CS 130B—Data Structures and Algorithms II

Discussion Section Week 7

Written Assignment 3

Due Wednesday May 24th at 4pm

Programming Assignment 3

Due Wednesday May 31st at 11:59pm

Programming Assignment 3

File Format

Top View

Points Are In Order

Same Order Applies Top and Bottom

Or..

Finding Triangles

Need to Minimize Area of Surface

Output Examples

Plots from the Test Data

Two Squares

Two Different Samples of an Ellipse

Two Different Samples of an Ellipse—View2

Two Ellipses

General Approach

A Recursive Solution

Starting at an Arbitrary Point

Triangle Option One

Triangle Option Two

Option 2 - 1

Option 2 - 2

Go with Option 2-1

Option 2-1-1

Option 2 -1 -2

Greedy Solution

Works for regular polygons, but not in general

Brute Force Recursion (Only Returns Cost)

```
function findTriangles(Triangles, allPoints, currentPoints):
// Base case
if currentPoints == allPoints[end]:
            return (Area of all Triangles)
if (Enough points left on top):
            option1 = Triangles + [triangle with 2 points on top]
            cost1 = findTriangles(option1, points, move current top point over)
if (Enough points left on the bottom):
            option2 = Triangles + [triangle with 2 points on bottom]
            cost2 = findTriangles(option2, points, move current bottom point over)
return min(cost1, cost2)
```

Note: allPoints in an ordered 2D array where the starting points are repeated at the end of the

array

Recursion Branch Leaf Example

TOP

BOTTOM

A Different Branch

TOP

BOTTOM

The Other Branch's Corresponding Leaf

BOTTOM

Recursion Issues

- Recursion is $O(2^n)$ assuming top and bottom points are aligned
- If you do not know which point to start with on top, it's $O(n2^n)$

Dynamic Programming

Toroidal Graph Method

Directed Edges on the Graph

Right or Down

Which Triangle Does this Edge Represent?

A Full Path Represents a Solution

Find the Path With Least Cost

Minimum Cost Path

A Simple Example

Cost Matrix Example

1	3	6
2	2	3
1	9	4

Can Only Move Right or Down

1 -	3	6
2	2	3
1	9	4

Find the Minimum Cost Path

1	3	6
2	2	3
1	9	4

Solution: Build a Path Cost Matrix

1	3	6
2	2	3
1	9	4

1	4	10
3	5	
4		

Greedy Algorithm Finds Path

1	3	6
2	2	3
1	9	4

Minimum Cost Path for Toroidal Graph

Previous Algorithm Will not Work

Programming Assignment 3 - Conlcusion

- Find an algorithm to compute the minimum cost path on the toroidal graph
- Run the algorithm for any cyclic permutation of the top points
- Make sure that the path ends at (p1,q1)