CS130B – Data Structures And Algorithms II

Discussion Section Week 4

Programming Assignment 2

Program 2

- Due 11:59 PM, May 7, 2017
- /usr/bin/turnin prog2@cs130b [list of files]
- Written in C++
- Again, must be able to compile and run on CSIL
- Makefile required to create executable named prog2 (do not name it something else)
- Input and output very similar to program 1

Input

Input from stdin Format: n x ₀ y ₀ x ₁ y ₁	← Number of vertices ← 0 th vertex, vertices labeled from 0 to n - 1
$x_{n-1} y_{n-1}$ m $v(0)_0 v(0)_1$ $v(1)_0 v(1)_1$	 ← Number of edges ← Ex. 2 4 means an edge exists between between vertex 2 and vertex 4
•••• ∨(m-1) ₀ ∨(m-1) ₁	 ← Use Euclidean distance as edge Weight

If m = 0, *then assume a fully connected graph.*

Input

Output

Output to stdout Format:

```
v(0)<sub>0</sub> v(0)<sub>1</sub>
v(1)<sub>0</sub> v(1)<sub>1</sub>
. . .
v(n-1)<sub>0</sub> v(n-1)<sub>1</sub>
```

 ← List the edges in the minimum cost spanning tree, each edge ordered in increasing order, and the list in increasing order by the first vertex; use second vertex as tie breaker

Output

Example:

Greedy Choice: Select the lowest weight edge that expands the current tree (ignore edges that lead to a cycle)

Concrete Example:

Start at arbitrary node (e.g. 0) N = {0}

Concrete Example:

Look at edges leaving from vertices in N (blue); Add least weight edge to tree $T \leftarrow \{(0,1)\}$

Update N \leftarrow {0, 1}

Concrete Example:

Repeat

 $T \leftarrow \{(0,1), (1,3)\}$

 $N \leftarrow \{0, 1, 3\}$

Concrete Example:

 $T \leftarrow \{(0,1), (1,3), (2, 3)\}$

Greedy Choice: Select the lowest weight edge from the set of remaining edges that does not form a cycle with the current edge set

Concrete Example:

Select least weight edge that doesn't form a cycle to current edge set T = { }

 $T \leftarrow \{(0, 1)\}$

Concrete Example:

Select least weight edge that doesn't form a cycle to current edge set T = {(0, 1)}

 $T = \{(0, 1), (2, 3)\}$

Concrete Example:

Select least weight edge that doesn't form a cycle to current edge set T = {(0, 1), (2, 3)}

