P. vs. NP vs NP Completeness

vs. NP hard

P.vs. not P

<+ P 1s good and exp Is bad — no brainer, done
<« Need to look a little deeper

Not P
< Many problems
0 exp steps to find solutions
2 A lot less than exp steps to verify solutions
0 Puzzles (Sudoku, crossword puzzles)

2 Hamiltonian cycle
> A tour through all vertices without repetition

2 Max Cliques
> Largest fully connected sub graph

2 Vertex cover problem
> using 3 colors

Q Subset sum
> Any subset sums to zero?

NP

< Non-deterministic computation (lucky
guess) to find solutions

2 Oracle will always return true if at all possible
0 Certificates can be found in P time

<« Deterministic computation (P time) to verify
solutions

«» More formally a decision problem, I.e.,
answer Is yes or no

Why “non-deterministic”

<« Why creates such an unrealistic
computational model?

<« Intuition:
2 There are very hard problems (to figure out
solutions)

2 Need a very powerful computer (oracle or
“non-deterministic’)

2 Without it, no polynomial solutions

2 But we know such a powerful machine do not
exist, so such problems are “probably”
Intrinsically hard

Caveat

<+ The same problem can be in P or NP
depends on parameters

0 K-Cliques O(k2nk) vs. max cliques
> O(nk) subgraphs of size k
> O(k?) time to check if one is fully connected

0 2Sat (satisfiability) vs. 3Sat
2 2-color vs. 3-color vertex covering

not P

< Certainly, there are even harder problems

2 Is there a best way to play chess (go)?
» Hard to find solution
> Hard to verify solution

2 Turing machine halting problem
> No solution at all

Reduction

<« A can be reduced to B (A<=B) Iff

Q There iIs a mapping from input A to input B

2 There i1s a mapping from output B to output A
2 If you can solve B, you can solve A

0 B is at least as hard or harder than A

0 The escape route is simpler than the solution
itself (otherwise, don’t bother)
2 For decision problems
> If B is yes, Als yes
> 1fBisno, Aisno

Simple Example of Reduction

<+ Sorting < convex hull

< Convex hull 1s as hard as or harder than
sorting

« Sort 8, 3,15, 7

2 Generate 2D point (8, 64), (3, 9), (15, 225), (7,
49)

2 Find convex hull of these points (a parabolic
curve)

0 Read out CH vertices along X

0 Transform step Is O(n), less than the solver
complexity of O(nlogn)

Complexity Classes

<« P:solvable in polynomial time
<« NP:

0 Decision problem
0 Solvable in nondeterministic time
a Verifiable in polynomial time

< NP hard: all NP problem can be reduced to (NP < NP hard)

0 Does not have to be a decision problem
0 Does not even need to have a solution

< NP complete

0 Every NP problem can be reduced to (NP < NP complete)
0 NP complete = (NP ~ NP hard)

NP-Hard

NP-Complete

P # NP

Complexity

NP-Hard

P = NP =
NP-Complete

.//H: P;NP/ Fhen the world would te 6\"'

RS

,'/- to b@, T-L\L/L W6 J })c Mo 5/36(/‘;\‘

assLMe
l e I /C/ead'llvc, ’cc«o.s\ A% ‘Fur\clo\mvﬂ l o
\/O\ V | J 9 P

b(‘fww:\ solving a [blem xnd reca 7 e fhe
T (Y, \ e .)
Solu+uor\ Onh(e ;f'S (Uw\é t_vf_,y,m\ :

aq ﬂﬂ/ﬁ CM‘{C A S/MPAOV\/ wou (d be /\' ~
O ho 9 IJ (0“’ z by-— z"co
&\/@V/ ne W Co v 'p/ é’ (.7\\ / S

-, AN & ‘PL \A/N w1 ' / I) # _ <. A

Pl o) 10:08/10:43 | s

https://www.youtube.com/watch?v=Y X40hbAHX3s

Examples: Hamilton Cycle

<« Start from a vertex, visit every vertex in the
graph (without repetition and back)

< NI permutation of < 1 permutation of
vertices vertices (lucky
» Check O(n) guess)

<+ Check O(n)

Examples: 3D matching

< N X, Ny, Nz (3 genders instead of 2)
« T (SIze n) subset of (X.y.z) such that

a(x1,yl,z1) and (X2, y2, z2) In T, then x1!=x2,
yll=y2, z11=z2

= C(N3, N) <- = N triples (N lucky
exponential time guesses)

+» Check O(N%) + Check O(N%)

Examples: Sudoku

< 77 solutions
+» Check O(n?)

« 1 final
configuration (at
most O(n?) lucky
guess)

<+ Check O(n?)

(oo BN VIR Ne) BUN i V)
O (b (U ||
[

0o
~

Examples: SAT (Satisfiability)

< Any number of conjunction of disjunction
of Boolean variables (x)*(x + y)*(z + y +
w)

« 2" guesses « N lucky guesses
« Check: go through <« Check: go through
each clause and each clause and

verify true results verify true results

« A first problem
proven NP
complete (Cook)

Use of Reduction (A<B)

« A reduces to B and A iIs hard (NP-complete)

2 B must be hard, if not
> every NP-complete problem can be solved

> Every NP problem can be solved
» P==NP

<« A reduces to B and B Is easy

a A must be easy (assume the “escape” route 1s
not expensive to build)
2 Sorting < convex hull

> Reduction is O(n)
» Conex hull is O(nlogn)

> Sorting 1s O(nlogn)

Mistake In use of Reduction

« A reduces to B and B is hard (NP-complete)

< 2Sat < 3Sat

0 25at
> Any number of variables
» Each clause has exactly two variables
> Polynomial algorithm

0 3Sat

» Any number of variables
» Each clause has exactly 3 variables
> NP-complete

0 Only show that 2Sat Is easier than 3Sat

Proof of NP Complete

< Proof of NP

2 Problem in NP
> Certificate in P time using lucky guess
> Verification in P time

2 Problem in NP complete

> Find an NP complete problem (e.g., SAT, Cook-
Levin Theorem)

> NP complete problem < current problem
» The reduction should run in polynomial time

3Sat

« 3Sat
0 A special form of Sat
0 Conjunction norm form (CNF)
2 Conjunction of clauses
0 Each clauses are made of 3 literals
2 N literals
2 M clauses
a N lucking guesses and M verification O(nm)

a Even though 1t 1s “special” case of Sat, 1t 1s not
any easler (all NP-complete problems are
equivalent)

Sat reduces to 3Sat

o ClaUSGS Of 1 (x) o(x+a+b)(x+a+b)(x+a+b)(x+a+b)

< Clauses of 2 x+y) o @x+7+c)(x+y+c)

«» Clause3 of 3
2 Do nothing
< Make sure that the old clause and the new
clause has exactly the same truth table
QX true, the new clause Is true
0 x false, the new clause Is false

Sat reduces to 3Sat
<« Clauses of 4 or higher

Q Create “link” variables
« P time reduction O(mn)
« Sat IS true, 3Sat Is true
«» 3Sat Is true, Sat Is true

x+y+w+u) o x+y+D+w+uw)
(x+y+z+wru+v) o(x+y+1))L+z+ L) (L+w+L)(L+u+v)

3Sat to Sat

<« Reduction is to do nothing, as 3 Sat is Sat

< An example of all NP problems are
equivalent

3 Colorability < Sat

<+ Graph -> Boolean formula
< Can be 3-colored -> Boolean formula true

< Cannot be 3-colored -> Boolean formula
false

3 Colorability < Sat
< In NP

0 Lucky guess (one each for n vertices, O(v))
Q Verify take O(e)
2 Total time 1s P

2 One and only one color for a node
»ala2a3 + a2ala3 + a3ala?2

A No adjacent nodes are of the same color

al = b1,a2 >'b2ja3.— b3
bl - al,b2 = a2,b3 = a3

2 Reduction 1s polynomial time O(3v+6¢)

1 Every logic formula can be put into CNF

Minimum Vertex Cover

<« Vertex cover: a subsect of vertices in a
graph so that every edge Is incident on at

least one vertex in the set L G0
«» Min vertex cover: a vertex cover with the
smallest # of vertices (ﬁ 21

< VIsualization
> Edges: streets
> Vertices: intersection of streets

» Put a convenient store at enough intersections that
everyone on every street can get to at least one
directly

Sidebar: Min Edge Cover

<+ Edge cover: a subsect of edges in a graph so
that every vertex is an end point of one of
the edge In the set

« Min edge cover: an edge cover with the
smallest # of edges

« Marriage problems (max matching that Is
also a min edge cover) with polynomial

solution O(n3) _ _ _

3-Sat < Vertex Cover

< Boolean formula is true <-> Vertex cover of
size n (literals) + 2m (clauses)

<« Construction
2 Literals (variables) <-> an edge (Xx<->x)
0 Clause <-> triangle
0 Additional edge <-> literals in clauses

< 3 literals <-> 3 edges (top)

« 2 clauses <-> 2 triangles (bottom)

« Edges (top to bottom) <-> literals to clauses
< Vertex cover

o One vertex/top edge (n)
o Two vertices/bottom triangle (2m)
0 One vertex/top to bottom connection (?)

x+y+2)(x+y+2)
x =T
y=F
z=T

< Formula can be true <->
< Vertex cover of n+2m exists

x+y+2)(x+y+2)
x =T
y=F
z=T

< Formula can be true <->
< Vertex cover of n+2m exists

x+y+2)x+y+2)k+y+2)(k+y+2)

LA

« 3 literals <-> 3 edges (top)
« 4 clauses <-> 4 triangles (bottom)

<+ Edges (top to bottom) <-> literals to clauses

+ FInd a vertex cover n+2m = 3+2*4 =11->
formula can be true

x+y+2)x+y+2)k+y+2)(k+y+2)

+ Choose X, Yy, z negated on top

x+y+2)+y+2)kc+y+2)(k+y+2)

N

y Z

< FIrst clause

x+y+2)+y+2)kc+y+2)(k+y+2)

N

X Y Z

S

X |
WY

[

% 2"d clause

x+y+2)k+y+2)kc+y+2)(x+y+ 2)

N

X Y Z

S

, !
A/

[

« 3" clause

x+y+2)x+y+2)k+y+2)(k+y+2)

Z

X Y Z

S

/
A 1INK

7

« 4t clause
«» X=y=z=false

<« Vertex cover -> variable assignment to
make clause true

Max Independent Set

<+ Independent set in a graph G Is a subset of
vertices with no edges between them
«» NP
2 Lucky guess O(n)
0 Verification O(n?)
< NP completeness
a3 Sat -> graph

<

3Sat < Max Independent

< Nodes: one node for each instance of each
literal

<« Edges:
0 Correspond to literal in the same clause
0 Correspond to a literal and its inverse

(avbvce)Aa(bvevd)Aa(avevd)A(avbvd)

3Sat < Max Independent

< For K clauses

0 Formula is satisfiable iff graph has an

Independent set of k
(avbvce)Aa(bvevd)Aa(avevd)A(avbvd)

< Proof?
o All clauses must be true

0 At least one literal in each clause
must be true

0 The inverse of that literal in all
other clauses must be false

Max Clique Size

<+ Clique: fully connected subgraph
«» Max Independent > max clique
« G-> (G’ (same vertex, opposite set of edges)

« Independent 1n G 1iff clique 1n G’

0(n) —
graph G |——| complement graph G

MaxCLIQUE

trivial
largest independent set [« largest clique

A graph with maximum cligue size 4.

V-

V) JUnIVErSity ot GalifoTa)
sdniabdrodra.

