
Back Tracking



Tree Traversal

� Enumeration (brute force) often results in a 

tree, for pruning

– Feasibility (a node by itself)

– Optimality (comparing a node with others)

– Merge (DP)

� Look at 

– Different traversal patterns (depth first, breadth 

first, best first)

– Bounding (with both feasibility and optimality)
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� Depth first � Breadth first
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Sum of Subsets

� Input:

– a set of n distinct positive numbers

� Output:

– find all combinations of these numbers which 

sum up to M

� Explicit constraints:

� Feasibility constraints:

( , , ..., ),X X X X i nn i1 2 0 1 where  or 1,  = ≤ ≤
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Explicit Constraints
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� Feasibility Constraints: how can a problem 

state not lead to an answer state?  

– Overflow

– Underflow

A ssum e that  

O verflow :

U nderflow
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Graph Coloring

� Input: A planar graph with n nodes

� Output: Use m colors to color the nodes 

such that no two adjacent nodes share the 

same color
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Explicit Constraints
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0/1-Knapsack

� Explicit constraints:

� Feasibility constraints:

( , , ..., ),X X X X i nn i1 2 0 1 where  or 1,  = ≤ ≤
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� Bounding function

– based on feasibility

– based on optimality

if  at level k,  stop (overflow)X W Mi i
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� Bounding function

– based on traversal pattern with prediction

1 0

1 0 1 0

cp X Pi i

i n

←

≤ ≤

∑
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if maximum achievable

profit is less than cp, can 

be culled
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� What is the maximum achievable profit 

from a node?

– Include all remaining objects in the sack

�May not be feasible

– Include all objects without going over the 

capacity, but what is the best way to do it? 

�Greedy method

�Greedy method fills up the knapsack

�The profit/volume is as high as possible
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n=8,     W=(1, 11,21,23,33,43,45,55)

M=110,P=(11,21,31,33,43,53,55,65)
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Bounding Functions

� Based on feasibility (solution’s own merit)

– sum of subsets

– graph coloring

� Based on optimality (compared with others)

– 0/1 knapsack

� Based on traversal pattern (with prediction)

– 0/1 knapsack
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Time Complexity

� Explicit constraints

– m choices at each node

– n decisions to be made

� Implicit constraints

– complexity should reduce

– how much less? 

– problem instance dependent

O m
n( )
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Monte Carlo Method

� Sampling technique

� Select several random instances and average 

the complexity figures
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Only about 2.34% of the total state space tree


