CS130B- DATA STRUCTURES

AND ALGORITHMS 11
DISCUSSION SECTION WEEK 5



Midterm 1

e May 11th, 2017
« Sample exam: www.cs.ucsb.edu/~csi130b/mid.sample.pdf
 Links to more sample exams on the last slide




Problem 1(a)

Problem 1 (60%) An array A[l..n], with n > 1, is called strictly unimodal if there is some integer j, with
1 <j <n,such that A[l] < A2] <--- < A[j] > A[j+1] >--- > A[n].

a. (15%) Design an algorithm for finding the index of the largest entry of a strictly unimodal array. Your
algorithm must be more efficient than a brute-force one which linearly scans the array for the largest element.
Give the pseudo-code and complexity of your algorithm.



Problem 1 — Example

A={1,2,4,6,3,2}



Problem 1 — Example

A={1,2,46,3,2}



Brute Force Solution O(n)

. function maxldxUnimodal(array A):
maxVal =0
maxldx =0
for i=0 to A.length:
if A[i] > maxVal:
maxVal = Ali]
maxldx = |
return maxldx
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O(log(n)) Solution

1. function maxldxUnimodal(array A, int low, int high):
2. iflow = high-1:
3. return index of max between (A[low], A[high])

4.  mid = [(high + low)/2]

if Almid] < A[mid + 1]:

return maxldxUnimodal(A, mid + 1, high)
else:

return maxldxUnimodal(A, low, mid)
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Problem 1(b)

An array A[l..n], with n > 1, is called unimodal (not necessarily strictly) if there is some integer j, with
1 <j<mn,suchthat A[1] < A2]|<--- < A[j] > A[j+1] >--- > A[n].

b. (15%) Give an example to show that your algorithm for the strictly unimodal case will not work for the
unimodal case.



Problem 1(b)

For the array A={1, 2, 2, 2, 3, 2} our solution to 1.a will fail to find A[j]



Problem 1(c)

c. (30%) Design an algorithm for finding the index of the largest entry of an unimodal array. Give the
pseudo-code and complexity of your algorithm. Please be clear but concise in your description.

If necessary, you may assume that the array A[l..n] is embedded in a larger array A[0..n+1], where
A[0] < A[1] and A[n] > A[n + 1] for strictly unimodal, and A[0] < A[1l] and A[n] > A[n + 1] for unimodal.



Problem 1(c)

What's the difference with problem 1(a)? What case do we need to
consider?

A[mid] == A[mid + 1]



Problem 1(c) Pseudocode

1. function maxldxUnimodal(array A, int low, int high):
2. if low = high—1.:

3. return index of max between (A[low], A[high])
4.  mid=|(high + low)/2]

5. if Almid] < A[mid + 1]:

6. return maxldxUnimodal(A, mid + 1, high)

7. else if Almid] > mid[mid + 1]:

8. return maxldxUnimodal(A, low, mid)

9. else:

10. return max( maxldxUnimodal(A, mid + 1, high), ...
11. maxldxUnimodal(A, low, mid))



Problem 2

Problem 2 (40%) Recall that we discussed two greedy algorithms for finding the minimum cost spanning
tree of a connected undirected graph of n vertices. One of the algorithms, Prim’s algorithm, starts with a
null tree, and adds one edge at a time until n — 1 edges are added. At each step, the remaining edge of the
smallest cost is added if the inclusion maintains the tree property (no cycle) of the partial solution.

Now consider a variation of Prim’s algorithm. Assume that all vertices in the input graph are connected
(i.e., there exists at least one path between every pair of vertices). Instead of starting with a null tree, we
start with the original graph. We examine edges in the order of nonincreasing cost. An edge is deleted if the
deletion leaves the graph connected, otherwise, it is kept. We delete enough edges so that eventually only
n — 1 left. Hence, this greedy strategy says “removing edges of higher costs” instead of “retaining edges of
lower costs” that is used in Prim’s algorithm.

Prove or disprove the following statement: the above greedy strategy generates a minimum cost spanning
tree of a connected undirected graph. Please be clear but concise in your proof. Writing a page of proof
most likely means that your answer is wrong.



Example




Example




Example




Observation

We are always removing an edge in some cycle C; otherwise, the graph
would be disconnected. If we show that the maximum weight edge in a
cycle C will never appear in any minimum spanning tree of the graph G.



Proof

Lemma
Let C be any cycle in G, and let the edge e = (u, v) be the most

expensive edge in C. Then e does not belong to any minimum spanning

tree of G.

Proof
Let T be a spanning tree that contains e. Deleting e partitions the

vertices into two groups: a part S containing u, and V' — S containing v.
The edges of C other than e form a path P with one end at u and the
other at v, so there must be an edge e’ on P that crosses from Sto V —
S. Adding the edge e’ gives a graph (V,T") that is connected and has
no cycles, so T' is a spanning tree of G, and is less expensive than T.



Additional Practice

https://hkn.eecs.berkeley.edu/exams/course/cs/170

* Fall 2014, David Wagner Midterm 1 Problem 10 and 12 (Kruskal’s
algorithm, binary search)

 Fall 2008, Satish Rao Midterm 1 Problem 5 (difficult divide and
conquer problem)

 Fall 2007, Christos Papadimitriou Midterm 1 Problem 4 (divide and
conquer on array) [look at the problem in the solution]

* Fall 2005, Michael Jordan Midterm 1 Problem 4 (divide and conquer)




