Linguist. Assoc. Comput. Linguist., 28(2):105–144, June 2002.

[41] efficient-apriori. efficient-apriori 0.4.5. https://pypi.org/project/

efficient-apriori/, 2018.

[42] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B Tenenbaum.
Learning to infer graphics programs from Hand-Drawn images. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 6062–6071, Red Hook, NY, USA, 2018. Curran Associates Inc.

115

https://pypi.org/project/efficient-apriori/
https://pypi.org/project/efficient-apriori/

[43] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
Component-Based synthesis of table consolidation and transformation tasks from
examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 422–436, New York, NY,
USA, 2017. Association for Computing Machinery.

[44] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps.
Component-based synthesis for complex APIs. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL ’17, pages
599–612, New York, NY, USA, January 2017. Association for Computing Machin-
ery.

[45] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using
Conflict-Driven learning. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, pages 420–435,
New York, NY, USA, 2018. Association for Computing Machinery.

[46] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
Morpheus. https://utopia-group.github.io/morpheus/, 2018.

[47] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure trans-
formations from input-output examples. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’15, pages 229–239, New York, NY, USA, June 2015. Association for Computing
Machinery.

[48] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic.
Example-directed synthesis: a type-theoretic interpretation. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, pages 802–815, New York, NY, USA, January 2016. Asso-
ciation for Computing Machinery.

[49] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’11, pages 317–330, New York, NY,
USA, January 2011. Association for Computing Machinery.

[50] Zellig S Harris. Distributional structure. Word World, 10(2-3):146–162, August
1954.

[51] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Eisenschlos. TaPas: Weakly supervised table parsing via pre-training.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 4320–4333, Online, July 2020. Association for Computational
Linguistics.

116

https://utopia-group.github.io/morpheus/

[52] S Hochreiter and J Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997.

[53] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping
language to code in programmatic context. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA,
2018. Association for Computational Linguistics.

[54] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE ’10, pages 215–224,
New York, NY, USA, May 2010. Association for Computing Machinery.

[55] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain,
and Sumit Gulwani. Neural-Guided deductive search for Real-Time program syn-
thesis from examples. In International Conference on Learning Representations,
2018.

[56] Dae Hyun Kim, Enamul Hoque, and Maneesh Agrawala. Answering questions
about charts and generating visual explanations. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI ’20, pages 1–13, New
York, NY, USA, April 2020. Association for Computing Machinery.

[57] Vu Le, Sumit Gulwani, and Zhendong Su. SmartSynth: synthesizing smartphone
automation scripts from natural language. In Proceeding of the 11th annual interna-
tional conference on Mobile systems, applications, and services, MobiSys ’13, pages
193–206, New York, NY, USA, June 2013. Association for Computing Machinery.

[58] Mina Lee, Sunbeom So, and Hakjoo Oh. Synthesizing regular expressions from
examples for introductory automata assignments. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE 2016, pages 70–80, New York, NY, USA, October 2016. Asso-
ciation for Computing Machinery.

[59] Sergey Levine and Vladlen Koltun. Guided policy search. In Sanjoy Dasgupta
and David McAllester, editors, Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 1–9, Atlanta, Georgia, USA, 2013. PMLR.

[60] A Solar Lezama. Program synthesis by sketching. PhD thesis, Citeseer, 2008.

[61] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,

117

Daniel J Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
AlphaCode. Science, 378(6624):1092–1097, December 2022.

[62] Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, and Ni Lao. Mem-
ory augmented policy optimization for program synthesis and semantic parsing.
In Proceedings of the 32nd International Conference on Neural Information Pro-
cessing Systems, NIPS’18, pages 10015–10027, Red Hook, NY, USA, 2018. Curran
Associates Inc.

[63] Junrui Liu, Yanju Chen, Eric Atkinson, Yu Feng, and Rastislav Bodik. Conflict-
Driven synthesis for layout engines. Proc. ACM Program. Lang., 7(PLDI), June
2023.

[64] Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. Learning contract
invariants using reinforcement learning. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’22, New York,
NY, USA, 2023. Association for Computing Machinery.

[65] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code trans-
forms for patch generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pages 727–739, New York,
NY, USA, August 2017. Association for Computing Machinery.

[66] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu.
The Neuro-Symbolic concept learner: Interpreting scenes, words, and sentences
from natural supervision. In International Conference on Learning Representations,
2019.

[67] B Mariano, Y Chen, Y Feng, S K Lahiri, and I Dillig. Demystifying loops in
smart contracts. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 262–274, Los Alamitos, CA, USA, September
2020. IEEE Computer Society.

[68] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig. Auto-
mated transpilation of imperative to functional code using Neural-Guided program
synthesis. Proc. ACM Program. Lang., 6(OOPSLA1), April 2022.

[69] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. Trinity: An
extensible synthesis framework for data science. Proceedings VLDB Endowment,
12(12):1914–1917, August 2019.

[70] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai.
A machine learning framework for programming by example. In Sanjoy Dasgupta
and David McAllester, editors, Proceedings of the 30th International Conference on

118

Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages
187–195, Atlanta, Georgia, USA, 2013. PMLR.

[71] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In C J
Burges, L Bottou, M Welling, Z Ghahramani, and K Q Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013.

[72] Anders Miltner, Solomon Maina, Kathleen Fisher, Benjamin C Pierce, David
Walker, and Steve Zdancewic. Synthesizing symmetric lenses. Proc. ACM Pro-
gram. Lang., 3(ICFP):1–28, July 2019.

[73] Ines Montani, Matthew Honnibal, Matthew Honnibal, Sofie Van Landeghem, Adri-
ane Boyd, Henning Peters, Paul O’leary McCann, Maxim Samsonov, Jim Geovedi,
Jim O’Regan, György Orosz, Duygu Altinok, Søren Lind Kristiansen, Roman, Ex-
plosion Bot, Leander Fiedler, Grégory Howard, Wannaphong Phatthiyaphaibun,
Yohei Tamura, Sam Bozek, murat, Mark Amery, Björn Böing, Pradeep Kumar
Tippa, Leif Uwe Vogelsang, Bram Vanroy, Ramanan Balakrishnan, Vadim Mazaev,
and GregDubbin. explosion/spaCy: v3.2.0: Registered scoring functions, Doc in-
put, floret vectors and more, November 2021.

[74] Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing
latent programs with gradient descent. In International Conference on Learning
Representations, 2016.

[75] Arvind Neelakantan, Quoc V Le, Martin Abadi, Andrew McCallum, and Dario
Amodei. Learning a natural language interface with neural programmer. In Inter-
national Conference on Learning Representations, 2017.

[76] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama.
Learning to infer program sketches. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 4861–4870.
PMLR, 2019.

[77] Jetbrains s r o. IntelliJ IDEA. https://www.jetbrains.com/idea/. Accessed:
2023-NA-NA.

[78] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program
synthesis. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, pages 619–630, New York, NY,
USA, June 2015. Association for Computing Machinery.

119

https://www.jetbrains.com/idea/

[79] Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodŕıguez, Jacob Van Gef-
fen, Jason Morton, Michael Chu, Brian Gu, Yu Feng, and Işıl Dillig. Automated
detection of Under-Constrained circuits in Zero-Knowledge proofs. Proc. ACM
Program. Lang., 7(PLDI), June 2023.

[80] Emilio Parisotto, Abdel-Rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. Neuro-Symbolic program synthesis. In International
Conference on Learning Representations, 2017.

[81] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An imperative style, High-Performance deep learning library.
In Proceedings of the 33rd International Conference on Neural Information Pro-
cessing Systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

[82] Hila Peleg, Sharon Shoham, and Eran Yahav. Programming not only by example.
In Proceedings of the 40th International Conference on Software Engineering, ICSE
’18, pages 1114–1124, New York, NY, USA, May 2018. Association for Computing
Machinery.

[83] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[84] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. Language models as knowledge bases? In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[85] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthe-
sis from polymorphic refinement types. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’16, pages 522–538, New York, NY, USA, June 2016. Association for Computing
Machinery.

[86] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A framework for inductive
program synthesis. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 107–126, New York, NY, USA, 2015. Association for Com-
puting Machinery.

120

[87] Chris Quirk, Raymond Mooney, and Michel Galley. Language to code: Learning
semantic parsers for If-This-Then-That recipes. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
878–888, Beijing, China, July 2015. Association for Computational Linguistics.

[88] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical
language models. In Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, pages 419–428, New
York, NY, USA, June 2014. Association for Computing Machinery.

[89] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning
programs from noisy data. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages
761–774, New York, NY, USA, January 2016. Association for Computing Machin-
ery.

[90] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Compositional pro-
gram synthesis from natural language and examples. In Proceedings of the 24th In-
ternational Conference on Artificial Intelligence, IJCAI’15, pages 792–800, Buenos
Aires, Argentina, 2015. AAAI Press.

[91] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should I trust
you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, pages 1135–1144, New York, NY, USA, August 2016. Association
for Computing Machinery.

[92] Ohad Rubin and Jonathan Berant. SmBoP: Semi-autoregressive bottom-up seman-
tic parsing. In Proceedings of the 5th Workshop on Structured Prediction for NLP
(SPNLP 2021), pages 12–21, Online, August 2021. Association for Computational
Linguistics.

[93] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
Vega-Lite: A grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph.,
23(1):341–350, January 2017.

[94] Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Oleksandr Polozov.
Program synthesis and semantic parsing with learned code idioms. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems.
Curran Associates Inc., Red Hook, NY, USA, 2019.

[95] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning
loop invariants for program verification. In Proceedings of the 32nd International

121

Conference on Neural Information Processing Systems, NIPS’18, pages 7762–7773,
Red Hook, NY, USA, 2018. Curran Associates Inc.

[96] Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a Meta-
Solver for Syntax-Guided program synthesis. In International Conference on Learn-
ing Representations, 2019.

[97] Gagandeep Singh, Markus Püschel, and Martin Vechev. Fast numerical program
analysis with reinforcement learning. In Computer Aided Verification, pages 211–
229. Springer International Publishing, 2018.

[98] Armando Solar-Lezama. The sketching approach to program synthesis. In Pro-
gramming Languages and Systems, pages 4–13. Springer Berlin Heidelberg, 2009.

[99] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. In Proceedings of the 12th
international conference on Architectural support for programming languages and
operating systems, ASPLOS XII, pages 404–415, New York, NY, USA, October
2006. Association for Computing Machinery.

[100] Stackoverflow. Stackoverflow. https://stackoverflow.com/, 2018.

[101] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’14, pages 3104–3112, Cambridge,
MA, USA, 2014. MIT Press.

[102] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Neural Information Processing
Systems, NIPS’99, pages 1057–1063, Cambridge, MA, USA, 1999. MIT Press.

[103] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for
Solver-Aided host languages. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’14, pages
530–541, New York, NY, USA, 2014. Association for Computing Machinery.

[104] W3C. Accessible rich internet applications (WAI-ARIA) 1.1. https://www.w3.

org/TR/wai-aria/, 2017. Accessed: 2021-11-14.

[105] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. RAT-SQL: Relation-Aware schema encoding and linking for Text-
to-SQL parsers. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7567–7578, Online, July 2020. Association for
Computational Linguistics.

122

https://stackoverflow.com/
https://www.w3.org/TR/wai-aria/
https://www.w3.org/TR/wai-aria/

[106] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly ex-
pressive SQL queries from Input-Output examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, pages 452–466, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[107] Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao,
Oleksandr Polozov, and Rishabh Singh. Robust Text-to-SQL generation with
Execution-Guided decoding, 2018.

[108] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. Visu-
alization by example. Proc. ACM Program. Lang., 4(POPL), December 2019.

[109] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction
refinement. Proc. ACM Program. Lang., 2(POPL):1–30, December 2017.

[110] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. Synthesizing database
programs for schema refactoring. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2019, pages
286–300, New York, NY, USA, June 2019. Association for Computing Machinery.

[111] Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles, Shankara Pailoor, Kyle
Charbonnet, Isil Dillig, and Yu Feng. Practical security analysis of zero-knowledge
proof circuits. In 33rd USENIX Security Symposium (USENIX Security 24),
PHILADELPHIA, PA, August 2024. USENIX Association.

[112] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. Synthe-
sizing transformations on hierarchically structured data. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’16, pages 508–521, New York, NY, USA, June 2016. Association for
Computing Machinery.

[113] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. SQLizer:
query synthesis from natural language. Proc. ACM Program. Lang., 1(OOPSLA):
1–26, October 2017.

[114] Pengcheng Yin and Graham Neubig. A syntactic neural model for General-Purpose
code generation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 440–450, Vancouver,
Canada, July 2017. Association for Computational Linguistics.

[115] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and
Dragomir Radev. SyntaxSQLNet: Syntax tree networks for complex and Cross-
Domain Text-to-SQL task. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 1653–1663, Brussels, Belgium,
2018. Association for Computational Linguistics.

123

[116] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
Spider: A Large-Scale Human-Labeled dataset for complex and Cross-Domain se-
mantic parsing and Text-to-SQL task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 3911–3921, Brussels,
Belgium, 2018. Association for Computational Linguistics.

[117] Lintao Zhang, C F Madigan, M H Moskewicz, and S Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In IEEE/ACM International Conference
on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers
(Cat. No.01CH37281), pages 279–285, November 2001.

[118] Sai Zhang and Yuyin Sun. Automatically synthesizing SQL queries from input-
output examples. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 224–234, November 2013.

[119] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating struc-
tured queries from natural language using reinforcement learning, 2017.

[120] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An inductive syn-
thesis framework for verifiable reinforcement learning. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2019, pages 686–701, New York, NY, USA, June 2019. Association for
Computing Machinery.

124

	Acknowledgements
	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview
	Multi-Modal Specification
	Deduction-Guided Machine Learning

	Mars: Program Synthesis Using Multi-Layer Specification
	Overview
	Problem Formalization
	Neural Architecture
	Sequence-To-Sequence Model
	Learning Association Rules
	Score Refinement Algorithm

	Maximal Specification Synthesis
	Enumerating Maximal Programs

	Implementation
	Evaluation
	Quality of suggested candidates
	Effectiveness of hybrid neural architecture
	Discussion
	Threats to Validity

	Summary

	Concord: Program Synthesis Using Deduction-Guided Reinforcement Learning
	Background on Reinforcement Learning
	Problem Formulation
	MDP Formulation of Deduction-Guided Program Synthesis
	RL-Based Synthesis Algorithm
	Overview of Synthesis Algorithm
	Sampling Rollouts
	Improving the Policy

	Implementation
	Deduction Engine
	Policy Network
	Input Featurization
	Optimizations

	Evaluation
	Comparison Against Existing Tools
	Ablation Study

	Summary

	Poe: Program Synthesis for Neural Prediction Refinement
	Overview
	A Motivating Example
	Explanation Generation
	Answer Refinement

	Preliminaries and Problem Statement
	Preliminaries
	Introspective Program Synthesis

	Abstract Program Synthesis with Noisy Specification
	Explanation Refinement via Optimal Program Synthesis
	Implementation
	Evaluation
	Comparison against State-of-the-Arts
	Benefits of Optimal Alignment and Abstract Synthesis
	Evaluation on Effectiveness
	A User Study on Explainability
	Discussion

	Summary

	Related Work
	Program Synthesis
	Deduction-Based Reasoning
	Machine Learning

	Conclusion

