
Computer Science 130B
Spring 2017

Programming Assignment #1

Due: 11:59pm, April 23, Sunday

Consider a problem in computational geometry: Given a set of n 2D points, the goal is to find
the closest pair of points in the set. Assume that coordinates are given:

Pi = (xi, yi), i = 0, · · · , n− 1.

a. Design a brute-force algorithm to accomplish ClosestPair(n,X, Y ), where n is the number of
points, X and Y are arrays of size n which store the x and y coordinates, respectively, of the n

points. Analyze the complexity of your algorithm.

b. Design a divide-and-conquer algorithm for ClosestPair(n,X, Y ). Your algorithm should have
a better performance than the brute-force one. Analyze the complexity of your algorithm.

For parts a. and b., electronically turn in a PDF file named README.pdf with your codes
that contains your analysis. You can use any document generation software (MS Word, Linux
OpenOffice Writer, Latex, etc.) to generate the PDF file.

c. Implement the brute-force algorithm and the divide-and-conquer algorithm in C++. Your pro-
gram should accept inputs of the following format from standard input (stdin in C) (coordinates
are real numbers):

n /* number of points */
x0 y0 /* coordinate of the 1st point */
x1 y1 /* coordinate of the 2nd point */
· · ·
xn−1 yn−1 /* coordinate of the nth point */

Your program should output the following information (written to stdout in C):

xi yi xj yj /* the x and y coordinates of the closest pair
computed from your brute-force algorithm */

k /* total number of distance comparisons in your brute-force algorithm */
xi′ yi′ xj′ yj′ /* the x and y coordinates of the closest pair

computed from your divide-and-conquer algorithm */
k′ /* total number of distance comparisons in your divide-and-conquer algorithm */

The basic operation in finding the closest point pair is to compute the distances between differ-
ent pairs of points, and then compare the distance measurements to select the smallest one. This
comparison operation should be used in both your brute-force algorithm and divide-and-conquer
algorithm. The complexity of your algorithms is largely determined by how many such compar-
isons are made. Hence, your k′ should be much smaller than k. Try your program on sample inputs



of progressively larger sizes (e.g,. 10, 100, 1,000, 10,000, 100,000, 1,000,000, · · ·). Compare the
run times and numbers of comparisons of the two implementations by plotting k and k′ as functions
of n. Include your plots in README.pdf. What do you observe?


