P. vs. NP vs NP Completeness vs. NP hard

P. vs. not P

$* P$ is good and exp is bad - no brainer, done

* Need to look a little deeper

Not P

* Many problems
$\square \exp$ steps to find solutions
\square A lot less than exp steps to verify solutions
\square Puzzles (Sudoku, crossword puzzles)
- Hamiltonian cycle
$>$ A tour through all vertices without repetition
\square Max Cliques
$>$ Largest fully connected sub graph
\square Vertex cover problem
> using 3 colors
\square Subset sum
> Any subset sums to zero?

$N P$

* Non-deterministic computation (lucky guess) to find solutions
\square Oracle will always return true if at all possible \square Certificates can be found in P time
* Deterministic computation (P time) to verify solutions
* More formally a decision problem, i.e., answer is yes or no

Why "non-deterministic"

* Why creates such an unrealistic computational model?
* Intuition:
\square There are very hard problems (to figure out solutions)
\square Need a very powerful computer (oracle or "non-deterministic")
\square Without it, no polynomial solutions
\square But we know such a powerful machine do not exist, so such problems are "probably" intrinsically hard

Caveat

$*$ The same problem can be in P or $N P$ depends on parameters
\square K-Cliques $\mathrm{O}\left(\mathrm{k}^{2} \mathrm{n}^{\mathrm{k}}\right)$ vs. max cliques
$>\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ subgraphs of size k
$>\mathrm{O}\left(\mathrm{k}^{2}\right)$ time to check if one is fully connected

- 2Sat (satisfiability) vs. 3Sat
- 2-color vs. 3-color vertex covering

not P

$*$ Certainly, there are even harder problems
\square Is there a best way to play chess (go)?
$>$ Hard to find solution
$>$ Hard to verify solution
\square Turing machine halting problem
> No solution at all

Reduction

* A can be reduced to $\mathrm{B}(\mathrm{A}<=\mathrm{B})$ iff
\square There is a mapping from input A to input B
\square There is a mapping from output B to output A
\square If you can solve B, you can solve A
$\square B$ is at least as hard or harder than A
\square The escape route is simpler than the solution itself (otherwise, don't bother)
\square For decision problems
$>$ If B is yes, A is yes
$>$ If B is no, A is no

Simple Example of Reduction

* Sorting < convex hull
* Convex hull is as hard as or harder than sorting
* Sort 8, 3, 15, 7
\square Generate 2 D point $(8,64),(3,9),(15,225),(7$, 49)
\square Find convex hull of these points (a parabolic curve)
\square Read out CH vertices along x
\square Transform step is $O(n)$, less than the solver complexity of $O(n \operatorname{logn})$

Complexity Classes

* P: solvable in polynomial time
* NP:
\square Decision problem
- Solvable in nondeterministic time
- Verifiable in polynomial time
* NP hard: all NP problem can be reduced to (NP < NP hard)
\square Does not have to be a decision problem
\square Does not even need to have a solution
* NP complete
- Every NP problem can be reduced to (NP < NP complete)
\square NP complete $=\left(\mathrm{NP}^{\wedge} \mathrm{NP}\right.$ hard $)$

$$
P==N P ?
$$

$$
P==N P ?
$$

"If $P=N P$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps', no fundamental gap between solving a problem and recusing the solution once it's found. Everyone F$\}$ could appreciate a symphony would be $\Lambda=+$; everyone who could follow ep -by-stop, https://www.youtube.com/watch?v=YX40hbAHx3s

Examples: Hamilton Cycle

* Start from a vertex, visit every vertex in the graph (without repetition and back)
* N ! permutation of vertices
* Check O(n)
* 1 permutation of vertices (lucky guess)
* Check O(n)

Examples: 3D matching

* N x, Ny, Nz (3 genders instead of 2)
$*$ Total N^{3} of triplet $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$
* T (size n) subset of (x.y.z) such that $\square(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$ and ($\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$) in T , then $\mathrm{x} 1!=\mathrm{x} 2$, y1!=y2, z1!=z2
* $\mathrm{C}\left(\mathrm{N}^{3}, \mathrm{~N}\right)<-$ exponential time
* Check $\mathrm{O}\left(\mathrm{N}^{4}\right)$
* N triples (N lucky guesses)
* Check $\mathrm{O}\left(\mathrm{N}^{4}\right)$

Examples: Sudoku

*?? solutions

* Check O(n^{2})
* 1 final configuration (at most $\mathrm{O}\left(\mathrm{n}^{2}\right)$ lucky guess)
* Check O(n^{2})

		4					9	
7				6				5
	9		5	4	1	8	7	2
			1	8	7		4	
2	4	3	6		5	1	8	7
	8		3	2	4			
9	2	1	8	7	6		5	
6				1				8
	3					7		

Examples: SAT (Satisfiability)

* Any number of conjunction of disjunction of Boolean variables $(x)^{\wedge}(x+\bar{y})^{\wedge}(z+y+$ \bar{w})
* 2^{n} guesses
* N lucky guesses
* Check: go through each clause and verify true results
* Check: go through each clause and verify true results
* A first problem proven NP complete (Cook)

Use of Reduction ($A<B$)

* A reduces to B and A is hard (NP-complete)
\square B must be hard, if not
> every NP-complete problem can be solved
$>$ Every NP problem can be solved
$>\mathrm{P}==\mathrm{NP}$
* A reduces to B and B is easy
\square A must be easy (assume the "escape" route is not expensive to build)
\square Sorting < convex hull
$>$ Reduction is $\mathrm{O}(\mathrm{n})$
$>$ Conex hull is O (nlogn)
$>$ Sorting is $\mathrm{O}(\mathrm{nlogn})$

Mistake in use of Reduction

* A reduces to B and B is hard (NP-complete)
* 2Sat < 3Sat
- 2Sat
> Any number of variables
> Each clause has exactly two variables
> Polynomial algorithm
-3Sat
> Any number of variables
$>$ Each clause has exactly 3 variables
> NP-complete
\square Only show that 2 Sat is easier than 3Sat

Proof of NP Complete

* Proof of NP
\square Problem in NP
$>$ Certificate in P time using lucky guess
$>$ Verification in P time
\square Problem in NP complete
$>$ Find an NP complete problem (e.g., SAT, CookLevin Theorem)
\rightarrow NP complete problem < current problem
$>$ The reduction should run in polynomial time

3Sat

* 3Sat
\square A special form of Sat
\square Conjunction norm form (CNF)
\square Conjunction of clauses
\square Each clauses are made of 3 literals
$\square \mathrm{N}$ literals
-M clauses
$\square \mathrm{N}$ lucking guesses and M verification $\mathrm{O}(\mathrm{nm})$
\square Even though it is "special" case of Sat, it is not any easier (all NP-complete problems are equivalent)

Sat reduces to 3Sat

* Clauses of 1

$$
(x) \leftrightarrow(x+a+b)(x+\bar{a}+b)(x+a+\bar{b})(x+\bar{a}+\bar{b})
$$

$\%$ Clauses of $2 \quad(x+\bar{y}) \leftrightarrow(x+\bar{y}+c)(x+\bar{y}+\bar{c})$

* Clause 3 of 3
\square Do nothing
* Make sure that the old clause and the new clause has exactly the same truth table
ax true, the new clause is true
$0 \times$ false, the new clause is false

Sat reduces to 3Sat

* Clauses of 4 or higher
- Create "link" variables
* P time reduction $\mathrm{O}(\mathrm{mn})$
* Sat is true, 3Sat is true
* 3Sat is true, Sat is true

$$
\begin{gathered}
(x+\bar{y}+w+u) \leftrightarrow(x+\bar{y}+l)(\bar{l}+w+u) \\
(x+\bar{y}+z+w+u+v) \leftrightarrow\left(x+\bar{y}+l_{1}\right)\left(\bar{l}_{1}+z+l_{2}\right)\left(\bar{l}_{2}+w+l_{3}\right)\left(\bar{l}_{3}+u+v\right)
\end{gathered}
$$

3Sat to Sat

* Reduction is to do nothing, as 3 Sat is Sat
* An example of all NP problems are equivalent

3 Colorability < Sat

* Graph -> Boolean formula
* Can be 3-colored -> Boolean formula true
* Cannot be 3-colored -> Boolean formula false

3 Colorability < Sat

* In NP
\square Lucky guess (one each for n vertices, $\mathrm{O}(\mathrm{v})$)
\square Verify take O(e)
\square Total time is P
\square One and only one color for a node
$>a 1 \overline{a 2 a 3}+\mathrm{a} 2 \overline{a 1 a 3}+\mathrm{a} 3 \overline{a 1 a 2}$
\square No adjacent nodes are of the same color

$$
\begin{array}{r}
a 1 \rightarrow \overline{b 1}, a 2 \rightarrow \overline{a 2}, a 3 \rightarrow \overline{b 3} \\
b 1 \rightarrow \overline{a 1}, b 2 \rightarrow \overline{a 2}, b 3 \rightarrow \overline{a 3}
\end{array}
$$

\square Reduction is polynomial time $\mathrm{O}(3 \mathrm{v}+6 \mathrm{e})$
\square Every logic formula can be put into CNF

Minimum Vertex Cover

* Vertex cover: a subsect of vertices in a graph so that every edge is incident on at least one vertex in the set

$*$ Min vertex cover: a vertex cover with the smallest \# of vertices

* Visualization
$>$ Edges: streets
$>$ Vertices: intersection of streets
> Put a convenient store at enough intersections that everyone on every street can get to at least one directly

Sidebar: Min Edge Cover

$*$ Edge cover: a subsect of edges in a graph so that every vertex is an end point of one of the edge in the set

* Min edge cover: an edge cover with the smallest \# of edges
* Marriage problems (max matching that is also a min edge cover) with polynomial solution $\mathrm{O}\left(\mathrm{n}^{3}\right)$

3-Sat < Vertex Cover
* Boolean formula is true <-> Vertex cover of size n (literals) +2 m (clauses)
* Construction
\square Literals (variables) <-> an edge ($\mathrm{x}<->\bar{x}$)
\square Clause <-> triangle
\square Additional edge <-> literals in clauses
$(x+\bar{y}+\bar{z})(\bar{x}+y+z)$

* 3 literals <-> 3 edges (top)
*. 2 clauses <-> 2 triangles (bottom)
* Edges (top to bottom) <-> literals to clauses
* Vertex cover
- One vertex/top edge (n)
- Two vertices/bottom triangle (2 m)
- One vertex/top to bottom connection (?)

$$
\begin{gathered}
(x+\bar{y}+\bar{z})(\bar{x}+y+z) \\
x=T \\
y=F \\
z=T
\end{gathered}
$$

* Formula can be true <->
* Vertex cover of $n+2 m$ exists

$$
\begin{gathered}
(x+\bar{y}+\bar{z})(\bar{x}+y+z) \\
x=T \\
y=F \\
z=T
\end{gathered}
$$

* Formula can be true <->
* Vertex cover of $n+2 m$ exists
$(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})$

* 3 literals <-> 3 edges (top)
* 4 clauses <-> 4 triangles (bottom)
* Edges (top to bottom) <-> literals to clauses
\therefore Find a vertex cover $n+2 m=3+2 * 4=11->$ formula can be true

$$
(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})
$$

* Choose $\mathrm{x}, \mathrm{y}, \mathrm{z}$ negated on top
$(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})$

* First clause

$$
(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})
$$

$* 2^{\text {nd }}$ clause

$$
(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})
$$

: $3^{\text {rd }}$ clause
$(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})$

$\therefore 4^{\text {th }}$ clause

* $\mathrm{x}=\mathrm{y}=\mathrm{z}=$ false
* Vertex cover -> variable assignment to make clause true

Max Independent Set

* Independent set in a graph G is a subset of vertices with no edges between them
* NP
\square Lucky guess O(n)
\square Verification $\mathrm{O}\left(\mathrm{n}^{2}\right)$
* NP completeness
-3 Sat -> graph

3Sat < Max Independent

* Nodes: one node for each instance of each literal
* Edges:
\square Correspond to literal in the same clause
\square Correspond to a literal and its inverse
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

3Sat < Max Independent

\therefore For K clauses
\square Formula is satisfiable iff graph has an independent set of k

$$
(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
$$

- Proof?
- All clauses must be true
- At least one literal in each clause must be true
- The inverse of that literal in all other clauses must be false

Max Clique Size

* Clique: fully connected subgraph
* Max independent > max clique
* G-> G' (same vertex, opposite set of edges)
* Independent in G iff clique in G’

