
TRINITY: An Extensible Synthesis Framework for Data Science
Ruben Martins 

Carnegie Mellon University
rubenm@andrew.cmu.edu

Jia Chen
UT Austin

jchen@cs.utexas.edu

Yanju Chen
UCSB

yanju@cs.ucsb.edu

Isil Dillig
UT Austin

isil@cs.utexas.edu

Yu Feng
UCSB

yufeng@cs.ucsb.edu

Usability
TRINITY can be easily adapted to
new application domains by
providing a suitable DSL (and its
semantics) for the target application
scenarios.

Efficient Synthesis
TRINITY is based on an efficient
synthesis algorithm that combines
search and lightweight deduction.

Customizability
TRINITY gives users fine-grained
control over inductive bias by
providing preference predicates that
constrain the space of synthesized
programs.

Automate various PBE tasks by:
v specifying your input-output examples
v specifying preference predicates

End Users

Build and extend synthesizers by:
v providing a domain-specific language (DSL)
v adding logical specifications to prune search space

Advanced Users

Customize the synthesis engine by:
v modifying backtracking search over DSL
v changing the search strategy
v integrating statistical models

Synthesis Expert

TRINITY: Usage Overview

https://fredfeng.github.io/Trinity/
Documentation & Source Code

FeaturesDemo 2: Extending the DSL for Data Wrangling
TRINITY is a modular synthesizer that allows the user to extend existing synthesizers or create new 
ones. The user can extend the synthesizer by adding this new summarise function to the existing DSL.

adding new function summarise to DSL

adding coarse specification for summarise

adding interpreter wrapper for summarise

Demo 3: Modifying the Search Engine
Expert users can also customize the underlying search engine of TRINITY to further speed up their synthesizer. 
In particular, users can provide statistical models (e.g., deep neural network, n-gram) that can be used to 
predict the most likely programs. 

statistical models
synthesizer

original program list prioritized program list

solution

Demo 1: Data Wrangling in R
Given only this simple input-output example, TRINITY can automatically
synthesize the corresponding R program using the tidyr library:

The user can optionally provide
preference predicates, such as
occurs(gather, 60%), which would
bias the search in synthesizer.

df1=gather(input,Score,Value,Score1,Score2) 
df2=unite(df1,AllScores,Grade,Score) 
output=spread(df2,AllScores,Value) </>


