
P. vs. NP vs NP Completeness

vs. NP hard

P. vs. not P

 P is good and exp is bad – no brainer, done

 Need to look a little deeper

Not P
 Many problems

 exp steps to find solutions

A lot less than exp steps to verify solutions

 Puzzles (Sudoku, crossword puzzles)

Hamiltonian cycle

A tour through all vertices without repetition

Max Cliques

 Largest fully connected sub graph

Vertex cover problem

 using 3 colors

 Subset sum

Any subset sums to zero?

NP

 Non-deterministic computation (lucky

guess) to find solutions

Oracle will always return true if at all possible

Certificates can be found in P time

 Deterministic computation (P time) to verify

solutions

 More formally a decision problem, i.e.,

answer is yes or no

Why “non-deterministic”

 Why creates such an unrealistic

computational model?

 Intuition:

 There are very hard problems (to figure out

solutions)

Need a very powerful computer (oracle or

“non-deterministic”)

Without it, no polynomial solutions

But we know such a powerful machine do not

exist, so such problems are “probably”

intrinsically hard

Caveat

 The same problem can be in P or NP

depends on parameters

K-Cliques O(k2nk) vs. max cliques

O(nk) subgraphs of size k

O(k2) time to check if one is fully connected

 2Sat (satisfiability) vs. 3Sat

 2-color vs. 3-color vertex covering

not P

 Certainly, there are even harder problems

 Is there a best way to play chess (go)?

Hard to find solution

Hard to verify solution

 Turing machine halting problem

No solution at all

Reduction

 A can be reduced to B (A<=B) iff

 There is a mapping from input A to input B

 There is a mapping from output B to output A

 If you can solve B, you can solve A

B is at least as hard or harder than A

 The escape route is simpler than the solution

itself (otherwise, don’t bother)

 For decision problems

 If B is yes, A is yes

 If B is no, A is no

Simple Example of Reduction

 Sorting < convex hull

 Convex hull is as hard as or harder than

sorting

 Sort 8, 3, 15, 7

Generate 2D point (8, 64), (3, 9), (15, 225), (7,

49)

 Find convex hull of these points (a parabolic

curve)

Read out CH vertices along x

 Transform step is O(n), less than the solver

complexity of O(nlogn)

Complexity Classes

 P: solvable in polynomial time

 NP:

 Decision problem

 Solvable in nondeterministic time

 Verifiable in polynomial time

 NP hard: all NP problem can be reduced to (NP < NP hard)

 Does not have to be a decision problem

 Does not even need to have a solution

 NP complete

 Every NP problem can be reduced to (NP < NP complete)

 NP complete = (NP ^ NP hard)

P == NP ?

P==NP?

https://www.youtube.com/watch?v=YX40hbAHx3s

Examples: Hamilton Cycle

 Start from a vertex, visit every vertex in the

graph (without repetition and back)

 N! permutation of

vertices

 Check O(n)

 1 permutation of

vertices (lucky

guess)

 Check O(n)

Examples: 3D matching

 N x, N y, Nz (3 genders instead of 2)

 Total N3 of triplet (xi, yi, zi)

 T (size n) subset of (x.y.z) such that

 (x1,y1,z1) and (x2, y2, z2) in T, then x1!=x2,

y1!=y2, z1!=z2

 C(N3, N) <-

exponential time

 Check O(N4)

 N triples (N lucky

guesses)

 Check O(N4)

Examples: Sudoku

 ?? solutions

 Check O(n2)

 1 final

configuration (at

most O(n2) lucky

guess)

 Check O(n2)

Examples: SAT (Satisfiability)

 2n guesses

 Check: go through

each clause and

verify true results

 N lucky guesses

 Check: go through

each clause and

verify true results

 A first problem

proven NP

complete (Cook)

Use of Reduction (A<B)

 A reduces to B and A is hard (NP-complete)

B must be hard, if not

 every NP-complete problem can be solved

 Every NP problem can be solved

 P==NP

 A reduces to B and B is easy

A must be easy (assume the “escape” route is

not expensive to build)

 Sorting < convex hull

Reduction is O(n)

Conex hull is O(nlogn)

 Sorting is O(nlogn)

Mistake in use of Reduction

 A reduces to B and B is hard (NP-complete)

 2Sat < 3Sat

 2Sat

Any number of variables

 Each clause has exactly two variables

 Polynomial algorithm

 3Sat

Any number of variables

 Each clause has exactly 3 variables

NP-complete

Only show that 2Sat is easier than 3Sat

Proof of NP Complete

 Proof of NP

 Problem in NP

Certificate in P time using lucky guess

Verification in P time

 Problem in NP complete

 Find an NP complete problem (e.g., SAT, Cook-

Levin Theorem)

NP complete problem < current problem

 The reduction should run in polynomial time

3Sat

 3Sat

A special form of Sat

Conjunction norm form (CNF)

Conjunction of clauses

 Each clauses are made of 3 literals

N literals

M clauses

N lucking guesses and M verification O(nm)

Even though it is “special” case of Sat, it is not

any easier (all NP-complete problems are

equivalent)

Sat reduces to 3Sat

 Clauses of 1

 Clauses of 2

 Clause3 of 3

Do nothing

 Make sure that the old clause and the new

clause has exactly the same truth table

 x true, the new clause is true

 x false, the new clause is false

Sat reduces to 3Sat

 Clauses of 4 or higher

Create “link” variables

 P time reduction O(mn)

 Sat is true, 3Sat is true

 3Sat is true, Sat is true

3Sat to Sat

 Reduction is to do nothing, as 3 Sat is Sat

 An example of all NP problems are

equivalent

3 Colorability < Sat

 Graph -> Boolean formula

 Can be 3-colored -> Boolean formula true

 Cannot be 3-colored -> Boolean formula

false

3 Colorability < Sat

 Every logic formula can be put into CNF

Minimum Vertex Cover

 Vertex cover: a subsect of vertices in a

graph so that every edge is incident on at

least one vertex in the set

 Min vertex cover: a vertex cover with the

smallest # of vertices

 Visualization
 Edges: streets

Vertices: intersection of streets

 Put a convenient store at enough intersections that

everyone on every street can get to at least one

directly

Sidebar: Min Edge Cover

 Edge cover: a subsect of edges in a graph so

that every vertex is an end point of one of

the edge in the set

 Min edge cover: an edge cover with the

smallest # of edges

 Marriage problems (max matching that is

also a min edge cover) with polynomial

solution O(n3)

3-Sat < Vertex Cover

 Boolean formula is true <-> Vertex cover of

size n (literals) + 2m (clauses)

 Construction

 Literals (variables) <-> an edge (x<-> 𝑥)

Clause <-> triangle

Additional edge <-> literals in clauses

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)
 𝑥 𝑦 𝑧x y z

 3 literals <-> 3 edges (top)

 2 clauses <-> 2 triangles (bottom)

 Edges (top to bottom) <-> literals to clauses

 Vertex cover
 One vertex/top edge (n)

 Two vertices/bottom triangle (2m)

 One vertex/top to bottom connection (?)

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)
𝑥 = 𝑇
𝑦 = 𝐹
𝑧 = 𝑇

 𝑥 𝑦 𝑧x y z

 Formula can be true <->

 Vertex cover of n+2m exists

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)
𝑥 = 𝑇
𝑦 = 𝐹
𝑧 = 𝑇

 𝑥 𝑦 𝑧x y z

 Formula can be true <->

 Vertex cover of n+2m exists

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)

 𝑥 𝑦 𝑧x y z

 3 literals <-> 3 edges (top)

 4 clauses <-> 4 triangles (bottom)

 Edges (top to bottom) <-> literals to clauses

 Find a vertex cover n+2m = 3+2*4 = 11->

formula can be true

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)

 𝑥 𝑦 𝑧x y z

 Choose x, y, z negated on top

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)

 𝑥 𝑦 𝑧x y z

 First clause

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)

 𝑥 𝑦 𝑧x y z

 2nd clause

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)

 𝑥 𝑦 𝑧x y z

 3rd clause

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)

 𝑥 𝑦 𝑧x y z

 4th clause

 x=y=z=false

 Vertex cover -> variable assignment to

make clause true

Max Independent Set

 Independent set in a graph G is a subset of

vertices with no edges between them

 NP

 Lucky guess O(n)

Verification O(n2)

 NP completeness

 3 Sat -> graph

3Sat < Max Independent
 Nodes: one node for each instance of each

literal

 Edges:

Correspond to literal in the same clause

Correspond to a literal and its inverse

3Sat < Max Independent
 For K clauses

 Formula is satisfiable iff graph has an

independent set of k

 Proof?
 All clauses must be true

 At least one literal in each clause

must be true

 The inverse of that literal in all

other clauses must be false

Max Clique Size

 Clique: fully connected subgraph

 Max independent > max clique

 G-> G’ (same vertex, opposite set of edges)

 Independent in G iff clique in G’

