
P. vs. NP vs NP Completeness 

vs. NP hard



P. vs. not P

 P is good and exp is bad – no brainer, done

 Need to look a little deeper



Not P
 Many problems 

 exp steps to find solutions

A lot less than exp steps to verify solutions

 Puzzles (Sudoku, crossword puzzles) 

Hamiltonian cycle

A tour through all vertices without repetition

Max Cliques

 Largest fully connected sub graph

Vertex cover problem

 using 3 colors

 Subset sum 

Any subset sums to zero? 



NP

 Non-deterministic computation (lucky 

guess) to find solutions

Oracle will always return true if at all possible

Certificates can be found in P time  

 Deterministic computation (P time) to verify

solutions

 More formally a decision problem, i.e., 

answer is yes or no



Why “non-deterministic”

 Why creates such an unrealistic 

computational model? 

 Intuition:

 There are very hard problems (to figure out 

solutions)

Need a very powerful computer (oracle or 

“non-deterministic”)

Without it, no polynomial solutions

But we  know such a powerful machine do not 

exist, so such problems are “probably” 

intrinsically hard 



Caveat

 The same problem can be in P or NP

depends on parameters

K-Cliques O(k2nk) vs. max cliques

O(nk) subgraphs of size k

O(k2) time to check if one is fully connected

 2Sat (satisfiability) vs. 3Sat 

 2-color vs. 3-color vertex covering



not P

 Certainly, there are even harder problems

 Is there a best way to play chess (go)?

Hard to find solution

Hard to verify solution

 Turing machine halting problem

No solution at all



Reduction

 A can be reduced to B (A<=B) iff

 There is a mapping from input A to input B

 There is a mapping from output B to output A

 If you can solve B, you can solve A

B is at least as hard or harder than A 

 The escape route is simpler than the solution 

itself (otherwise, don’t bother)

 For decision problems

 If B is yes, A is yes

 If B is no, A is no 



Simple Example of Reduction

 Sorting < convex hull

 Convex hull is as hard as or harder than 

sorting 

 Sort 8, 3, 15, 7

Generate 2D point (8, 64), (3, 9), (15, 225), (7, 

49)

 Find convex hull of these points (a parabolic 

curve)

Read out CH vertices along x

 Transform step is O(n), less than the solver 

complexity of O(nlogn)



Complexity Classes

 P: solvable in polynomial time

 NP: 

 Decision problem 

 Solvable in nondeterministic time 

 Verifiable in polynomial time

 NP hard: all NP problem can be reduced to (NP < NP hard)

 Does not have to be a decision problem

 Does not even need to have a solution 

 NP complete 

 Every NP problem can be reduced to (NP < NP complete)

 NP complete = (NP ^ NP hard)



P == NP ?



P==NP?

https://www.youtube.com/watch?v=YX40hbAHx3s



Examples: Hamilton Cycle

 Start from a vertex, visit every vertex in the 

graph (without repetition and back)

 N! permutation of 

vertices

 Check O(n) 

 1 permutation of 

vertices (lucky 

guess)

 Check O(n) 



Examples: 3D matching

 N x, N y, Nz (3 genders instead of 2)

 Total N3 of triplet (xi, yi, zi)

 T (size n) subset of (x.y.z) such that 

 (x1,y1,z1) and (x2, y2, z2) in T, then x1!=x2, 

y1!=y2, z1!=z2

 C(N3, N) <-

exponential time

 Check O(N4) 

 N triples (N lucky 

guesses)

 Check O(N4) 



Examples: Sudoku

 ?? solutions

 Check O(n2) 

 1 final 

configuration (at 

most O(n2) lucky 

guess)

 Check O(n2) 



Examples: SAT (Satisfiability)



 2n guesses

 Check: go through 

each clause and 

verify true results 

 N lucky guesses

 Check: go through 

each clause and 

verify true results

 A first problem 

proven NP 

complete (Cook) 



Use of Reduction (A<B)

 A reduces to B and A is hard (NP-complete)

B must be hard, if not

 every NP-complete problem can be solved

 Every NP problem can be solved

 P==NP

 A reduces to B and B is easy 

A must be easy (assume the “escape” route is 

not expensive to build)

 Sorting < convex hull

Reduction is O(n)

Conex hull is O(nlogn)

 Sorting is O(nlogn)



Mistake in use of Reduction 

 A reduces to B and B is hard (NP-complete)

 2Sat < 3Sat 

 2Sat

Any number of variables

 Each clause has exactly two variables

 Polynomial algorithm 

 3Sat

Any number of variables

 Each clause has exactly 3 variables

NP-complete

Only show that 2Sat is easier than 3Sat 



Proof of NP Complete

 Proof of NP

 Problem in NP 

Certificate in P time using lucky guess

Verification in P time  

 Problem in NP complete

 Find an NP complete problem (e.g., SAT, Cook-

Levin Theorem)

NP complete problem < current problem 

 The reduction should run in polynomial time 



3Sat

 3Sat 

A special form of Sat

Conjunction norm form (CNF)

Conjunction of clauses

 Each clauses are made of 3 literals

N literals

M clauses

N lucking guesses and M verification O(nm) 

Even though it is “special” case of Sat, it is not 

any easier (all NP-complete problems are 

equivalent)



Sat reduces to 3Sat

 Clauses of 1

 Clauses of 2

 Clause3 of 3

Do nothing

 Make sure that the old clause and the new 

clause has exactly the same truth table

 x true,  the new clause is true 

 x false, the new clause is false



Sat reduces to 3Sat

 Clauses of 4 or higher

Create “link” variables

 P time reduction O(mn)

 Sat is true, 3Sat is true

 3Sat is true, Sat is true



3Sat to Sat

 Reduction is to do nothing, as 3 Sat is Sat

 An example of all NP problems are 

equivalent 



3 Colorability < Sat

 Graph -> Boolean formula

 Can be 3-colored -> Boolean formula true

 Cannot be 3-colored -> Boolean formula 

false 



3 Colorability < Sat



 Every logic formula can be put into CNF



Minimum Vertex Cover

 Vertex cover: a subsect of vertices in a 

graph so that every edge is incident on at 

least one vertex in the set

 Min vertex cover: a vertex cover with the 

smallest # of vertices

 Visualization
 Edges: streets

Vertices: intersection of streets

 Put a convenient store at enough intersections that 

everyone on every street can get to at least one 

directly



Sidebar: Min Edge Cover

 Edge cover: a subsect of edges in a graph so 

that every vertex is an end point of one of 

the edge in the set 

 Min edge cover: an edge cover with the 

smallest # of edges

 Marriage problems (max matching that is 

also a min edge cover) with polynomial 

solution O(n3)



3-Sat < Vertex Cover

 Boolean formula is true <-> Vertex cover of 

size n (literals) + 2m (clauses) 

 Construction

 Literals (variables) <-> an edge (x<->  𝑥)

Clause <-> triangle

Additional edge <-> literals in clauses 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 + 𝑧)
 𝑥  𝑦  𝑧x y z

 3 literals <-> 3 edges (top)

 2 clauses <-> 2 triangles (bottom)

 Edges (top to bottom) <-> literals to clauses

 Vertex cover
 One vertex/top edge (n)

 Two vertices/bottom triangle (2m)

 One vertex/top to bottom connection (?)



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 + 𝑧)
𝑥 = 𝑇
𝑦 = 𝐹
𝑧 = 𝑇

 𝑥  𝑦  𝑧x y z

 Formula can be true <->

 Vertex cover of n+2m exists



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 + 𝑧)
𝑥 = 𝑇
𝑦 = 𝐹
𝑧 = 𝑇

 𝑥  𝑦  𝑧x y z

 Formula can be true <->

 Vertex cover of n+2m exists



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 3 literals <-> 3 edges (top)

 4 clauses <-> 4 triangles (bottom)

 Edges (top to bottom) <-> literals to clauses

 Find a vertex cover n+2m = 3+2*4 = 11-> 

formula can be true 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 Choose x, y, z negated on top 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 First clause 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 2nd clause 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 3rd clause



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 4th clause

 x=y=z=false 

 Vertex cover -> variable assignment to 

make clause true 



Max Independent Set 

 Independent set in a graph G is a subset of 

vertices with no edges between them

 NP

 Lucky guess O(n)

Verification O(n2)

 NP completeness

 3 Sat -> graph



3Sat < Max Independent
 Nodes: one node for each instance of each 

literal

 Edges:

Correspond to literal in the same clause

Correspond to a literal and its inverse 



3Sat < Max Independent
 For K clauses

 Formula is satisfiable iff graph has an 

independent set of k 

 Proof?
 All clauses must be true

 At least one literal in each clause 

must be true 

 The inverse of that literal in all 

other clauses must be false 



Max Clique Size

 Clique: fully connected subgraph

 Max independent > max clique

 G-> G’ (same vertex, opposite set of edges)

 Independent in G iff clique in G’


