
Data Structures and Algorithms II

Overview
 Data structures and associated operations

Data structures Associated operations

Linked list insert, delete, makenull

Stacks push, pop

Queues remove from head,

insert from tail

Trees insert, delete, traverse

Graphs traverse, shortest path,

strong components, etc.

• Data structures and associated operations are

“tools” for building programs

Data Structures and Algorithms II

Overview (cont.)

 Algorithm design

 A sequence of operations which are

 clearly defined (no ambiguity as to what to do next)

 effective (component operations done in finite time)

 terminate

 E.g. Sorting

 Data structures: an array of length n

 Algorithms: comparing & swapping elements (bubble sort,

insertion sort, selection sort, quick sort, merge sort, etc.)

 Programs = Algorithms + Data structures

Data Structures and Algorithms II

Overview (cont.)

 General principles

Divide-and-conquer

Greedy

Dynamic programming

Backtracking

Branch-and-bound

Randomized algorithms

Caveats

 There are a lot more principles for

algorithm designs that we do not cover

Numerical algorithms

Graph algorithms

Geometrical algorithms (e.g., vision, graphics)

 Probabilistical algorithms

 Multi-stage, discrete, countably many,

unique

Divide-and-Conquer

Data Structures and Algorithms II

Divide-and-Conquer

 Input A(1:n): n elements stored in an array

Procdure DandC(p,q)

if Small(p,q) then

return (G(p,q))

else m Divide(p,q)

return Combine(DandC(p,m),DandC(m +1,q))

end if

end DandC



Data Structures and Algorithms II

Divide-and-Conquer (cont.)

 Divide: split a larger problem into sub-

problems of smaller size

 Combine: merge the solutions of sub-

problems into that of a larger problem

 Small: is the problem small enough?

 G(p,q): easy solutions to small problems

Data Structures and Algorithms II

Hanoi Towers
A B C

 Three pegs, A has n disks of different sizes stacked with smaller
ones on top of bigger ones

 Move disks one at a time

 Never place a larger disk on top of a smaller one

 Move all disks onto B

 Trivial problem, the rule of the game dictates divide-and-
conquer

Data Structures and Algorithms II

 Hanoi(n, A, B, C)

 n: number of disks

A: starting peg

B: end peg

C: temporary peg

A B Cn=1

Data Structures and Algorithms II

A B Cn=2

A B Cn=3

1

2 3

1

2
3

4

Data Structures and Algorithms II

 Movement steps of m disks will be used in

moving n disks (n>m)

 Problem is decomposable

Hanoi(n,A,B,C) =

Hanoi(n-1,A,C,B)

+ Hanoi(1,A,B,C)

+ Hanoi(n-1,C,B,A)

A B C

Data Structures and Algorithms II

H(1,A,C,B) H(1,A,B,C) H(1,C,B,A)

H(2,A,B,C) H(1,A,C,B)

H(1,B,A,C) H(1,B,C,A) H(1,A,C,B)

H(2,B,C,A)

H(3,A,C,B) H(1,A,B,C)

H(1,C,B,A) H(1,C,A,B) H(1,B,A,C)

H(2,C,A,B) H(1,C,B,A)

H(1,A,C,B) H(1,A,B,C) H(1,C,B,A)

H(2,A,B,C)

H(3,C,B,A)

H(4,A,B,C)

Data Structures and Algorithms II

 Divide: two sub-problems of size n-1 and

one sub-problem of size 1

 Small(p,q): when the problem size is 1

 G(p,q): move a disk from peg to peg

 Combine: sequential concatenation of

moves

Data Structures and Algorithms II

 Time complexity

T n T n c T n T n c

T n c c T n c

T n c c T n c

T c

c

n n

n n

() () () ()

{ () } () ()

{ () } () () ()

... ...

() (...)

(...)

       

       

         

    

    

 

 

1 1 2 1

2 2 2 2 2 1 2

2 2 3 1 2 2 3 1 2 2

2 1 1 2 2

1 2 2 2

2

2 3 2

1 2

2 1

 O n()2

Data Structures and Algorithms II

Binary Search

 Input:
 a list of elements sorted in nondecreasing order

 an element x

 Output
 determine whether x is present

 if so, the position index j

Data Structures and Algorithms II

 Divide:

BS n a a a x

BS
n

a a a x

BS a x

BS n
n

a a x

n

n

n

nn

(, , ,..., ,)

(, , ,..., ,)

(, ,)

(, ,..., ,)

1 2

1 2 1

2
1

1

2

1

2
1

1

1

2 1

2
1











  









































– two problems of size approximately n/2, and

one problem of size 1

Data Structures and Algorithms II

 Small(p,q): when the size of problem is 1

 G(p,q): compare the single element in the

list with the search element

 Combine:

x a j
n

x a

x a

n

n

n

 












































1

2

1

2

1

2

1

2

solve the first sub - problem

solve the third sub - problem

Data Structures and Algorithms II

-15 -6 0 7 9 23 54 82 101
1 2 3 4 5 6 7 8 9

x=101

low mid high

low highmid

low/

med

high

low,

mid,

high

mid
low high










2

mid  1

mid  1

mid  1

found j=9

Data Structures and Algorithms II

-15 -6 0 7 9 23 54 82 101
1 2 3 4 5 6 7 8 9

low mid high

low mid

low,

mid,

high

x=30

mid  1

 mid 1

low>high, not foundmid  1

high

high

mid
low high










2

Data Structures and Algorithms II

 Time complexity

1

4

3

2

6

9

8

7

5

internal nodes: successful search

external nodes: failed search

9

-6

-15 0

7

54

23 82

101

level
0

1

2

3

4

Data Structures and Algorithms II

 Properties of binary search trees

 balanced (root corresponds to the middle element,

two subtrees are of approximately equal size)

with n elements

 internal nodes at levels of 0 to k-1

(successful searches make at most k comparisons)

 external nodes at levels k-1 and k

(failed searches make at least k-1 ad at most k

comparisons)

worst case is O(k) or O(logn) for both successful

and failed searches

 best case is O(1) for successful and O(logn) for

failed searched

2 21k kn  

Tree

dept

h (k)

Min

capa

city

(2k-1)

Max

capa

city

(2k)

1 1 2

2 2 4

3 4 8

4 8 16

Data Structures and Algorithms II

 Average case - slightly more complicated

Average performance =

prob(S) average performance

of successful searches +

prob(F) average performance

of failed searches

average # of comparisons

in successful searches

average # of comparisons

in failed searches

average internal path length + 1 average external path length

total internal path length (I)

of internal nodes (i)

total external path length (E)

of external nodes (e)

 

 

 

 

1

Data Structures and Algorithms II

 # of internal (i) and external (e) nodes

(i=1, e=2) (i=2, e=3)

(i=n, e=n+1) (i=n+1, e=n+2)

Data Structures and Algorithms II

 total internal (I) and external (E) path length

(I=0, E=2) (I=1, E=5) (I=2, E=8)

x x

I I x

E E x x

I i x x

I x i

I i

'

' ()

() ()

() ()

' '

 

   

    

   

 

2 1

2 2 1

2 1

2
E I i  2

Data Structures and Algorithms II

regardless O(logn)

 is eperformanc average

)(log
1

log)1(

1
)(log1log

1
2log)1(

1

2log)1(2

)log(log)1(

1



























nO
n

nn

n

E

nOn

n

nnn

n

I

nnniEI

nnOnnE

 n+is e Then nis i If

Data Structures and Algorithms II

More Examples: Sorting

 brute force methods

 bubble sort

 selection sort

 insertion sort

• “smart” methods

– quick sort

– merge sort

– based on Divide-

and-Conquer

O n()2

O n n(log)

for i=1 to n-1 do

for j=n downto i+1 do

if a[j]<a[j-1] then

swap(a[j-1], a[j])
O()1

O n i()

O n i

O n

i

n

()

()

 





1

1

2

i  1 2 3 4 5 6 7 8 9

1 65 85 70 75 80 60 55 50 45

2 45 65 85 70 75 80 60 55 50

3 45 50 65 85 70 75 80 60 55

4 45 50 55 65 85 70 75 80 60

5 45 50 55 60 65 85 70 75 80

6 45 50 55 60 65 70 85 75 80

7 45 50 55 60 65 70 75 85 80

8 45 50 55 60 65 70 75 80 85

9 45 50 55 60 65 70 75 80 85

Bubble sort

Data Structures and Algorithms II

 Each iteration places one element correctly

 Many elements are involved in many
iterations

 Size of subproblems decrease very slowly
through iterations

Data Structures and Algorithms II

 Sorting based on Divide-and-Conquer

• Quick sort

– uneven division

– simple concatenation

• Merge sort

– even division

– elaborate merge

Data Structures and Algorithms II

Quick Sort

 Input: a list of n elements

 Output: a list of the same elements sorted in

nondecreasing order

Data Structures and Algorithms II

 Divide

QS n a a a

partition n

QS i a a a

QS n i a a

n

i

i n

(, , ,...,)

(,)

(, , ,...,)

(, ,...,)

1 2

1 2

1

1







 

• Small(p,q): when the problem size becomes 1

• G(p,q): nothing

• Combine: simple concatenation of solutions

of two sorted lists

Data Structures and Algorithms II

45 50

45, 50 55

50, 45, 55 60

55, 45, 50, 60 65

60, 45, 50, 55, 65

70

75 80

75,80

70, 75, 80 85

80, 75, 70, 85

65, 85, 70, 75, 80, 60, 55, 50, 45

Data Structures and Algorithms II

partition p q i such that a is the pivot

a a a a

a a a a

i

p p i i

i i q i

(,) ,

, ,...,

, ,...,









 

1

1 2

65 85 70 75 80 60 55 50 45

65 45 70 75 80 60 55 50 85

65 45 50 75 80 60 55 70 85

65 45 50 55 80 60 75 70 85

65 45 50 55 60 80 75 70 85

60 45 50 55 65 80 75 70 85

 

 

 

 

 

Data Structures and Algorithms II

left right

 left pointer moves right, until

 right point moves left, until

 if left<right, swap *(left) and *(right)

left rightexchange

*()left pivot

*()right pivot

• else

exchange

 pivot  pivot

Data Structures and Algorithms II

 Array is scanned only once, at a particular

location

 no action is taken (advance pointer), or

 swap elements and advance pointer

 partition is O(array length)

Data Structures and Algorithms II

 Time complexity - worst case

1

2

3

4

5

6 7

6,7

5,6,7

4,5,6,7

3,4,5,6,7

2,3,4,5,6,7

1,2,3,4,5,6,7

(

() ()

()

of elements in the array)
1

1

2

1 2 2

n

n n n

O n





      



Data Structures and Algorithms II

 Time complexity - average case

Assumptions:

 the n elements are distinct

 the pivot element can be equally likely the ith

element in the sorted array

T n
n

T i T n i cn

O n n

i

n

() { () ()}

(log)

   






1

1

Data Structures and Algorithms II

Merge Sort

 Input: a list of n elements

 Output: a list of the same elements sorted in

nondecreasing order

Data Structures and Algorithms II

 Divide
MS n a a a

MS
n

a a a

MS n
n

a a

n

n

n n

(, , ,...,)

(, , ,...,)

(, ,...,)

1 2

1 2 1

2

1

2
1

1

2

1

2




















 





















merge the two sublists properly

• Small(p,q): when the problem size becomes 1

• G(p,q): nothing

• Combine: trace down the two sublists and

merge them properly

Data Structures and Algorithms II

31 28

31,28

17 65

17,65

31,28,17,65 35,42,86,25

35 42

35,42

86 25

86,25

31,28,17,65,35,42,86,25

31 28

28,31

17 65

17,65

17,28,31,65 25,35,42,86

35 42

35,42

86 25

25,86

17,25,28,31,35,42,65,86

Divide Combine

Data Structures and Algorithms II

sublist A

sublist B

A+B

pt_A

pt_B

if *(pt_A) is NULL, append B to A+B

else if *(pt_B) is NULL, append A to A+B

else if *(pt_A) < *(pt_B),

append *(pt_A) to A+B, increment pt_A

else

append *(pt_B) to A+B, increment pt_B

end if

O(|A|+|B|) operations

Data Structures and Algorithms II

 Time complexity

MS n a a a

MS
n

a a a

MS n
n

a a

T(n) T(
n

) T
n

cn T
n

cn

T
n

c
n

cn T
n

cn

T
n

n

n

n n

(, , ,...,)

(, , ,...,)

(, ,...,)

() ()

(()) ()

(()

1 2

1 2 1

2

1

2
1

2

2

1

2

1

2

2 2
2

2

2 2
4 2

2
4

2

2 2
8












 









   

    























merge

=

   

  

 



c
n

cn T
n

cn

T kcn n

an cn n

O n n

k k

4
2 2

8
3

2 1 2

3) ()

...

()

log

(log)

Data Structures and Algorithms II

Convex Hull

 Input: a collection of n points

 Output: the smallest convex polygon that

encloses the set of points

 2D case: points as nails sticking out on a table,

put a rubberband around them

Data Structures and Algorithms II

 Properties

Use given points as vertices

Contain all extreme points in the set

 Points of smallest and largest x and y

coordinates are included

Traverse the edge of the hull

 counterclockwise, all points must be on the left

 clockwise, all points must be on the right

 Graham’s Scan (package wrapping)

P

1
2

3
4

56

7

8
9

10
P

1
2

3
4

56

7

8
9

10

5

P

1
2

3
4

6

7

8
9

10

5

P

1
2

3
4

6

7

8
9

10

5

P

1
2

3

4

6

7

8
9

10

5

P

1
2

3

4

6

7

8
9

10



 Start at some point that guaranteed to be on

the convex hull (e.g., point with smallest y

coordinate)

 From that point, compute theta (see

previous slide) for all remaining points

 Sort by theta and consider each point in turn

 After examining i-1 points

 p[1..M] are on the convex hull

 After examining i points

 p[M] is recursively eliminated if p[M], p[M-1]

and P[i] make the wrong turn

123
4

5

0

 Example

 0 is the base

 1,2,3,4 will be included in the

hull (all make left turns)

when 5 is considered

 4 is eliminated (3,4,5 right turn)

 3 is eliminated (2,3,5 right turn)

 2 is eliminated (1,2,5 right turn)

 1 is kept (0, 1,5 left turn)

 5 is added

Complexity

 Angular sorting O(nlogn)

 With n vertices

 Loop: add vertices to the CH

 Loop: delete vertices from the CH

 Each vertex can be added and/or deleted only

once

 Each add/delete operation takes constant time

(inner product)

O(n) total

 Whole operation: O(nlogn)

Data Structures and Algorithms II

 Divide-and-Conquer

Upper hull and lower hull division (not

essential)

Recursive division

11

1
2

3

4

56

7

8

9

10

Data Structures and Algorithms II

Merge
 Intuition: connecting extreme points (points with the largest y

coordinate on two hulls)

 Or more precisely, move the connecting lines are high (low) as

possible for upper hull (lower hull)

 sort by y, too expensive (O(nlogn))

 hill climbing (binary search on sorted x)

H1
H2

 If H1 and H2 are two upper hulls with at

most m points each. If p is any point on H1,

its point of tangency, q, with H2 can be

found on O(logm) time

 If H1 and H2 are two upper hulls with at

most m points each, their common tangent

can be found on O(log^2 m) time

 The Divide-and-Conquer convex hull

algorithm has a complexity of O(nlogn)

A B

UpperTangent(HA ; HB) :

(1)Let a be the rightmost point of HA .

(2)Let b be the leftmost point of HB .

(3)While ab is not a upper tangent for HA and HB do

(a) While ab is not a upper tangent to HA do a = a - 1 (move a counterclockwise).

(b) While ab is not a upper tangent to HB do b = b + 1 (move b clockwise).

(4) Return ab.

Line Connecting two highest points but

NOT common tangent

True common tangent

Right upper hullLeft upper hull

 Nitty-Gritty Details

Line connecting two highest points in

component hulls is NOT necessarily the

common tangent

Data Structures and Algorithms II

 Time complexity

Upper and lower hulls division

 largest and smallest x points O(n)

 partition points into two halves O(n)

Recursive division

 sort points by x O(nlogn)

main step

T n T
n

merge T
n

O n

O n n

() () () (log)

(log)

   



2
2

2
2

2

Yet Another Divide-and-Conquer Algorithm

(QuickHull)

Graphical Illustration

 Three possibilities O(n) time:

 Inside the triangle ABC

Above AC, or

Above AB

dmax

A

B

C

Complexity

 If points are uniformly distributed in a unit

square, expected # of points on the hull is

O(logn)

 Quickhull discards interior points very

quickly and narrows in peripheral points

 Like Quicksort, average time is O(nlogn)

but worst case performance is O(n^2)

Complexity

 Quick sort

 Select pivot (O(1))

 Partition into two parts

O(n)

 Recursive division

 Trivial concatenation

 T(n) = T(i) + T(n-i) +

O(n)

 Quick hull

 Select furthest point

(O(n))

 Partition into three

parts O(n)

 Recursive division

 Trivial concatenation

 T(n) = T(i) + T(n-i) +

O(n)

Moral of the story

 Algorithm design is an art. We have seen

three different convex hull algorithms

One based on domain knowledge only

Two based on divide-and-conquer

Data Structures and Algorithms II

Multiplying Long Integers

 Input: two n-bit integer x and y

 Output: a 2n-bit integer

 Divide-and-Conquer strategy

x y

x A B

y C D

x y A B C D

AC AD BC BD

n

n

n n

n
n

 

 

   

   

2

2

2 2

2

2

2

2 2

2

()()

()2

A B

C D

X

Y
n-1 n/2 0

Data Structures and Algorithms II

 Divide: multiply 2 n-bit integers

= 4 multiplies of 2 n/2-bit integers

+ 3 additions of integers (2n bits)

+ 2 shifts

 Small(p,q): when the length becomes 1

 G(p,q): 1-bit AND

 Combine: shift and addition

Data Structures and Algorithms II



   

0 1 1 0 0 1 1 1

0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1

A B C D

A A B BCC D D

 24   22

  22    2 

  22    2 

  22    2 

  22    2 

0 0 0 1 1 0 1 1

0 1 0 1 1 1 1 1

1 0 1 1 0 0 1 0

1 1 1 1 0 1 1 0

0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 24
 22

00010000 + 00010100 + 00000110 = 00101010

=42

6 7

Data Structures and Algorithms II

x y A B C D

AC AD BC BD

T n T
n

cn

T
n

c
n

cn T
n

cn

T cn

a cn

O n

n n

n
n

k k

n n

   

   

 

     

    

  





()()

()2

() ()

(()) () ()

...

() (...)

()

()

log log

2 2

2

4
2

4 4
4 2

4
4

1 2

4 1 1 2 2

4 2 1

2 2

2

2

1

2

 Time complexity

• cf. brute force method O n()2

Data Structures and Algorithms II

 Why no improvement using divide-and-

conquer?

 in quick sort

 elements in S1 do not compare with those in S2

 elements in S11 do not compare with those in S12

 problems are decomposable and independent

S

S1 S2

S11 S12

Data Structures and Algorithms II

 In integer multiplication

 problems are decomposable but not

independent

 the number of multiplications is not reduced

 The fancy way of decomposing the solution

still requires every digit in one number to

“touch” every digit in the other number (no

sharing, no reuse)
A B

C D

X

Y

Data Structures and Algorithms II

 Possible improvements: through sharing

x y A B C D

AC AD BC BD

AC A B D C AC BD BD

T n T
n

cn O n O n

n n

n

n

n
n

   

   

      

   

()()

()2

{()() }

() () () ()log .

2 2

2

2 2

3
2

2 2

2

2

3 1 592

4 3 2  , ,

3 6 2  , ,

Maximum Sum

 Just to confuse you more, it is not to say

that the subproblems must be totally

independent for divide-and-conquer to work

 Given: an array of n numbers, possibly

negative

 Find: maximum subsequence sum (if all

numbers are negative, then the maximum

sum is 0)

 -4, 10, 12, -5, -7, 8, 3, 1 is 22

 How does divide-and-conquer work?

Divide the array into two parts

Compute the maximum sum in each part

 The global maximum sum is the largest of the two

 but …

 What happens if the maximum sum sequence

straddles the boundary?

 4, -3, 5, -2, -1, 2, 6, -2

 Start from the middle

Accumulate from middle moving leftward,

keep the largest sum

Accumulate from middle moving rightward,

keep the largest sum

The largest partial sum across two parts must be

the sum of the above two

middlef(irst) l(ast)

left right

 Need a third term which captures the

maximum sum of straddling sequence

][

)][(

];[]1[][

);;1(

];[]0[

imbb

thenbimbif

iaimbimb

ifimifor

mabb

l

l

l











a[m]f(irst) l(ast)

 Then the maximum sum is the largest of

three terms: two from left and right, one

bl+br

]1[

)]1[(

];[]2[]1[

);;2(

];1[]0[











mibb

thenbmibif

iamibmib

ilimifor

mabb

r

r

r

left right
a[i]

Retained largest partial sums

 Complexity

)log()
2

(2)(nnOn
n

TnT 

 Bruteforce method

for (f=1; f<=n; f++)

for (l=f; l<=n; l++)

for (k=f; k<=l; k++)

Add up all the a[k]

will be O(n^3)

All possible first pos

All possible last pos

Sum from first to last

Closest Pair of Points

 Given a set of points on a plane, find the

two points which are closest to each other

 Brute force method is O(n^2)

 Can divide-and-conquer do better?

 Obvious solution:

 partition data sets into two halves (recursively)

 closest pair of points are in

 the left half or right half

 one each in each half

 The closest points in the left and right

halves can be found recursively

 But how to find points across boundary?

Obvious solution: check each n/2 points in the

left against each n/2 points in the right

 The solution will be O(n^2), no better than

brute force method

 Again, the problem is that two problems are

not entirely independent and combining

subsolutions can be tricky.

 Goal: if we want an O(nlogn) solution, then

the combination step must be of O(n)

 What is the linear solution in combination?

 A clever trick),min(rl ddd 

),min(rl ddd  Q: How many points do you

have to check?

 A: No blue (green) point can

lie inside the circle of radius

d around another blue

(green) point

d

d

d

Check box d(in x) and 2d(in y)

Fourier Transform

 Decompose a (time, space) signal into its

frequency components (bases)

 Fourier bases e-iwt are

Orthogonal

Complete

Convenient

Fourier Transform Intuition

 3D vector space

 Bases x =(1,0,0), y

=(0,1,0), z =(0,0,1)

 v= (a,b,c)

 a = v.x, b=v.y, c=v.z

 v= ax+by+cz

 Inf-D Function space

 Bases

 Any function f

dtewFtf iwt)()(

dtetfwF iwt )()(

)sin()cos(wtiwte iwt 

Fourier Transform Properties

 Too many, only 2 will be presented here

 Convolution <-> multiplication

 (narrowed-spaced) pulse train <-> (widely-

spaced) pulse train

 Why?

These two properties alone can explain

continuous transform into discrete transform

System Theory

 What is a system?

 How to study a system?

Linear Systems

 Three important properties of linear, shift-

invariant systems:

 Superposition

R(f + g) = R(f) + R(g)

 Scaling

R(kf) = k R(f)

R(af + bg) = aR(f) + bR(g)

 Shift invariance

 Translation of stimulus  translation of response

 h(t) = R(g(t))  h(t+k) = R(g(t+k))

Linear system

Impulse Response

 The response to the simplest stimulation (an

impulse)

 Using impulse response and linear, time

invariant behavior, one can predict exactly

what the system will do to any arbitrary

stimulations

)3()0(fx

)2()1(fx

)1()2(fx

)0()3(fx

lengthfilter :

)3()(

)()3()3(

3

13

1

0

n

ifix

ifixH

ni

n

i

x















)3(xH
0t

)0(x

)1(x

)2(x

)3(x

In General

 The system response is a “convolution” of

input and system’s impulse response

function

)()()()()(
1

1

0

ijfixifijxjH
j

nji

n

i

x  






 In continuous domain, summation becomes

integration

duutfuxduufutxtH
tu

wtu

wu

u
x 








)()()()()(

0

Fourier Transform of

Convolution
duutfuxduufutxtH

tu

wtu

wu

u
x 








)()()()()(

0

)()(

])(][')'([

])()][()([

)()()(

)()(

])()([)(

'

)(

)(

wGwF

dueugdtetf

dueugutdeutf

dueugutdeutf

duudtgeutf

dteduugutfwH

iwuiwt

iwuutiw

iwuutiw

iwt

iwt

















 

 

 











)()()()(wGwFtgtf 

Pulse Train

 Fast t train -> small Dt -> large T -> large f-> slow f train

 Slow train-> large Dt -> small T -> small f -> fast f train




























otherwise

nTf
e

eedtetk

dtetkdtetfwF

T

fki

T

iwk

tiwkiwt

iwtiwt

0

freq) lfundamenta:
T

1
 (1

)(

)()()(

2





Combination

 Multiply a signal (f) with a pulse train

(sampling or discretization) in the space

domain Convolve signal’s spectrum (F)

with another pulse train

 Fast changing signal fast sampling

 Sampling above Nyquist frequency ensures

no signal loss

Discrete FT

 If signal is periodical

 Component

frequencies must be

multiple of the

1/period

 Spectrum is discrete

 If signal is discrete

(sampling with a pulse

train)

 Component

frequencies are results

of convolution

 Spectrum is periodical

Time Frequency

Periodical Discrete

Discrete Periodical

Periodical & discrete Discrete & periodical

Mathematical Formula

0

2

7

1

65

4

3

W =W2n

Computation Complexity

 Obviously multiplying n by n matrix with n

by 1 vector is O(n2)

 Fast Fourier transform O(nlogn)

 VERY significant as FFT is an important

operation of many image and signal

processing algorithms

 Based on Divide and Conquer!

Why?

8-point example

Complexity

 O(nlogn) because

 T(n) = 2 T(n/2) + cn

Data Structures and Algorithms II

Summary

 How to divide?

 1 to 2

 equal size, e.g. merge sort

 unequal size, e.g. quick sort

 1 to many

 binary search, Tower of Hanoi (1 to 3)

 integer multiply, matrix multiply (1 to many)

Data Structures and Algorithms II

Summary (cont.)

 When to terminate recursion?

 depend on the problem at hand

 simple comparison (binary search)

 simple move (Hanoi tower)

 How to combine partial results?

 nothing (binary search)

 concatenation (quick sort)

merge (merge sort)

 addition and shift (integer multiplication)

