
Data Structures and Algorithms II

Overview
 Data structures and associated operations

Data structures Associated operations

Linked list insert, delete, makenull

Stacks push, pop

Queues remove from head,

insert from tail

Trees insert, delete, traverse

Graphs traverse, shortest path,

strong components, etc.

• Data structures and associated operations are

“tools” for building programs

Data Structures and Algorithms II

Overview (cont.)

 Algorithm design

 A sequence of operations which are

 clearly defined (no ambiguity as to what to do next)

 effective (component operations done in finite time)

 terminate

 E.g. Sorting

 Data structures: an array of length n

 Algorithms: comparing & swapping elements (bubble sort,

insertion sort, selection sort, quick sort, merge sort, etc.)

 Programs = Algorithms + Data structures

Data Structures and Algorithms II

Overview (cont.)

 General principles

Divide-and-conquer

Greedy

Dynamic programming

Backtracking

Branch-and-bound

Randomized algorithms

Caveats

 There are a lot more principles for

algorithm designs that we do not cover

Numerical algorithms

Graph algorithms

Geometrical algorithms (e.g., vision, graphics)

 Probabilistical algorithms

 Multi-stage, discrete, countably many,

unique

Divide-and-Conquer

Data Structures and Algorithms II

Divide-and-Conquer

 Input A(1:n): n elements stored in an array

Procdure DandC(p,q)

if Small(p,q) then

return (G(p,q))

else m Divide(p,q)

return Combine(DandC(p,m),DandC(m +1,q))

end if

end DandC

Data Structures and Algorithms II

Divide-and-Conquer (cont.)

 Divide: split a larger problem into sub-

problems of smaller size

 Combine: merge the solutions of sub-

problems into that of a larger problem

 Small: is the problem small enough?

 G(p,q): easy solutions to small problems

Data Structures and Algorithms II

Hanoi Towers
A B C

 Three pegs, A has n disks of different sizes stacked with smaller
ones on top of bigger ones

 Move disks one at a time

 Never place a larger disk on top of a smaller one

 Move all disks onto B

 Trivial problem, the rule of the game dictates divide-and-
conquer

Data Structures and Algorithms II

 Hanoi(n, A, B, C)

 n: number of disks

A: starting peg

B: end peg

C: temporary peg

A B Cn=1

Data Structures and Algorithms II

A B Cn=2

A B Cn=3

1

2 3

1

2
3

4

Data Structures and Algorithms II

 Movement steps of m disks will be used in

moving n disks (n>m)

 Problem is decomposable

Hanoi(n,A,B,C) =

Hanoi(n-1,A,C,B)

+ Hanoi(1,A,B,C)

+ Hanoi(n-1,C,B,A)

A B C

Data Structures and Algorithms II

H(1,A,C,B) H(1,A,B,C) H(1,C,B,A)

H(2,A,B,C) H(1,A,C,B)

H(1,B,A,C) H(1,B,C,A) H(1,A,C,B)

H(2,B,C,A)

H(3,A,C,B) H(1,A,B,C)

H(1,C,B,A) H(1,C,A,B) H(1,B,A,C)

H(2,C,A,B) H(1,C,B,A)

H(1,A,C,B) H(1,A,B,C) H(1,C,B,A)

H(2,A,B,C)

H(3,C,B,A)

H(4,A,B,C)

Data Structures and Algorithms II

 Divide: two sub-problems of size n-1 and

one sub-problem of size 1

 Small(p,q): when the problem size is 1

 G(p,q): move a disk from peg to peg

 Combine: sequential concatenation of

moves

Data Structures and Algorithms II

 Time complexity

T n T n c T n T n c

T n c c T n c

T n c c T n c

T c

c

n n

n n

() () () ()

{ () } () ()

{ () } () () ()

... ...

() (...)

(...)

1 1 2 1

2 2 2 2 2 1 2

2 2 3 1 2 2 3 1 2 2

2 1 1 2 2

1 2 2 2

2

2 3 2

1 2

2 1

 O n()2

Data Structures and Algorithms II

Binary Search

 Input:
 a list of elements sorted in nondecreasing order

 an element x

 Output
 determine whether x is present

 if so, the position index j

Data Structures and Algorithms II

 Divide:

BS n a a a x

BS
n

a a a x

BS a x

BS n
n

a a x

n

n

n

nn

(, , ,..., ,)

(, , ,..., ,)

(, ,)

(, ,..., ,)

1 2

1 2 1

2
1

1

2

1

2
1

1

1

2 1

2
1

– two problems of size approximately n/2, and

one problem of size 1

Data Structures and Algorithms II

 Small(p,q): when the size of problem is 1

 G(p,q): compare the single element in the

list with the search element

 Combine:

x a j
n

x a

x a

n

n

n

1

2

1

2

1

2

1

2

solve the first sub - problem

solve the third sub - problem

Data Structures and Algorithms II

-15 -6 0 7 9 23 54 82 101
1 2 3 4 5 6 7 8 9

x=101

low mid high

low highmid

low/

med

high

low,

mid,

high

mid
low high

2

mid 1

mid 1

mid 1

found j=9

Data Structures and Algorithms II

-15 -6 0 7 9 23 54 82 101
1 2 3 4 5 6 7 8 9

low mid high

low mid

low,

mid,

high

x=30

mid 1

 mid 1

low>high, not foundmid 1

high

high

mid
low high

2

Data Structures and Algorithms II

 Time complexity

1

4

3

2

6

9

8

7

5

internal nodes: successful search

external nodes: failed search

9

-6

-15 0

7

54

23 82

101

level
0

1

2

3

4

Data Structures and Algorithms II

 Properties of binary search trees

 balanced (root corresponds to the middle element,

two subtrees are of approximately equal size)

with n elements

 internal nodes at levels of 0 to k-1

(successful searches make at most k comparisons)

 external nodes at levels k-1 and k

(failed searches make at least k-1 ad at most k

comparisons)

worst case is O(k) or O(logn) for both successful

and failed searches

 best case is O(1) for successful and O(logn) for

failed searched

2 21k kn

Tree

dept

h (k)

Min

capa

city

(2k-1)

Max

capa

city

(2k)

1 1 2

2 2 4

3 4 8

4 8 16

Data Structures and Algorithms II

 Average case - slightly more complicated

Average performance =

prob(S) average performance

of successful searches +

prob(F) average performance

of failed searches

average # of comparisons

in successful searches

average # of comparisons

in failed searches

average internal path length + 1 average external path length

total internal path length (I)

of internal nodes (i)

total external path length (E)

of external nodes (e)

1

Data Structures and Algorithms II

 # of internal (i) and external (e) nodes

(i=1, e=2) (i=2, e=3)

(i=n, e=n+1) (i=n+1, e=n+2)

Data Structures and Algorithms II

 total internal (I) and external (E) path length

(I=0, E=2) (I=1, E=5) (I=2, E=8)

x x

I I x

E E x x

I i x x

I x i

I i

'

' ()

() ()

() ()

' '

2 1

2 2 1

2 1

2
E I i 2

Data Structures and Algorithms II

regardless O(logn)

 is eperformanc average

)(log
1

log)1(

1
)(log1log

1
2log)1(

1

2log)1(2

)log(log)1(

1

nO
n

nn

n

E

nOn

n

nnn

n

I

nnniEI

nnOnnE

 n+is e Then nis i If

Data Structures and Algorithms II

More Examples: Sorting

 brute force methods

 bubble sort

 selection sort

 insertion sort

• “smart” methods

– quick sort

– merge sort

– based on Divide-

and-Conquer

O n()2

O n n(log)

for i=1 to n-1 do

for j=n downto i+1 do

if a[j]<a[j-1] then

swap(a[j-1], a[j])
O()1

O n i()

O n i

O n

i

n

()

()

1

1

2

i 1 2 3 4 5 6 7 8 9

1 65 85 70 75 80 60 55 50 45

2 45 65 85 70 75 80 60 55 50

3 45 50 65 85 70 75 80 60 55

4 45 50 55 65 85 70 75 80 60

5 45 50 55 60 65 85 70 75 80

6 45 50 55 60 65 70 85 75 80

7 45 50 55 60 65 70 75 85 80

8 45 50 55 60 65 70 75 80 85

9 45 50 55 60 65 70 75 80 85

Bubble sort

Data Structures and Algorithms II

 Each iteration places one element correctly

 Many elements are involved in many
iterations

 Size of subproblems decrease very slowly
through iterations

Data Structures and Algorithms II

 Sorting based on Divide-and-Conquer

• Quick sort

– uneven division

– simple concatenation

• Merge sort

– even division

– elaborate merge

Data Structures and Algorithms II

Quick Sort

 Input: a list of n elements

 Output: a list of the same elements sorted in

nondecreasing order

Data Structures and Algorithms II

 Divide

QS n a a a

partition n

QS i a a a

QS n i a a

n

i

i n

(, , ,...,)

(,)

(, , ,...,)

(, ,...,)

1 2

1 2

1

1

• Small(p,q): when the problem size becomes 1

• G(p,q): nothing

• Combine: simple concatenation of solutions

of two sorted lists

Data Structures and Algorithms II

45 50

45, 50 55

50, 45, 55 60

55, 45, 50, 60 65

60, 45, 50, 55, 65

70

75 80

75,80

70, 75, 80 85

80, 75, 70, 85

65, 85, 70, 75, 80, 60, 55, 50, 45

Data Structures and Algorithms II

partition p q i such that a is the pivot

a a a a

a a a a

i

p p i i

i i q i

(,) ,

, ,...,

, ,...,

1

1 2

65 85 70 75 80 60 55 50 45

65 45 70 75 80 60 55 50 85

65 45 50 75 80 60 55 70 85

65 45 50 55 80 60 75 70 85

65 45 50 55 60 80 75 70 85

60 45 50 55 65 80 75 70 85

Data Structures and Algorithms II

left right

 left pointer moves right, until

 right point moves left, until

 if left<right, swap *(left) and *(right)

left rightexchange

*()left pivot

*()right pivot

• else

exchange

 pivot pivot

Data Structures and Algorithms II

 Array is scanned only once, at a particular

location

 no action is taken (advance pointer), or

 swap elements and advance pointer

 partition is O(array length)

Data Structures and Algorithms II

 Time complexity - worst case

1

2

3

4

5

6 7

6,7

5,6,7

4,5,6,7

3,4,5,6,7

2,3,4,5,6,7

1,2,3,4,5,6,7

(

() ()

()

of elements in the array)
1

1

2

1 2 2

n

n n n

O n

Data Structures and Algorithms II

 Time complexity - average case

Assumptions:

 the n elements are distinct

 the pivot element can be equally likely the ith

element in the sorted array

T n
n

T i T n i cn

O n n

i

n

() { () ()}

(log)

1

1

Data Structures and Algorithms II

Merge Sort

 Input: a list of n elements

 Output: a list of the same elements sorted in

nondecreasing order

Data Structures and Algorithms II

 Divide
MS n a a a

MS
n

a a a

MS n
n

a a

n

n

n n

(, , ,...,)

(, , ,...,)

(, ,...,)

1 2

1 2 1

2

1

2
1

1

2

1

2

merge the two sublists properly

• Small(p,q): when the problem size becomes 1

• G(p,q): nothing

• Combine: trace down the two sublists and

merge them properly

Data Structures and Algorithms II

31 28

31,28

17 65

17,65

31,28,17,65 35,42,86,25

35 42

35,42

86 25

86,25

31,28,17,65,35,42,86,25

31 28

28,31

17 65

17,65

17,28,31,65 25,35,42,86

35 42

35,42

86 25

25,86

17,25,28,31,35,42,65,86

Divide Combine

Data Structures and Algorithms II

sublist A

sublist B

A+B

pt_A

pt_B

if *(pt_A) is NULL, append B to A+B

else if *(pt_B) is NULL, append A to A+B

else if *(pt_A) < *(pt_B),

append *(pt_A) to A+B, increment pt_A

else

append *(pt_B) to A+B, increment pt_B

end if

O(|A|+|B|) operations

Data Structures and Algorithms II

 Time complexity

MS n a a a

MS
n

a a a

MS n
n

a a

T(n) T(
n

) T
n

cn T
n

cn

T
n

c
n

cn T
n

cn

T
n

n

n

n n

(, , ,...,)

(, , ,...,)

(, ,...,)

() ()

(()) ()

(()

1 2

1 2 1

2

1

2
1

2

2

1

2

1

2

2 2
2

2

2 2
4 2

2
4

2

2 2
8

merge

=

c
n

cn T
n

cn

T kcn n

an cn n

O n n

k k

4
2 2

8
3

2 1 2

3) ()

...

()

log

(log)

Data Structures and Algorithms II

Convex Hull

 Input: a collection of n points

 Output: the smallest convex polygon that

encloses the set of points

 2D case: points as nails sticking out on a table,

put a rubberband around them

Data Structures and Algorithms II

 Properties

Use given points as vertices

Contain all extreme points in the set

 Points of smallest and largest x and y

coordinates are included

Traverse the edge of the hull

 counterclockwise, all points must be on the left

 clockwise, all points must be on the right

 Graham’s Scan (package wrapping)

P

1
2

3
4

56

7

8
9

10
P

1
2

3
4

56

7

8
9

10

5

P

1
2

3
4

6

7

8
9

10

5

P

1
2

3
4

6

7

8
9

10

5

P

1
2

3

4

6

7

8
9

10

5

P

1
2

3

4

6

7

8
9

10

 Start at some point that guaranteed to be on

the convex hull (e.g., point with smallest y

coordinate)

 From that point, compute theta (see

previous slide) for all remaining points

 Sort by theta and consider each point in turn

 After examining i-1 points

 p[1..M] are on the convex hull

 After examining i points

 p[M] is recursively eliminated if p[M], p[M-1]

and P[i] make the wrong turn

123
4

5

0

 Example

 0 is the base

 1,2,3,4 will be included in the

hull (all make left turns)

when 5 is considered

 4 is eliminated (3,4,5 right turn)

 3 is eliminated (2,3,5 right turn)

 2 is eliminated (1,2,5 right turn)

 1 is kept (0, 1,5 left turn)

 5 is added

Complexity

 Angular sorting O(nlogn)

 With n vertices

 Loop: add vertices to the CH

 Loop: delete vertices from the CH

 Each vertex can be added and/or deleted only

once

 Each add/delete operation takes constant time

(inner product)

O(n) total

 Whole operation: O(nlogn)

Data Structures and Algorithms II

 Divide-and-Conquer

Upper hull and lower hull division (not

essential)

Recursive division

11

1
2

3

4

56

7

8

9

10

Data Structures and Algorithms II

Merge
 Intuition: connecting extreme points (points with the largest y

coordinate on two hulls)

 Or more precisely, move the connecting lines are high (low) as

possible for upper hull (lower hull)

 sort by y, too expensive (O(nlogn))

 hill climbing (binary search on sorted x)

H1
H2

 If H1 and H2 are two upper hulls with at

most m points each. If p is any point on H1,

its point of tangency, q, with H2 can be

found on O(logm) time

 If H1 and H2 are two upper hulls with at

most m points each, their common tangent

can be found on O(log^2 m) time

 The Divide-and-Conquer convex hull

algorithm has a complexity of O(nlogn)

A B

UpperTangent(HA ; HB) :

(1)Let a be the rightmost point of HA .

(2)Let b be the leftmost point of HB .

(3)While ab is not a upper tangent for HA and HB do

(a) While ab is not a upper tangent to HA do a = a - 1 (move a counterclockwise).

(b) While ab is not a upper tangent to HB do b = b + 1 (move b clockwise).

(4) Return ab.

Line Connecting two highest points but

NOT common tangent

True common tangent

Right upper hullLeft upper hull

 Nitty-Gritty Details

Line connecting two highest points in

component hulls is NOT necessarily the

common tangent

Data Structures and Algorithms II

 Time complexity

Upper and lower hulls division

 largest and smallest x points O(n)

 partition points into two halves O(n)

Recursive division

 sort points by x O(nlogn)

main step

T n T
n

merge T
n

O n

O n n

() () () (log)

(log)

2
2

2
2

2

Yet Another Divide-and-Conquer Algorithm

(QuickHull)

Graphical Illustration

 Three possibilities O(n) time:

 Inside the triangle ABC

Above AC, or

Above AB

dmax

A

B

C

Complexity

 If points are uniformly distributed in a unit

square, expected # of points on the hull is

O(logn)

 Quickhull discards interior points very

quickly and narrows in peripheral points

 Like Quicksort, average time is O(nlogn)

but worst case performance is O(n^2)

Complexity

 Quick sort

 Select pivot (O(1))

 Partition into two parts

O(n)

 Recursive division

 Trivial concatenation

 T(n) = T(i) + T(n-i) +

O(n)

 Quick hull

 Select furthest point

(O(n))

 Partition into three

parts O(n)

 Recursive division

 Trivial concatenation

 T(n) = T(i) + T(n-i) +

O(n)

Moral of the story

 Algorithm design is an art. We have seen

three different convex hull algorithms

One based on domain knowledge only

Two based on divide-and-conquer

Data Structures and Algorithms II

Multiplying Long Integers

 Input: two n-bit integer x and y

 Output: a 2n-bit integer

 Divide-and-Conquer strategy

x y

x A B

y C D

x y A B C D

AC AD BC BD

n

n

n n

n
n

2

2

2 2

2

2

2

2 2

2

()()

()2

A B

C D

X

Y
n-1 n/2 0

Data Structures and Algorithms II

 Divide: multiply 2 n-bit integers

= 4 multiplies of 2 n/2-bit integers

+ 3 additions of integers (2n bits)

+ 2 shifts

 Small(p,q): when the length becomes 1

 G(p,q): 1-bit AND

 Combine: shift and addition

Data Structures and Algorithms II

0 1 1 0 0 1 1 1

0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1

A B C D

A A B BCC D D

 24 22

 22 2

 22 2

 22 2

 22 2

0 0 0 1 1 0 1 1

0 1 0 1 1 1 1 1

1 0 1 1 0 0 1 0

1 1 1 1 0 1 1 0

0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 24
 22

00010000 + 00010100 + 00000110 = 00101010

=42

6 7

Data Structures and Algorithms II

x y A B C D

AC AD BC BD

T n T
n

cn

T
n

c
n

cn T
n

cn

T cn

a cn

O n

n n

n
n

k k

n n

()()

()2

() ()

(()) () ()

...

() (...)

()

()

log log

2 2

2

4
2

4 4
4 2

4
4

1 2

4 1 1 2 2

4 2 1

2 2

2

2

1

2

 Time complexity

• cf. brute force method O n()2

Data Structures and Algorithms II

 Why no improvement using divide-and-

conquer?

 in quick sort

 elements in S1 do not compare with those in S2

 elements in S11 do not compare with those in S12

 problems are decomposable and independent

S

S1 S2

S11 S12

Data Structures and Algorithms II

 In integer multiplication

 problems are decomposable but not

independent

 the number of multiplications is not reduced

 The fancy way of decomposing the solution

still requires every digit in one number to

“touch” every digit in the other number (no

sharing, no reuse)
A B

C D

X

Y

Data Structures and Algorithms II

 Possible improvements: through sharing

x y A B C D

AC AD BC BD

AC A B D C AC BD BD

T n T
n

cn O n O n

n n

n

n

n
n

()()

()2

{()() }

() () () ()log .

2 2

2

2 2

3
2

2 2

2

2

3 1 592

4 3 2 , ,

3 6 2 , ,

Maximum Sum

 Just to confuse you more, it is not to say

that the subproblems must be totally

independent for divide-and-conquer to work

 Given: an array of n numbers, possibly

negative

 Find: maximum subsequence sum (if all

numbers are negative, then the maximum

sum is 0)

 -4, 10, 12, -5, -7, 8, 3, 1 is 22

 How does divide-and-conquer work?

Divide the array into two parts

Compute the maximum sum in each part

 The global maximum sum is the largest of the two

 but …

 What happens if the maximum sum sequence

straddles the boundary?

 4, -3, 5, -2, -1, 2, 6, -2

 Start from the middle

Accumulate from middle moving leftward,

keep the largest sum

Accumulate from middle moving rightward,

keep the largest sum

The largest partial sum across two parts must be

the sum of the above two

middlef(irst) l(ast)

left right

 Need a third term which captures the

maximum sum of straddling sequence

][

)][(

];[]1[][

);;1(

];[]0[

imbb

thenbimbif

iaimbimb

ifimifor

mabb

l

l

l

a[m]f(irst) l(ast)

 Then the maximum sum is the largest of

three terms: two from left and right, one

bl+br

]1[

)]1[(

];[]2[]1[

);;2(

];1[]0[

mibb

thenbmibif

iamibmib

ilimifor

mabb

r

r

r

left right
a[i]

Retained largest partial sums

 Complexity

)log()
2

(2)(nnOn
n

TnT

 Bruteforce method

for (f=1; f<=n; f++)

for (l=f; l<=n; l++)

for (k=f; k<=l; k++)

Add up all the a[k]

will be O(n^3)

All possible first pos

All possible last pos

Sum from first to last

Closest Pair of Points

 Given a set of points on a plane, find the

two points which are closest to each other

 Brute force method is O(n^2)

 Can divide-and-conquer do better?

 Obvious solution:

 partition data sets into two halves (recursively)

 closest pair of points are in

 the left half or right half

 one each in each half

 The closest points in the left and right

halves can be found recursively

 But how to find points across boundary?

Obvious solution: check each n/2 points in the

left against each n/2 points in the right

 The solution will be O(n^2), no better than

brute force method

 Again, the problem is that two problems are

not entirely independent and combining

subsolutions can be tricky.

 Goal: if we want an O(nlogn) solution, then

the combination step must be of O(n)

 What is the linear solution in combination?

 A clever trick),min(rl ddd

),min(rl ddd Q: How many points do you

have to check?

 A: No blue (green) point can

lie inside the circle of radius

d around another blue

(green) point

d

d

d

Check box d(in x) and 2d(in y)

Fourier Transform

 Decompose a (time, space) signal into its

frequency components (bases)

 Fourier bases e-iwt are

Orthogonal

Complete

Convenient

Fourier Transform Intuition

 3D vector space

 Bases x =(1,0,0), y

=(0,1,0), z =(0,0,1)

 v= (a,b,c)

 a = v.x, b=v.y, c=v.z

 v= ax+by+cz

 Inf-D Function space

 Bases

 Any function f

dtewFtf iwt)()(

dtetfwF iwt)()(

)sin()cos(wtiwte iwt

Fourier Transform Properties

 Too many, only 2 will be presented here

 Convolution <-> multiplication

 (narrowed-spaced) pulse train <-> (widely-

spaced) pulse train

 Why?

These two properties alone can explain

continuous transform into discrete transform

System Theory

 What is a system?

 How to study a system?

Linear Systems

 Three important properties of linear, shift-

invariant systems:

 Superposition

R(f + g) = R(f) + R(g)

 Scaling

R(kf) = k R(f)

R(af + bg) = aR(f) + bR(g)

 Shift invariance

 Translation of stimulus translation of response

 h(t) = R(g(t)) h(t+k) = R(g(t+k))

Linear system

Impulse Response

 The response to the simplest stimulation (an

impulse)

 Using impulse response and linear, time

invariant behavior, one can predict exactly

what the system will do to any arbitrary

stimulations

)3()0(fx

)2()1(fx

)1()2(fx

)0()3(fx

lengthfilter :

)3()(

)()3()3(

3

13

1

0

n

ifix

ifixH

ni

n

i

x

)3(xH
0t

)0(x

)1(x

)2(x

)3(x

In General

 The system response is a “convolution” of

input and system’s impulse response

function

)()()()()(
1

1

0

ijfixifijxjH
j

nji

n

i

x

 In continuous domain, summation becomes

integration

duutfuxduufutxtH
tu

wtu

wu

u
x

)()()()()(

0

Fourier Transform of

Convolution
duutfuxduufutxtH

tu

wtu

wu

u
x

)()()()()(

0

)()(

])(][')'([

])()][()([

)()()(

)()(

])()([)(

'

)(

)(

wGwF

dueugdtetf

dueugutdeutf

dueugutdeutf

duudtgeutf

dteduugutfwH

iwuiwt

iwuutiw

iwuutiw

iwt

iwt

)()()()(wGwFtgtf

Pulse Train

 Fast t train -> small Dt -> large T -> large f-> slow f train

 Slow train-> large Dt -> small T -> small f -> fast f train

otherwise

nTf
e

eedtetk

dtetkdtetfwF

T

fki

T

iwk

tiwkiwt

iwtiwt

0

freq) lfundamenta:
T

1
 (1

)(

)()()(

2

Combination

 Multiply a signal (f) with a pulse train

(sampling or discretization) in the space

domain Convolve signal’s spectrum (F)

with another pulse train

 Fast changing signal fast sampling

 Sampling above Nyquist frequency ensures

no signal loss

Discrete FT

 If signal is periodical

 Component

frequencies must be

multiple of the

1/period

 Spectrum is discrete

 If signal is discrete

(sampling with a pulse

train)

 Component

frequencies are results

of convolution

 Spectrum is periodical

Time Frequency

Periodical Discrete

Discrete Periodical

Periodical & discrete Discrete & periodical

Mathematical Formula

0

2

7

1

65

4

3

W =W2n

Computation Complexity

 Obviously multiplying n by n matrix with n

by 1 vector is O(n2)

 Fast Fourier transform O(nlogn)

 VERY significant as FFT is an important

operation of many image and signal

processing algorithms

 Based on Divide and Conquer!

Why?

8-point example

Complexity

 O(nlogn) because

 T(n) = 2 T(n/2) + cn

Data Structures and Algorithms II

Summary

 How to divide?

 1 to 2

 equal size, e.g. merge sort

 unequal size, e.g. quick sort

 1 to many

 binary search, Tower of Hanoi (1 to 3)

 integer multiply, matrix multiply (1 to many)

Data Structures and Algorithms II

Summary (cont.)

 When to terminate recursion?

 depend on the problem at hand

 simple comparison (binary search)

 simple move (Hanoi tower)

 How to combine partial results?

 nothing (binary search)

 concatenation (quick sort)

merge (merge sort)

 addition and shift (integer multiplication)

