Back Tracking

Tree Traversal

- Enumeration (brute force) often results in a tree, for pruning
 - Feasibility (a node by itself)
 - Optimality (comparing a node with others)
 - Merge (DP)
- □ Look at
 - Different traversal patterns (depth first, breadth first, best first)
 - Bounding (with both feasibility and optimality)

Sum of Subsets

□ Input:

- a set of *n* distinct positive numbers

□ Output:

 find all combinations of these numbers which sum up to M

 \square Explicit constraints: $(X_1, X_2, ..., X_n)$, where $X_i = 0$ or $1, 1 \le i \le n$

 $\Box \text{ Feasibility constraints: } \sum_{1 \le i \le n} W_i X_i = M$

Explicit Constraints

Complexity: $O(2^n)$

Feasibility Constraints: how can a problem state not lead to an answer state?

– Overflow

– Underflow

Assume that $W_1 \le W_2 \le \dots \le W_n$ $Overflow: \sum_{1 \le i \le k} W_i X_i + W_{k+1} > M$ $Underflow: \sum_{1 \le i \le k} W_i X_i + \sum_{k < i \le n} W_i < M$

 $\leq M(otherwise, overflow) \geq M(otherwise, underflow)$

Graph Coloring

Input: A planar graph with *n* nodes
 Output: Use *m* colors to color the nodes such that no two adjacent nodes share the same color

Size: $O(m^n)$ Complexity: $\sum_{1 \le i \le n} m^i \times (mn) = O(nm^n)$

 X_4

0/1-Knapsack

□ Explicit constraints: $(X_1, X_2, ..., X_n)$, where $X_i = 0$ or $1, 1 \le i \le n$

Feasibility constraints:

 $\sum_{1 \le i \le n} X_i W_i \le M, \sum_{1 \le i \le n} X_i P_i \text{ is maximized}$

Bounding function

- based on *feasibility*

if $\sum_{1 \le i \le k} X_i W_i > M$ at level k, stop (overflow)

– based on *optimality*

if at level k, two nodes can be found $\sum_{1 \le i \le k} X_i W_i \le \sum_{1 \le i \le k} X'_i W_i$ $\sum_{1 \le i \le k} X_i P_i \ge \sum_{1 \le i \le k} X'_i P_i$ then $(X'_1, X'_2, ..., X'_k)$ cannot lead to the optimal solution

Bounding function

- based on traversal pattern with prediction

- What is the maximum achievable profit from a node?
 - Include all remaining objects in the sack
 - May not be feasible
 - Include all objects without going over the capacity, but what is the best way to do it?
 - Greedy method
 - Greedy method fills up the knapsack
 - The profit/volume is as high as possible

University of california Santa Barbara

Bounding Functions

Based on feasibility (solution's own merit)

 sum of subsets
 graph coloring

 Based on optimality (compared with others)

 0/1 knapsack

 Based on traversal pattern (with prediction)

 0/1 knapsack

University of california Sanita Barbara

Time Complexity

Explicit constraints O(mⁿ)
 m choices at each node
 n decisions to be made
 Implicit constraints
 complexity should reduce
 how much less?

problem instance dependent

Monte Carlo Method

- Sampling technique
- Select several random instances and average the complexity figures

 $1 + 8 + 8 \times 5 + 8 \times 5 \times 4 + 8 \times 5 \times 4 \times 3 + 8 \times 5 \times 4 \times 3 \times 2$ = 1649

Only about 2.34% of the total state space tree

