
P. vs. NP vs NP Completeness 

vs. NP hard



P. vs. not P

 P is good and exp is bad – no brainer, done

 Need to look a little deeper



Not P
 Many problems 

 exp steps to find solutions

A lot less than exp steps to verify solutions

 Puzzles (Sudoku, crossword puzzles) 

Hamiltonian cycle

A tour through all vertices without repetition

Max Cliques

 Largest fully connected sub graph

Vertex cover problem

 using 3 colors

 Subset sum 

Any subset sums to zero? 



NP

 Non-deterministic computation (lucky 

guess) to find solutions

Oracle will always return true if at all possible

Certificates can be found in P time  

 Deterministic computation (P time) to verify

solutions

 More formally a decision problem, i.e., 

answer is yes or no



Why “non-deterministic”

 Why creates such an unrealistic 

computational model? 

 Intuition:

 There are very hard problems (to figure out 

solutions)

Need a very powerful computer (oracle or 

“non-deterministic”)

Without it, no polynomial solutions

But we  know such a powerful machine do not 

exist, so such problems are “probably” 

intrinsically hard 



Caveat

 The same problem can be in P or NP

depends on parameters

K-Cliques O(k2nk) vs. max cliques

O(nk) subgraphs of size k

O(k2) time to check if one is fully connected

 2Sat (satisfiability) vs. 3Sat 

 2-color vs. 3-color vertex covering



not P

 Certainly, there are even harder problems

 Is there a best way to play chess (go)?

Hard to find solution

Hard to verify solution

 Turing machine halting problem

No solution at all



Reduction

 A can be reduced to B (A<=B) iff

 There is a mapping from input A to input B

 There is a mapping from output B to output A

 If you can solve B, you can solve A

B is at least as hard or harder than A 

 The escape route is simpler than the solution 

itself (otherwise, don’t bother)

 For decision problems

 If B is yes, A is yes

 If B is no, A is no 



Simple Example of Reduction

 Sorting < convex hull

 Convex hull is as hard as or harder than 

sorting 

 Sort 8, 3, 15, 7

Generate 2D point (8, 64), (3, 9), (15, 225), (7, 

49)

 Find convex hull of these points (a parabolic 

curve)

Read out CH vertices along x

 Transform step is O(n), less than the solver 

complexity of O(nlogn)



Complexity Classes

 P: solvable in polynomial time

 NP: 

 Decision problem 

 Solvable in nondeterministic time 

 Verifiable in polynomial time

 NP hard: all NP problem can be reduced to (NP < NP hard)

 Does not have to be a decision problem

 Does not even need to have a solution 

 NP complete 

 Every NP problem can be reduced to (NP < NP complete)

 NP complete = (NP ^ NP hard)



P == NP ?



P==NP?

https://www.youtube.com/watch?v=YX40hbAHx3s



Examples: Hamilton Cycle

 Start from a vertex, visit every vertex in the 

graph (without repetition and back)

 N! permutation of 

vertices

 Check O(n) 

 1 permutation of 

vertices (lucky 

guess)

 Check O(n) 



Examples: 3D matching

 N x, N y, Nz (3 genders instead of 2)

 Total N3 of triplet (xi, yi, zi)

 T (size n) subset of (x.y.z) such that 

 (x1,y1,z1) and (x2, y2, z2) in T, then x1!=x2, 

y1!=y2, z1!=z2

 C(N3, N) <-

exponential time

 Check O(N4) 

 N triples (N lucky 

guesses)

 Check O(N4) 



Examples: Sudoku

 ?? solutions

 Check O(n2) 

 1 final 

configuration (at 

most O(n2) lucky 

guess)

 Check O(n2) 



Examples: SAT (Satisfiability)



 2n guesses

 Check: go through 

each clause and 

verify true results 

 N lucky guesses

 Check: go through 

each clause and 

verify true results

 A first problem 

proven NP 

complete (Cook) 



Use of Reduction (A<B)

 A reduces to B and A is hard (NP-complete)

B must be hard, if not

 every NP-complete problem can be solved

 Every NP problem can be solved

 P==NP

 A reduces to B and B is easy 

A must be easy (assume the “escape” route is 

not expensive to build)

 Sorting < convex hull

Reduction is O(n)

Conex hull is O(nlogn)

 Sorting is O(nlogn)



Mistake in use of Reduction 

 A reduces to B and B is hard (NP-complete)

 2Sat < 3Sat 

 2Sat

Any number of variables

 Each clause has exactly two variables

 Polynomial algorithm 

 3Sat

Any number of variables

 Each clause has exactly 3 variables

NP-complete

Only show that 2Sat is easier than 3Sat 



Proof of NP Complete

 Proof of NP

 Problem in NP 

Certificate in P time using lucky guess

Verification in P time  

 Problem in NP complete

 Find an NP complete problem (e.g., SAT, Cook-

Levin Theorem)

NP complete problem < current problem 

 The reduction should run in polynomial time 



3Sat

 3Sat 

A special form of Sat

Conjunction norm form (CNF)

Conjunction of clauses

 Each clauses are made of 3 literals

N literals

M clauses

N lucking guesses and M verification O(nm) 

Even though it is “special” case of Sat, it is not 

any easier (all NP-complete problems are 

equivalent)



Sat reduces to 3Sat

 Clauses of 1

 Clauses of 2

 Clause3 of 3

Do nothing

 Make sure that the old clause and the new 

clause has exactly the same truth table

 x true,  the new clause is true 

 x false, the new clause is false



Sat reduces to 3Sat

 Clauses of 4 or higher

Create “link” variables

 P time reduction O(mn)

 Sat is true, 3Sat is true

 3Sat is true, Sat is true



3Sat to Sat

 Reduction is to do nothing, as 3 Sat is Sat

 An example of all NP problems are 

equivalent 



3 Colorability < Sat

 Graph -> Boolean formula

 Can be 3-colored -> Boolean formula true

 Cannot be 3-colored -> Boolean formula 

false 



3 Colorability < Sat



 Every logic formula can be put into CNF



Minimum Vertex Cover

 Vertex cover: a subsect of vertices in a 

graph so that every edge is incident on at 

least one vertex in the set

 Min vertex cover: a vertex cover with the 

smallest # of vertices

 Visualization
 Edges: streets

Vertices: intersection of streets

 Put a convenient store at enough intersections that 

everyone on every street can get to at least one 

directly



Sidebar: Min Edge Cover

 Edge cover: a subsect of edges in a graph so 

that every vertex is an end point of one of 

the edge in the set 

 Min edge cover: an edge cover with the 

smallest # of edges

 Marriage problems (max matching that is 

also a min edge cover) with polynomial 

solution O(n3)



3-Sat < Vertex Cover

 Boolean formula is true <-> Vertex cover of 

size n (literals) + 2m (clauses) 

 Construction

 Literals (variables) <-> an edge (x<->  𝑥)

Clause <-> triangle

Additional edge <-> literals in clauses 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 + 𝑧)
 𝑥  𝑦  𝑧x y z

 3 literals <-> 3 edges (top)

 2 clauses <-> 2 triangles (bottom)

 Edges (top to bottom) <-> literals to clauses

 Vertex cover
 One vertex/top edge (n)

 Two vertices/bottom triangle (2m)

 One vertex/top to bottom connection (?)



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 + 𝑧)
𝑥 = 𝑇
𝑦 = 𝐹
𝑧 = 𝑇

 𝑥  𝑦  𝑧x y z

 Formula can be true <->

 Vertex cover of n+2m exists



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 + 𝑧)
𝑥 = 𝑇
𝑦 = 𝐹
𝑧 = 𝑇

 𝑥  𝑦  𝑧x y z

 Formula can be true <->

 Vertex cover of n+2m exists



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 3 literals <-> 3 edges (top)

 4 clauses <-> 4 triangles (bottom)

 Edges (top to bottom) <-> literals to clauses

 Find a vertex cover n+2m = 3+2*4 = 11-> 

formula can be true 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 Choose x, y, z negated on top 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 First clause 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 2nd clause 



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 3rd clause



𝑥 +  𝑦 +  𝑧 (  𝑥 + 𝑦 +  𝑧)(  𝑥 +  𝑦 + 𝑧)(  𝑥 +  𝑦 +  𝑧)

 𝑥  𝑦  𝑧x y z

 4th clause

 x=y=z=false 

 Vertex cover -> variable assignment to 

make clause true 



Max Independent Set 

 Independent set in a graph G is a subset of 

vertices with no edges between them

 NP

 Lucky guess O(n)

Verification O(n2)

 NP completeness

 3 Sat -> graph



3Sat < Max Independent
 Nodes: one node for each instance of each 

literal

 Edges:

Correspond to literal in the same clause

Correspond to a literal and its inverse 



3Sat < Max Independent
 For K clauses

 Formula is satisfiable iff graph has an 

independent set of k 

 Proof?
 All clauses must be true

 At least one literal in each clause 

must be true 

 The inverse of that literal in all 

other clauses must be false 



Max Clique Size

 Clique: fully connected subgraph

 Max independent > max clique

 G-> G’ (same vertex, opposite set of edges)

 Independent in G iff clique in G’


