
Back Tracking

Tree Traversal

� Enumeration (brute force) often results in a

tree, for pruning

– Feasibility (a node by itself)

– Optimality (comparing a node with others)

– Merge (DP)

� Look at

– Different traversal patterns (depth first, breadth

first, best first)

– Bounding (with both feasibility and optimality)

Data Structures &Algorithms II

� Depth first � Breadth first

Live

Dead

E-node

yet to be generated

1

2

3

4
5

6

1

2 3 4

5 6 7 8 9 10

Data Structures &Algorithms II

Sum of Subsets

� Input:

– a set of n distinct positive numbers

� Output:

– find all combinations of these numbers which

sum up to M

� Explicit constraints:

� Feasibility constraints:

(, , ...,),X X X X i nn i1 2 0 1 where or 1, = ≤ ≤

W X Mi i

i n1≤ ≤

∑ =

Data Structures &Algorithms II

Explicit Constraints

1 0 1 0

1 0

1 0 1 0

1 0

1 0

1 0 1 0

1 0

1 0 1 0

1 0

1 0

1 0X1

X2

X3

X4

n = 4

Complexity O
n: ()2

Data Structures &Algorithms II

� Feasibility Constraints: how can a problem

state not lead to an answer state?

– Overflow

– Underflow

A ssum e that

O verflow :

U nderflow

W W W

W X W M

W X W M

n

i i

i k

k

i i

i k

i

k i n

1 2

1

1

1

≤ ≤ ≤

+ >

+ <

≤ ≤

+

≤ ≤ < ≤

∑

∑ ∑

...

:

Data Structures &Algorithms II

 (W X k Wi i

i k

i

k i n1≤ < ≤ ≤

∑ ∑, ,)

 (W X W k W Wi i

i k

k i k

k i n1

1
≤ < ≤ ≤

∑ ∑+ + −, ,) (W X k W Wi i

i k

i k

k i n1

1
≤ < ≤ ≤

∑ ∑+ −, ,)

X k = 1 X k = 0

+Wk +1

≤ M otherwise overflow(,)

+

≥ M otherwise underflow(,)

Data Structures &Algorithms II

 (W X k Wi i

i k

i

k i n1 ≤ < ≤ ≤

∑ ∑, ,)

(0,1,73)

(5,2,68)

(15,3,58)

(27,4,46) (15,4,46)

(15,5,33)

(30,6,18)

(0,2,68)

(0,3,58)

(0,4,46)

(0,5,33)

(0,6,18)

n M Wi= = =6 30 5 10 12 13 15 18, , (, , , , ,)

27+13>30

overflow

0+18<30

underflow

 X 1 = 1

 X 1 = 0

 X 2 = 0

 X 3 = 0

 X 4 = 0

 X 5 = 0

(28,5,33)

28+15>30

overflow

Data Structures &Algorithms II

Graph Coloring

� Input: A planar graph with n nodes

� Output: Use m colors to color the nodes

such that no two adjacent nodes share the

same color

1

2

3

4 5 1

2 3

4 5

Data Structures &Algorithms II

Explicit Constraints

X1

X2

X3

X4

n m= =4 3,

Size O m

Complexity m mn O nm

n

i

i n

n

: ()

: () ()× =

≤ ≤

∑
1

1 2 3

1 2 3

1 2 3

Data Structures &Algorithms II

0/1-Knapsack

� Explicit constraints:

� Feasibility constraints:

(, , ...,),X X X X i nn i1 2 0 1 where or 1, = ≤ ≤

X W M X Pi i

i n

i i

i n

≤

≤ ≤ ≤ ≤

∑ ∑,
1 1

 is maximized

Data Structures &Algorithms II

� Bounding function

– based on feasibility

– based on optimality

if at level k, stop (overflow)X W Mi i

i k

>

≤ ≤

∑
1

i f a t le v e l k , tw o n o d e s c a n b e fo u n d

th e n c a n n o t le a d to th e o p t im a l s o lu t io n

X W X W

X P X P

X X X

i i

i k

i i

i k

i i

i k

i i

i k

k

≤

≥

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

∑ ∑

∑ ∑

1 1

1 1

1 2

'

'

(' , ' , . . . , ')

Data Structures &Algorithms II

� Bounding function

– based on traversal pattern with prediction

1 0

1 0 1 0

cp X Pi i

i n

←

≤ ≤

∑
1

if maximum achievable

profit is less than cp, can

be culled

Data Structures &Algorithms II

� What is the maximum achievable profit

from a node?

– Include all remaining objects in the sack

�May not be feasible

– Include all objects without going over the

capacity, but what is the best way to do it?

�Greedy method

�Greedy method fills up the knapsack

�The profit/volume is as high as possible

Data Structures &Algorithms II

n=8, W=(1, 11,21,23,33,43,45,55)

M=110,P=(11,21,31,33,43,53,55,65)

(0,0)

(1,11)

(12,32)

(33,63)

(56,96)

X 1 1=
X 1 0=

X 2 1=

X 4 1=

X 3 1=

X 5 1=

X 6 0=

X 7 0=

X 8 0=

(89,139)

cp ← 139

If at any node, the bounding

function < 139, stop

location solution

X

X

X

max profit

root (1,1,1,1,1,
21

43
, ,) .

(, , , , , , ,) .

(, , , , , , ,) .

0 0 164 88

0 0 1111
22

43
0 0 15512

1

0
1 0 111

32

43
0 0 157 44

1

1

2

=

=

=

(weight,profit)

X 2 0=

(89,139)

(89,139)

Data Structures &Algorithms II

(0,0)

(1,11)

(12,32)

(33,63)

(56,96)

X 1 1= X 1 0=

X 2 1=

X 4 1=

X 3 1=

X 5 1=

X 6 0=

X 7 0=

X 8 0=

(89,139)

cp←139

X 2 0=

X 5 0=

(99,149)

X 6 1=
X 6 0=

X 7 0= X 7 1=

X 8 0= X 8 0=

cp←149 cp←151

162.44

161.63

(101,151)

X 4 0=

160.22

159.79

(66,106)

X 5 0=
X 5 1=

X 6 1=
X 6 0=

(109,159)

X 7 0=

X 8 0=

cp←159

157.55

X 7 0=

158

X 3 0=

159.76

154.88(35,65)

X 4 0=X 4 1=

X 5 1= X 5 0=

(68,108) 157.11

X 6 0=

X 7 0=

159.33

157.63

157.44

155.11

Data Structures &Algorithms II

Bounding Functions

� Based on feasibility (solution’s own merit)

– sum of subsets

– graph coloring

� Based on optimality (compared with others)

– 0/1 knapsack

� Based on traversal pattern (with prediction)

– 0/1 knapsack

Data Structures &Algorithms II

Time Complexity

� Explicit constraints

– m choices at each node

– n decisions to be made

� Implicit constraints

– complexity should reduce

– how much less?

– problem instance dependent

O m
n()

Data Structures &Algorithms II

Monte Carlo Method

� Sampling technique

� Select several random instances and average

the complexity figures

1

2

3

4

5

8

5

4

3

2

1 8 8 5 8 5 4 8 5 4 3 8 5 4 3 2

1649

+ + × + × × + × × × + × × × ×

=

Only about 2.34% of the total state space tree

