Computer Science 130B
Spring 2017
Programming Assignment #1

Due: 11:59pm, April 23, Sunday

Consider a problem in computational geometry: Given a set of n 2D points, the goal is to find
the closest pair of points in the set. Assume that coordinates are given:

Pz:(xzayz)7 Z:Oavn_l

a. Design a brute-force algorithm to accomplish Closest Pair(n, X,Y'), where n is the number of
points, X and Y are arrays of size n which store the and y coordinates, respectively, of the n
points. Analyze the complexity of your algorithm.

b. Design a divide-and-conquer algorithm for Closest Pair(n, X,Y"). Your algorithm should have
a better performance than the brute-force one. Analyze the complexity of your algorithm.

For parts a. and b., electronically turn in a PDF file named README.pdf with your codes
that contains your analysis. You can use any document generation software (MS Word, Linux
OpenOffice Writer, Latex, etc.) to generate the PDF file.

¢. Implement the brute-force algorithm and the divide-and-conquer algorithm in C++. Your pro-
gram should accept inputs of the following format from standard input (st din in C) (coordinates
are real numbers):

n /* number of points */
o Yo /* coordinate of the 1st point */
1 Y /* coordinate of the 2nd point */

Tp—1Yn—1 I* coordinate of the nth point */

Your program should output the following information (written to stdout in C):

Ti Yi Tj Yj /* the x and y coordinates of the closest pair
computed from your brute-force algorithm */
k /* total number of distance comparisons in your brute-force algorithm */

xy Y xy yy [* the x and y coordinates of the closest pair
computed from your divide-and-conquer algorithm */
K /* total number of distance comparisons in your divide-and-conquer algorithm */

The basic operation in finding the closest point pair is to compute the distances between differ-
ent pairs of points, and then compare the distance measurements to select the smallest one. This
comparison operation should be used in both your brute-force algorithm and divide-and-conquer
algorithm. The complexity of your algorithms is largely determined by how many such compar-
isons are made. Hence, your &’ should be much smaller than k. Try your program on sample inputs

of progressively larger sizes (e.g,. 10, 100, 1,000, 10,000, 100,000, 1,000,000, - - -). Compare the
run times and numbers of comparisons of the two implementations by plotting & and &’ as functions
of n. Include your plots in README.pdf. What do you observe?

