CS130B – Data Structures And Algorithms II

Discussion Section Week 10

Final Exam

Tuesday, June 13, 2017 8 AM – 11 AM Phelps 3515

CUMULATIVE but focused on material after midterm

Longest Common Substring Problem

Given two strings X and Y of lengths n and m, respectively, find the longest common substring.

Example:

$$X = philosophy$$

 $Y = philology$
Longest Common Substring = philo

Longest Common Substring Problem

Given two strings X and Y of lengths n and m, respectively, find the longest common substring.

Solution: Can by solved by dynamic programming

> L(i, j) = length of longest common substring $of strings X_1 \dots X_i \text{ and } Y_1 \dots Y_j$ $ending at X_i \text{ and } Y_j$ $= \begin{cases} 1 + L(i - 1, j - 1) & \text{if } X_i = Y_j \\ 0 & \text{otherwise} \end{cases}$

Longest Common Substring Problem

Example:

$$X = photograph$$

Y = tomography

Longest Common Substring Problem

Example:

Γ		ϵ	t	0	m	0	g	r	a	p	h	y
	ϵ	0	0	0	0	0	0	0	0	0	0	0
	p	0	0	0	0	0	0	0	0	1	0	0
	h	0	0	0	0	0	0	0	0	0	2	0
	0	0	0	1	0	1	0	0	0	0	0	0
	t	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	2	0	1	0	0	0	0	0	0
	g	0	0	0	0	0	2	0	0	0	0	0
	h	0	0	0	0	0	0	3	0	0	0	0
	a	0	0	0	0	0	0	0	4	0	0	0
	p	0	0	0	0	0	0	0	0	5	0	0
	h	0	0	0	0	0	0	0	0	0	6	0

Block Configuration Problem

Initial State

Goal State

Go from initial state to goal state by moving the blocks around, one at a time. Constraint: if a block X is being moved, then there can be no block on top of block X; if moving a block X to top of block Y, there can be no block on top of block Y (can always move a block to a table); lastly, no configuration of blocks can be repeated.

Example State Space Tree

DFS (Implicit Bounding Constraints)

BFS (with bounding)

BFS (with bounding)

Cost function construction intuition: penalize more if moving a larger block on top of smaller block; penalize less for moving a block to table and for smaller block on top of larger block.

BFS (with bounding)

Assume a > 1.

$$P(\text{move}) = \begin{cases} a & \text{A top of B or B top of C} \\ a^3 & \text{block to table} \\ a^5 & \text{A top of C} \\ a^7 & \text{B top of A, C top of B} \\ & \text{or C top of A} \end{cases}$$

$$Cost([seq moves]) = \sum_{m \in seq} P(m)$$

BFS (with bounding)

Sequence of moves for upper bound cost:

upper([seq]) = move as many blocks to table as possible w/o repeating configuration, then for each pair of second largest and largest block such that largest block does not have anything on top, stack second largest on top of largest

BFS (with bounding)

Sequence of moves for lower bound cost:

BFS (with bounding, w/o cost function)

BFS (with bounding, w/o cost function)

BFS (bounding w/ cost function), aka LC Search

P/NP Problems Review

To be safe, remember the problems that were mentioned in lecture slides:

- 2-SAT (solvable in poly-time), 3-SAT, SAT
- Vertex Cover, Edge Cover (solvable in poly-time)
- Hamiltonian Cycle
- 3D-Matching
- Sudoku
- 3-Coloring of Graph
- Traveling Salesperson
- Independent Set
- K-Clique in a Graph