
Data Structures and Algorithms II

Overview
 Data structures and associated operations

Data structures Associated operations

Linked list insert, delete, makenull

Stacks push, pop

Queues remove from head,

insert from tail

Trees insert, delete, traverse

Graphs traverse, shortest path,

strong components, etc.

• Data structures and associated operations are 

“tools” for building programs
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Overview (cont.)

 Algorithm design

 A sequence of operations which are 

 clearly defined (no ambiguity as to what to do next)

 effective (component operations done in finite time)

 terminate

 E.g. Sorting

 Data structures: an array of length n

 Algorithms: comparing & swapping elements (bubble sort, 

insertion sort, selection sort, quick sort, merge sort, etc.)

 Programs = Algorithms + Data structures 
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Overview (cont.)

 General principles

Divide-and-conquer

Greedy

Dynamic programming

Backtracking

Branch-and-bound

Randomized algorithms



Caveats

 There are a lot more principles for 

algorithm designs that we do not cover

Numerical algorithms

Graph algorithms

Geometrical algorithms (e.g., vision, graphics)

 Probabilistical algorithms 

 Multi-stage, discrete, countably many, 

unique



Divide-and-Conquer
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Divide-and-Conquer

 Input A(1:n): n elements stored in an array 

Procdure DandC(p,q)

if Small(p,q) then

return (G(p,q))

else m  Divide(p,q)

return Combine(DandC(p,m),DandC(m +1,q))

end if

end DandC
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Divide-and-Conquer (cont.)

 Divide: split a larger problem into sub-

problems of smaller size

 Combine: merge the solutions of sub-

problems into that of a larger problem

 Small: is the problem small enough?

 G(p,q): easy solutions to small problems 
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Hanoi Towers
A B C

 Three pegs, A has n disks of different sizes stacked with smaller 
ones on top of bigger ones

 Move disks one at a time 

 Never place a larger disk on top of a smaller one

 Move all disks onto B

 Trivial problem, the rule of the game dictates divide-and-
conquer
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 Hanoi(n, A, B, C)

 n: number of disks

A: starting peg

B: end peg

C: temporary peg

A B Cn=1



Data Structures and Algorithms II

A B Cn=2

A B Cn=3

1

2 3

1
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 Movement steps of m disks will be used in 

moving n disks (n>m)

 Problem is decomposable

Hanoi(n,A,B,C) =

Hanoi(n-1,A,C,B) 

+ Hanoi(1,A,B,C) 

+ Hanoi(n-1,C,B,A)



A B C



Data Structures and Algorithms II

H(1,A,C,B) H(1,A,B,C) H(1,C,B,A)

H(2,A,B,C) H(1,A,C,B)

H(1,B,A,C) H(1,B,C,A) H(1,A,C,B)

H(2,B,C,A)

H(3,A,C,B) H(1,A,B,C)

H(1,C,B,A) H(1,C,A,B) H(1,B,A,C)

H(2,C,A,B) H(1,C,B,A)

H(1,A,C,B) H(1,A,B,C) H(1,C,B,A)

H(2,A,B,C)

H(3,C,B,A)

H(4,A,B,C)
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 Divide: two sub-problems of size n-1 and 

one sub-problem of size 1

 Small(p,q): when the problem size is 1

 G(p,q): move a disk from peg to peg 

 Combine: sequential concatenation of 

moves
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 Time complexity
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Binary Search

 Input: 
 a list of elements sorted in nondecreasing order

 an element x

 Output
 determine whether x is present

 if so, the position index j
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 Divide:

BS n a a a x
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– two problems of size approximately n/2, and 

one problem of size 1
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 Small(p,q): when the size of problem is 1

 G(p,q): compare the single element in the 

list with the search element

 Combine:

x a j
n

x a

x a

n

n

n
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solve the first sub - problem

solve the third sub - problem
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 Time complexity
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 Properties of binary search trees

 balanced (root corresponds to the middle element, 

two subtrees are of approximately equal size)

with n elements

 internal nodes at levels of 0 to k-1

(successful searches make at most k comparisons)

 external nodes at levels k-1 and k

(failed searches make at least k-1 ad at most k 

comparisons)

worst case is O(k) or O(logn) for both successful 

and failed searches

 best case is O(1) for successful and O(logn) for 

failed searched

2 21k kn  

Tree 

dept

h (k)

Min 

capa

city 

(2k-1)

Max 

capa

city 

(2k)

1 1 2

2 2 4

3 4 8

4 8 16
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 Average case - slightly more complicated

Average performance =

prob(S) average performance

of successful searches +

prob(F) average performance

of failed searches

average # of comparisons

in successful searches

average # of comparisons

in failed searches

average internal path length + 1 average external path length

total internal path length (I)

# of internal nodes (i)

total external path length (E)

# of external nodes (e)

 

 

 

 

1



Data Structures and Algorithms II

 # of internal (i) and external (e) nodes

(i=1, e=2) (i=2, e=3)

(i=n, e=n+1) (i=n+1, e=n+2)
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 total internal (I) and external (E) path length

(I=0, E=2) (I=1, E=5) (I=2, E=8)
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More Examples: Sorting

 brute force methods

 bubble sort

 selection sort

 insertion sort

• “smart” methods

– quick sort

– merge sort

– based on Divide-

and-Conquer

O n( )2

O n n( log )



for i=1 to n-1 do

for  j=n downto i+1 do

if a[j]<a[j-1] then

swap(a[j-1], a[j])
O( )1

O n i( )

O n i

O n

i

n

( )

( )
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1

2

i  1 2 3 4 5 6 7 8 9

1 65 85 70 75 80 60 55 50 45

2 45 65 85 70 75 80 60 55 50

3 45 50 65 85 70 75 80 60 55

4 45 50 55 65 85 70 75 80 60

5 45 50 55 60 65 85 70 75 80

6 45 50 55 60 65 70 85 75 80

7 45 50 55 60 65 70 75 85 80

8 45 50 55 60 65 70 75 80 85

9 45 50 55 60 65 70 75 80 85

Bubble sort
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 Each iteration places one element correctly

 Many elements are involved in many 
iterations

 Size of subproblems decrease very slowly 
through iterations
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 Sorting based on Divide-and-Conquer

• Quick sort

– uneven division

– simple concatenation

• Merge sort

– even division

– elaborate merge
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Quick Sort

 Input: a list of n elements

 Output: a list of the same elements sorted in 

nondecreasing order
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 Divide

QS n a a a

partition n

QS i a a a

QS n i a a

n

i

i n
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• Small(p,q): when the problem size becomes 1

• G(p,q): nothing

• Combine: simple concatenation of solutions 

of two sorted lists
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45 50

45, 50 55

50, 45, 55 60

55, 45, 50, 60 65

60, 45, 50, 55, 65

70

75 80

75,80

70, 75, 80 85

80, 75, 70, 85

65, 85, 70, 75, 80, 60, 55, 50, 45
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partition p q i such that a is the pivot

a a a a

a a a a

i

p p i i

i i q i

( , ) ,

, ,...,

, ,...,









 

1

1 2

65 85 70 75 80 60 55 50 45

65 45 70 75 80 60 55 50 85

65 45 50 75 80 60 55 70 85

65 45 50 55 80 60 75 70 85

65 45 50 55 60 80 75 70 85

60 45 50 55 65 80 75 70 85
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left right

 left pointer moves right, until

 right point moves left, until 

 if left<right, swap *(left) and *(right)

left rightexchange

*( )left pivot

*( )right pivot

• else

exchange

 pivot  pivot
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 Array is scanned only once, at a particular 

location

 no action is taken (advance pointer), or

 swap elements and advance pointer 

 partition is O(array length)
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 Time complexity - worst case
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 Time complexity - average case

Assumptions:

 the n elements are distinct

 the pivot element can be equally likely the ith 

element in the sorted array
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Merge Sort

 Input: a list of n elements

 Output: a list of the same elements sorted in 

nondecreasing order
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 Divide
MS n a a a
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merge the two sublists properly

• Small(p,q): when the problem size becomes 1

• G(p,q): nothing

• Combine: trace down the two sublists and 

merge them properly
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31 28

31,28

17 65

17,65

31,28,17,65 35,42,86,25

35 42

35,42

86 25

86,25

31,28,17,65,35,42,86,25

31 28

28,31

17 65

17,65

17,28,31,65 25,35,42,86

35 42

35,42

86 25

25,86

17,25,28,31,35,42,65,86

Divide Combine
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sublist A

sublist B

A+B

pt_A

pt_B

if *(pt_A) is NULL, append B to A+B

else if *(pt_B) is NULL, append A to A+B

else if *(pt_A) < *(pt_B),

append *(pt_A) to A+B, increment pt_A

else

append *(pt_B) to A+B, increment pt_B

end if

O(|A|+|B|) operations
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 Time complexity
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Convex Hull

 Input: a collection of n points

 Output: the smallest convex polygon that 

encloses the set of points

 2D case: points as nails sticking out on a table, 

put a rubberband around them
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 Properties

Use given points as vertices

Contain all extreme points in the set 

 Points of smallest and largest x and y 

coordinates are included

Traverse the edge of the hull

 counterclockwise, all points must be on the left

 clockwise, all points must be on the right



 Graham’s Scan (package wrapping)
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 Start at some point that guaranteed to be on 

the convex hull (e.g., point with smallest y 

coordinate)

 From that point, compute theta (see 

previous slide) for all remaining points

 Sort by theta and consider each point in turn

 After examining i-1 points  

 p[1..M] are on the convex hull

 After examining i points

 p[M] is recursively eliminated if p[M], p[M-1] 

and P[i] make the wrong turn



123
4

5

0

 Example

 0 is the base

 1,2,3,4 will be included in the 

hull (all make left turns)

when 5 is considered

 4 is eliminated (3,4,5 right turn)

 3 is eliminated (2,3,5 right turn)

 2 is eliminated (1,2,5 right turn)

 1 is kept (0, 1,5 left turn)

 5 is added



Complexity

 Angular sorting O(nlogn)

 With n vertices

 Loop: add vertices to the CH

 Loop: delete vertices from the CH

 Each vertex can be added and/or deleted only 

once

 Each add/delete operation takes constant time 

(inner product)

O(n) total

 Whole operation: O(nlogn)
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 Divide-and-Conquer

Upper hull and lower hull division (not 

essential)

Recursive division

11

1
2

3

4

56

7

8

9

10
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Merge
 Intuition: connecting extreme points (points with the largest y

coordinate on two hulls)

 Or more precisely, move the connecting lines are high (low) as 

possible for upper hull (lower hull)

 sort by y, too expensive (O(nlogn))

 hill climbing (binary search on sorted x)

H1
H2





 If H1 and H2 are two upper hulls with at 

most m points each. If p is any point on H1, 

its point of tangency, q, with H2 can be 

found on O(logm) time

 If H1 and H2 are two upper hulls with at 

most m points each, their common tangent 

can be found on O(log^2 m) time

 The Divide-and-Conquer convex hull 

algorithm has a complexity of O(nlogn)



A B

UpperTangent(HA ; HB ) : 

(1)Let a be the rightmost point of HA . 

(2)Let b be the leftmost point of HB . 

(3)While ab is not a upper tangent for HA and HB do 

(a) While ab is not a upper tangent to HA do a = a - 1 (move a counterclockwise). 

(b) While ab is not a upper tangent to HB do b = b + 1 (move b clockwise). 

(4) Return ab. 



Line Connecting two highest points but

NOT common tangent

True common tangent

Right upper hullLeft upper hull

 Nitty-Gritty Details

Line connecting two highest points in 

component hulls is NOT necessarily the 

common tangent
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 Time complexity

Upper and lower hulls division

 largest and smallest x points O(n)

 partition points into two halves O(n)

Recursive division

 sort points by x O(nlogn)

main step

T n T
n

merge T
n

O n

O n n

( ) ( ) ( ) (log )

( log )
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2

2
2

2



Yet Another Divide-and-Conquer Algorithm 

(QuickHull)



Graphical Illustration

 Three possibilities O(n) time:

 Inside the triangle ABC

Above AC, or

Above AB

dmax

A

B

C



Complexity

 If points are uniformly distributed in a unit 

square, expected # of points on the hull is 

O(logn)

 Quickhull discards interior points very 

quickly and narrows in peripheral points

 Like Quicksort, average time is O(nlogn) 

but worst case performance is O(n^2)



Complexity

 Quick sort

 Select pivot (O(1))

 Partition into two parts 

O(n)

 Recursive division 

 Trivial concatenation

 T(n) = T(i) + T(n-i) + 

O(n)

 Quick hull

 Select furthest point 

(O(n))

 Partition into three 

parts O(n)

 Recursive division

 Trivial concatenation

 T(n) = T(i) + T(n-i) + 

O(n)



Moral of the story

 Algorithm design is an art. We have seen 

three different convex hull algorithms

One based on domain knowledge only

Two based on divide-and-conquer 
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Multiplying Long Integers

 Input: two n-bit integer x and y

 Output: a 2n-bit integer 

 Divide-and-Conquer strategy

x y

x A B

y C D

x y A B C D

AC AD BC BD

n

n

n n

n
n

 

 

   

   

2
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2

2

2 2

2

( )( )

( )2

A        B

C         D

X

Y
n-1       n/2          0
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 Divide: multiply 2 n-bit integers

= 4 multiplies of 2 n/2-bit integers

+ 3 additions of integers (2n bits)

+ 2 shifts

 Small(p,q): when the length becomes 1

 G(p,q): 1-bit AND

 Combine: shift and addition
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0    1    1   0 0    1    1   1

0    1       0    1 0    1       1    1         1    0      0   1 1    0       1    1

A B C D

A A B BCC D D

 24   22

  22    2 

  22    2 

  22    2 

  22    2 

0        0                0        1       1       0              1        1

0        1                0        1       1       1              1        1

1       0                  1       1       0        0             1       0

1        1                1        1        0      1              1       0

0    0    0   1 0    0   1    1 0   0   1    0 0    1   1   0 24
 22

00010000                 +    00010100                                               + 00000110 = 00101010

=42

6 7
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x y A B C D

AC AD BC BD
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 Time complexity

• cf. brute force method O n( )2
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 Why no improvement using divide-and-

conquer?

 in quick sort

 elements in S1 do not compare with those in S2

 elements in S11 do not compare with those in S12

 problems are decomposable and independent

S

S1 S2

S11 S12
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 In integer multiplication

 problems are decomposable but not

independent

 the number of multiplications is not reduced

 The fancy way of decomposing the solution 

still requires every digit in one number to 

“touch” every digit in the other number (no

sharing, no reuse)
A        B

C         D

X

Y
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 Possible improvements: through sharing

x y A B C D

AC AD BC BD

AC A B D C AC BD BD

T n T
n

cn O n O n
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Maximum Sum

 Just to confuse you more, it is not to say 

that the subproblems must be totally 

independent for divide-and-conquer to work

 Given: an array of n numbers, possibly 

negative

 Find: maximum subsequence sum (if all 

numbers are negative, then the maximum 

sum is 0)

 -4, 10, 12, -5, -7, 8, 3, 1 is 22



 How does divide-and-conquer work?

Divide the array into two parts

Compute the maximum sum in each part

 The global maximum sum is the largest of the two

 but …

 What happens if the maximum sum sequence 

straddles the boundary?

 4, -3, 5, -2, -1, 2, 6, -2



 Start from the middle

Accumulate from middle moving leftward, 

keep the largest sum

Accumulate from middle moving rightward, 

keep the largest sum

The largest partial sum across two parts must be 

the sum of the above two

middlef(irst) l(ast)

left right



 Need a third term which captures the 

maximum sum of straddling sequence
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a[m]f(irst) l(ast)

 Then the maximum sum is the largest of 

three terms: two from left and right, one 
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left right
a[i]

Retained largest partial sums



 Complexity

)log()
2

(2)( nnOn
n

TnT 

 Bruteforce method

for (f=1; f<=n; f++)

for (l=f; l<=n; l++)

for (k=f; k<=l; k++)

Add up all the a[k] 

will be O(n^3)

All possible first pos

All possible last pos

Sum from first to last



Closest Pair of Points

 Given a set of points on a plane, find the 

two points which are closest to each other

 Brute force method is O(n^2)

 Can divide-and-conquer do better? 

 Obvious solution:

 partition data sets into two halves (recursively)

 closest pair of points are in

 the left half or right half

 one each in each half



 The closest points in the left and right 

halves can be found recursively

 But how to find points across boundary?

Obvious solution: check each n/2 points in the 

left against each n/2 points in the right

 The solution will be O(n^2), no better than 

brute force method

 Again, the problem is that two problems are 

not entirely independent and combining 

subsolutions can be tricky.



 Goal: if we want an O(nlogn) solution, then 

the combination step must be of O(n)

 What is the linear solution in combination? 

 A clever trick ),min( rl ddd 

),min( rl ddd  Q: How many points do you 

have to check? 

 A: No blue (green) point can 

lie inside the circle of radius 

d around another blue 

(green) point



d

d

d

Check box d(in x) and 2d(in y)















Fourier Transform 

 Decompose a (time, space) signal into its 

frequency components (bases)

 Fourier bases e-iwt are

Orthogonal

Complete

Convenient 



Fourier Transform Intuition

 3D vector space

 Bases x =(1,0,0), y

=(0,1,0), z =(0,0,1)

 v= (a,b,c)

 a = v.x, b=v.y, c=v.z

 v= ax+by+cz

 Inf-D Function space

 Bases 

 Any function f

dtewFtf iwt )()(

dtetfwF iwt  )()(

)sin()cos( wtiwte iwt 



Fourier Transform Properties

 Too many, only 2 will be presented here

 Convolution <-> multiplication

 (narrowed-spaced) pulse train <-> (widely-

spaced) pulse train

 Why? 

These two properties alone can explain 

continuous transform into discrete transform 



System Theory

 What is a system?

 How to study a system?  



Linear Systems 

 Three important properties of linear, shift-

invariant systems:

 Superposition

R( f + g ) = R( f ) + R( g )

 Scaling

R( kf ) = k R( f )

R(af + bg) = aR( f ) + bR( g )

 Shift invariance

 Translation of stimulus  translation of response

 h(t) = R(g(t))   h(t+k) = R(g(t+k))

Linear system



Impulse Response

 The response to the simplest stimulation (an 

impulse)

 Using impulse response and linear, time 

invariant behavior, one can predict exactly 

what the system will do to any arbitrary

stimulations
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In General

 The system response is a “convolution” of 

input and system’s impulse response 

function
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 In continuous domain, summation becomes 

integration
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Fourier Transform of 

Convolution
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Pulse Train

 Fast t train -> small Dt -> large T -> large f-> slow f train

 Slow train-> large Dt -> small T -> small f -> fast f train
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Combination

 Multiply a signal (f) with a pulse train 

(sampling or discretization) in the space 

domain Convolve signal’s spectrum (F) 

with another pulse train

 Fast changing signal fast sampling

 Sampling above Nyquist frequency ensures 

no signal loss 



Discrete FT

 If signal is periodical

 Component 

frequencies must be 

multiple of the 

1/period

 Spectrum is discrete

 If signal is discrete 

(sampling with a pulse 

train)

 Component 

frequencies are results 

of convolution

 Spectrum is periodical 

Time Frequency

Periodical Discrete

Discrete Periodical

Periodical & discrete Discrete & periodical



Mathematical Formula 
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Computation Complexity

 Obviously multiplying n by n matrix with n 

by 1 vector is O(n2)

 Fast Fourier transform O(nlogn)

 VERY significant as FFT is an important 

operation of many image and signal 

processing algorithms

 Based on Divide and Conquer!



Why?



8-point example 



Complexity

 O(nlogn) because

 T(n) = 2 T(n/2) + cn



Data Structures and Algorithms II

Summary

 How to divide?

 1 to 2 

 equal size, e.g. merge sort

 unequal size, e.g. quick sort

 1 to many

 binary search, Tower of Hanoi (1 to 3)

 integer multiply, matrix multiply (1 to many)



Data Structures and Algorithms II

Summary (cont.)

 When to terminate recursion?

 depend on the problem at hand

 simple comparison (binary search)

 simple move (Hanoi tower)

 How to combine partial results?

 nothing (binary search)

 concatenation (quick sort)

merge (merge sort)

 addition and shift (integer multiplication)


