Dynamic Programming

» Example - multi-stage graph

source ° 4 sink

Data Structures & Algorithms I1

« A labeled, directed graph
« Vertices can be partitioned into k disjoint sets
<u,v>eE,—»>ueV,veV_ ,1<i<k

1+1?

|V,| (source) =|V, | (sink) =1

« FInd the min cost path from source to sink

Data Structures &Algorithms II

« Q: Will divide-and-conquer find the
minimum cost path?

« A: Probably not

‘\0

best left-half path
/
CD/ ‘ best ovgerall path

/Amh\ . /Amh\

3’ 4434 AT AT
99945 3 £ y N 999454
—_
gy ¢

\va/

best right-half path

Data Structures & Algorithms I1

3
2
-

~ Best paths found independently may not
form a path

~ Best overall paths may be suboptimal at
different subproblem stages

» Divide-and-Conguer requires subproblems
to be independent!

Data Structures &Algorithms II

« Q: WIll the greedy method finds the minimum
cost path?

« A May not (if you are not Dijkstra)
o Choose the shortest link first
o Solve the problem stage-by-stage

- ®
C)/‘/ Cost may be very Iow\‘
00—

minimu
cost at

t 1 3’ V74434 T T
T T
S ag e 99945 3 £ N\ y N 999454
—_
gy ¢

Ness” Ness”

Cost may be very high

Data Structures & Algorithms I1

/Amh

« A low cost edge may be followed by paths
of a very high cost

« A high cost edge may be followed by paths
of a very low cost

» Based on local information (one stage at a

time) 1t might not be possible to “look-
ahead”

« PIcking the remaining lowest cost edge may
not generate a path

Data Structures &Algorithms II

« Q: Is there an application?
« A Yes, e.d., resource allocation
a n units of resources to be allocated to r projects

o N(1,)) profit earned If j units of resources are
allocated to project i

o goal Is to maximize the profit earned

Data Structures &Algorithms II

V(project being considered, resources committed)

V(2,0) V(3,0) 3 projects
N(2,0). 3 PCs

N(Z.0) V(2,1) N1 v

: V(4,3)

V 7 2,2)0\
2) V(2.2 V(3,2)
2,3

N{. V(2,3) (\)/3,3

\
A

Data Structures &Algorithms II

Surface Generation in Tomography

: Tomogram
8
N "T‘\ N
i X-ray tube

iy

N X

¥ A

X 4

X .}J ., /;_ '.. X ¥
AR ¥ 504 ¥ ¥
Detectors /Y A 9 0 A KA ALY
arranged WA ANA
g L IASAXK A
along a A

1 | & 7y e — 4
circular arc e I g

. m by n lattice
o Vertical edge: an upright triangle
o Horizontal edge: an inverted triangle
« Closed surfaces correspond to paths of length m+n

. Best path (surface) has the lowest cost

» Q: What should we do?

« A Enumerate all possibilities

» Q: How much Is the cost of enumeration?
« A: High, for

a complete connection between two adjacent
stages

a N stages
- n
o m vertices per stages O(M”)

Data Structures &Algorithms II

OO O
OAG

@
e
>

= 7l = 5 D
S u B =] S D
s__1__a s o Alotof repetitions:
= a1 4 S D .
<3 - = build tables to remember
S22 e b partial solutions
=5 2 g = D
s =z a 6 D (reuse)
S u B = = D
Feendmeen 2 20 Aot of alternatives:
s 1 a4 & D build tables to remember
S 2 3 5 D 5 . g
=" 2.3 6 D optimal partial solutions
S S (principle of optimality)

« Q: Is there a more efficient method of
enumeration?

« A Yes, dynamic programming

» Underlying principles:
a Principle of optimality
+ Early elimination of suboptimal subsolutions
o Recursion and reuse
+ Construct solutions by reusing optimal subsolutions

o Early termination
+ By feasibility or optimality

Data Structures &Algorithms II

« Principle of Optimality

Lefthalf | Right half

N % ¢‘:§
g >/ *
== \$ ﬁt \4 74

(i to sink)

Data Structures & Algorithms I1

« The optimal solution (if it go through node 1)
must contains the best left path from source to
| and best right path from 1 to sink

» Any other left paths from source to 1 and any
other right paths from i1 to sink need not be
extended any further

Data Structures &Algorithms II

» Recursion and Reuse
o ldentify subproblems
o Record the optimal solutions of subproblems
o Build larger and larger solutions

XT T
\Mwy/ /. \§/ \Mwy/
\va/

 Any path that includes a portion of (source to 1),
the cost of that particular portion is known

~ Feasibility
o Is a partial solution still feasible?
o Based on the current path alone
» Optimality
o Is a partial solution going to be optimal?

o Based on comparison of the current path with
others

~ Backward approach

source

1-2) (1-3)|(1-4) | (1-5)
9 I 3 2
(1-6) (1-7) (1-8)

9(min(4+9,2+7))

11(min(2+9,7+ 711+ 2))

10(min(1+9,11+ 3,8+ 2))

(1-9)

15(min(9+ 6,4 +11))

(1-10)
14(min(5+9,3+115+10))

(I-10)
16(6 +10)

(1-12)
16(min(4 +15,2 +14,5+16))
BCost(1, J): the cost of the optimal path

from the source to vertex | at stage |
BCost(l, J) = min {BCost(i—1,1)+c(j,1)}

Vi,
<]j,I><E

Data Structures &Algorithms II

« Forward approach

source

(9-12) | (10-12) | (11-12)
4 2 5
(6—-12) (7-12) (8—12)

7(min(6+4,5+2))

5(min(4+4,3+2)) | 7(min(5+ 2,6 +5))

(2-12)
/(min(4+7,2+51+7))

(3-12)
9(min(2+7,7+5))

(@-12) [(5-12)
18(11+7) | 15(min(11+5,8 + 7))

(1-12)
16((min(9+7,7+9,3+18,2+15))

Cost(1, J): the cost of the optimal path
from vertex jJ at stage 1 to sink

I e\/|+l
<]j,I>cE

| Cost(l 1)= min{c(jJ,1)+Cost(i1+1,1)}

Data Structures &Algorithms II

Intuition on DP

» Dynamic programming sometimes can be
confusing because it is basically recursion
but is slightly more than recursion

« A general solution pattern Is

= 0 Identify stages and all possible alternatives in a
stage

== 0 recursion to generate all possible solutions

= 0 need to combine and eliminate partial solutions
using principle of optimality

« For multi-stage graph
o steps are defined by stages

o straight recursion generates brushy tree

O(node”stage)]

» The important thing is to trim the tree by
combining and coalescing nodes by
principle of optimality

(L)
[X))

([L)
@

Fancy Recursive Equations

Cost (node 1 at level 1) —

Min (c(1,2)+Cost(node 2 at level2),
c(1,3)+Cost(node 3 at level2),
c(1,4)+Cost(node 4 at level2),)

Fancy equation describes the recursion
DP says that all such Cost functions should be reused!!

(X))
[X))

()
@

Remember the costs here
Don’t compute again and again

Important Characteristics of
Dynamic Programming

« A sequence of decisions to be made

» Declslons are inter-dependent (Divide-and-
Conquer not applicable)

» Local information not sufficient (Greedy
not work)

Data Structures & Algorithms I1

Important Characteristics of
Dynamic Programming (cont.)

+ It examines all solutions In an efficient manner
« It involves building solutions recursively

= Principle of optimality Is used to eliminate sub-
optimal solutions

» Table of some sort are usually used to store
optimal partial solutions

» Some reuse of optimal partial solutions
» Mathematically as recursion

Data Structures &Algorithms II

Time Complexity of DP

» DP == building tables of partial solutions
1. How many tables?
2. How many entries per table?
3. How much effort to fill in entries?
a 1*2*3 gives the complexity

Data Structures & Algorithms I1

» Time complexity of multi-stage graph
o One table is built
a There are |V| entries in the table

o The cost of generating an entry Is proportional
to the incident edges

o O(|V|+]|E|): a significant saving over exponent
runtime

Data Structures &Algorithms II

0/1-Knapsack

» Input:
o a set of n objects
o a knapsack of capacity M

» Output: fill the knapsack (no partial
Inclusion) to maximize the total profit
earned

Data Structures &Algorithms II

» Greedy method can fail
P=(9,7,7),W =(655), M =10

Greedy [NE
Optimal ///%/////%W\\\\\

» Divide-and-conquer may not apply

alaz...a a -+ A

HRHTA

Data Structures & Algorithms I1

» How to build solutions recursively?
o One object at a time

« How does principle of optimality apply?

PP CLRED GRRED &
A, x---X --- X):(X---X --- X) must be optimal for M —W,
(O, y---y---y)i(y---Y --- Y) must be optimal for M

» How to identify sub-optimal solutions?

— 1f two solutions: (1,...,0,x,...,x), and
(0,...,1,x,..., X) are such that one achieves
better profit with less weight, then the other
cannot be optimal

Data Structures &Algorithms II

» How to build table? Profit
Weight >,>
P=(1,2,5), W=(2,3,4),M=6 <, 2
Bounding possible!

(0,0) (Profit earned, Weight used)

e e

A IV
A IA

(1,2) (0,0)
(3,5) (2,3) (1,2) (0,0)

(6,6) (5,4) (2,3) (1,2) (0,0)

Data Structures & Algorithms I1

~ How to write the recursive equation?

o Knap(i,X): current profit with objects I to n left
to be processed with a remaining capacity of X

o Initially, we have Knap(1,M)
Knap(l, M) = max{Knap(2, M), Knap(2, M -W,) + P}
Knap(i, X) = max{Knap(i+1, X),Knap(i+1, X -W.)+ P}

* Time complexity
— An brushy tree for the table
— Constant time to generate entries O(2")

— DP can help, but the complexity will depend on
actual problem instance

d. .o |
\ /st Bil Data Structures &Algorithms 11

Three Useful Tricks

. Feasibility
o If a branch is over capacity, don’t expand 1t anymore
. Optimality

o If a branch is worse than another branch (more capacity
used with smaller profit), don’t expand it anymore

. Feasibility and optimality are problem instance specific,
cannot guarantee worst runtime in general

» Reuse

o Remember optimal partial solutions, don’t regenerate
over and over again

Reuse Examples

Weight = (3, 2, 3, 1, 4, 5), knapsack capacity = 10
Profit= (2,3,4,1,5,1)

Used capacity

Reliable Design

» Input:
o A system composed of several devices in serial
o Each device (D) has a fixed reliability rating (r)

o Multiple copies of the same device can be used
In parallel to increase reliability

» Output:

o A system with highest reliability rating subject
to a cost constraint

Data Structures &Algorithms II

m. copies of devices D. at stage I, I; : say,90%
with a reliability rating of ®, =1—(1—r,)™ . Connected in parallel

“~ At least one should work

MaxX 1<I_1 (Di (mi) < Connected in series
B\ All of them have to work
subjectto » c¢m, <Candm, >11<i<n
I<i<n

Data Structures & Algorithms I1

» Greedy method may not be applicable

o Strategy to maximize reliability: Buy more less
reliable units (Costs may be high)

o Strategy to minimize cost: Buy more less
expensive units (Reliability may not improve
significantly)

» Divide-and-Conquer may fail

DD,--D D ---D

Data Structures &Algorithms II

Comparison

» A Kknapsack of «» Total expenditure of C
capacity C » Stages of cost ci and

~ Objects of size ci and reliability ri
profit pi » Construct a system

. Fill up the knapsack with 1 or more copies
with 0 or 1 copy of | of |

« Maximize profit « Maximize reliability

CF Zn:cj
u =1+ =

Data Structures &Algorithms II

» How to build solutions recursively?
o One stage and one device at a time
~ How does principle of optimality apply?

mmy---m:---m,
A, x---x--- xX):(X---X --- X) must be optimal for C —c,
2,y---y---y)i(y---y --- y) must be optimal for C —2 x c,

(u,y---y---y)(y---y --- y) must be optimal for C —u, xc;

« How to identify sub-optimal solutions?

— 1f two solutions: (m1,...,mi,x,...,x), and
(nl,...,nL,x,..., X) are such that one achieves
higher reliability with a smaller cost, then the

other cannot be optimal

N 4 '
g |)
(N e Data Structures &Algorithms 11

« How to build table?
r=(0.9,0.8,0.5), ¢c=(30,15,20),C=105
(1,65) (reliability, cost)

731 O.Nz =099

(0.9,65) (0.99,95)
1-(1-08)=038
~(1—08)% 4 096

1-(1—- 038y =0992

(0.72,65) (0.864,80) (0.893,95) N

1—(1—05) 205

R OR

(0.36,65) (0.63,105) (0.648,95) TN
(0.54,85) (0.432,80)

« How to write the recursive equation?
f;,(X):max IT ®;(m;)

1< j<i

subject to D c;m; < X, 1<m, < g, 1< j<i

1< j<i

f,(C) = max{®,(m,)f,,(C~-c,m,)}
F(X)= Qnix-{q)i(mi) f (X —cm)}

* Time complexity
— An brushy tree for the table
— Constant time to generate entries

~ O(2")

{ B ,
Qe ‘ Data Structures &Algorithms 11

Chain Matrix Multiplication

» Input:

a A sequence of n matrices
» Output

a Their products

» Even though not so obvious, greedy
algorithms (e.g., keep individual
multiplications small) do not always
produce optimal solutions

« Furthermore, the costs can vary quite a bit
depending on the ordering

As X Bogg X Coga X Do

((AB)C)D 10582
(AB)(CD) 54201
(A(BC)D 2856
A((BC)D) 4055

A(B(CD)) 26418

» Can dynamic programming be used?
o Does the principle of optimality apply?
o Are there small problems?

o Can the subsolutions be reused and how?

+ Yesl!
« There are many possible ways to apply DP,
as long as

o do things In stages

o merge and reuse nodes based on principle of

optimality

» We will show some examples below

» Based on the number of multiplications performed

/\

(AB) (BC) (CD)

(B(CDQ)(CD)

((AB)C) (AB)(CD) (A(BC)) ((BC)D)

———

L___

» An obvious DP algorithm
o need to multiply all the matrices

o Individual steps will be multiplying two
adjacent matrices and reduce the number of
matrices by one

o at each step, choose any two adjacent matrices
to multiply

o In n-1 steps, we will be done
a reuse: (ABC) = ((AB) C), reuse results of (AB)
a principle of optimality: ((AB) C) and (A (BC))
oroduce the same results, keep one

perfectly legal DP algorithm!

» The problem is that it Is not a good DP
algorithm

o with n matrices

o first multiplication: n-1 possibilities

o second multiplication: ??7?

a third multiplication: ???

o even with reuse and principle of optimality the
numbers of intermediate stages are large

o many multiplications are repeated many times
AB ((CD)(EF)) and ((AB)C)D(EF), (EF) Is
done more than once

» Based on the number of matrices multiplied together
o (the range of indices)

(A) (B)

» Does the principle of optimality apply?

o Yes, whatever the last step in the chain
multiplication, the steps leading to those two
matrices must be optimal

« Are there small problems?

o Yes, multiplications of two adjacent matrices
m,.,, =d_dd,, i=12..,n-1

i+l

. Can the subsolutions be reused and how?

- Yes! mi,i+S = min (mi,k - mk+1,i+s +di—1dkdi+s) I :112 ----- n—S

I<k<i+s

Az X Bsgg X Cog3 X Dysa

j=1| 2| 3 |4

-1 0~ 57@1@0\@?5 =3
1335 11845 [5=2

N
o

&S]

0 9078 | s=1

I~

0 1s=0

m,; = min(m,; + M, +13x5x3,m,, + m,; +13x89 x 3) =1530
m,, = min(m,, + m,, +5x89 x34,m,, + m,, + 5x3x34) =1845
m,, = min(m,, + m,, +13x5x 34,

my, + M,, +13x89 x34,m,, + m,, +13 x3x 34) = 2856

L ongest Increasing Subsequence

» Glven an array of n numbers [0..n-1], find a
subset of numbers that are increasing

»[08412210614195133117 15]
o [0 8 15]
o [261115]
a[237]
0[02691115] <- longest one
20[04691115]

20[04691315]

Brute Force Method

» Every number can be either in or not in in
LIS

» With n numbers, there are 2" subsequences

» Generate all, discard those that are not
Increasing subsequences

« Complexity O(2")

DP — Key Idea

« An partial LIS soln (head) must end at some
Index

» The same tail portion can be added to all
these solns

« Only best soln is kept

tail

0: not in the IS
1:inthe IS

’

Include 1

Include 2

Include 3

2

Include 4

LIS, = best ,_i., (LIS; +1)

0,8,41 2 210,6,14,1,9, 5, 13

0 | 1(0)
8 | 2(0,8)
4| 2(0,4)
5| 2.¢0,1)
> | 3(0,1,2)
2 | 3(0,1,2)

10

6

14

13

LIS, = best y_i., (LIS; +1)

4(0,1,2,10) (0, 1, 2, 10)

4(0,1,2,6)(0,1,2,6)

5(0,1,2,10,14) (0, 1, 2, 10, 14
(0,1,2,6, 14) (0, 1,2,6,14)

2(0,1)
5(0,1,2,6,9)(0,1,2,86,9)

4(0,1,2,5)(0,1,2,5)

6(0,1,2,6,9,13)(0,1, 2, 6, ¢

DP — Key ldea (Reuse)

« How to build table?

a LIS, = best y_i, (LIS; +1)
« Final solution?

o LIS = best ge_ o, (LIS))
« Complexity

o One table

o nentries LIS,

o Most expensive entry O(n)
a0 O(n?)

) f-More efficient (O(nlogn)) exists

Sequence Alignment

« Glven two seqguences a, b of length m, n
» Align them to match

» Use in DNA matching:
o a: AGCTTCGA

o b: GATCGA
» Deletion (Insertion): AGCITTCGA
o ISt A 4th or5th T . T.CGA
= Change: AGCTTCGA

) CGA

Constraints

« Linear ordering

a If a; matches with by,
* a,, k<i must match only with b, I<j
* a,, k>1 must match only with b, I>]
« Deletion, insertion, and change all have
assoclated costs (domain dependent)

« Also called the longest common
subsequence (LCS) problem (GTCGA)

CGA

AGCITTCGA
)

Brute Force Method

« Again, think about tree

« At each tree node, looking at some a; and
some b; (initially, a,, b,)
o Match a; and b;

* No change necessary
* Change a; <-> b;

a0 Skip (delete) a; , but keep b;
a0 Skip (delete) b; , but keep a;
a Skip (delete) both a; and b,

« Max fan out Is 4, Max tree depth i1s m+n,

Principle of Optimality

+ Similar to LIS

o Head: some partial results (match, delete,
Insert, change, etc.) up to a; and b,

a Tail: (match, delete, insert, change) results for
di+1 and bj+1

4 tail

Reuse

» Build a table of size m by n to store the
partial results

o (1,))th entry 1s results up to a; b;
~ How to fill the table?
a Fill them in diagonally
a C(1,)) (W) = min among
* R: C(I-1,J-1) + (match, change, skip) a; and b,

* G: C(i,j-1) + skip b;
+ B: C(i-1,j) + skip a

plexity: O(n?)

- AC Y -

59‘ 5«%2 ? =

"‘:;‘:\ﬂ:“’;;' _/i'/{i,i»‘;; / : 4 ij‘ v I
=

a: AGCTTCGA Match: 0

b: GATCGA Delete (insert): 1

Change: 1

0 1 2 3 4

Olo 1 2 3 4
111
212
3|3
44
5|5
6|6
717

a "8 8
S rea,
4 AoV
bl | ohp
s VErSity o L.
5
Y T i b
&

a: AGCTTCGA Match: 0

b- GATCGA Delete (insert): 1
Change: 1

0 1 2 3 4

Olo 1 2 3 4

111 1

212

3|3

4 ?

JE '

66

717

a "8 8
R
G,
Sarias.
4 A
bl | ohp
s VErSity o L.
1 Y
S it
=

Polygon Triangulation

« Glven: A convex polygon with n sides, a
triangulation Is a set of chords of the
polygon that divide the polygon into
disjoint triangles

» Not all triangulations are equally good

+ Need a cost function to evaluate the cost of

a triangulation

« The cost of a triangulation is the total costs
of its component triangles

» The cost of a particular triangle Is the sum
of some distance measure (e.g., Euclidean)
of all its sides

AV, Vi V) = Vv [+ v v [+ v v

« Agaln, divide-and-conquer might not work

o say, chose a chord to divide the polygon into
two parts and perform triangulation for both
parts independently

o the said chord will be in the final triangulation

o however, the optimal triangulation may not
Include that particular chord

~ Greedy?

o the polygon of the smallest cost may not be Iin
the final triangulation

» Need to look at all possible combinations

« Intuitively, when we consider the first step
In triangulation, say, using v(0) and v(n-1)
as base, the vertex can be v(1), v(2), ...,
v(n-2)

o we do not know which one is the best, should
consider all possibilities

« Furthermore, If we pick, say
V(]), then triangulation of
v(0) to v(J) and v(J) to v(n-1)
must be optimal w.r.t each
sub problems (principle of
optimality)

Like Matrix Multiplication

» Multiple two matrices

» Multiply n-1 times
» Randomly pick two

matrices to multiply

. Better to do It by
gradually enlarge the
chain

» Adjacency

» Create one triangle
» Create n-2 triangles
» Randomly pick a

triangle to add

. Better to do It by

gradually enlarge the
triangle area

» Adjacency

« Principle of Optimality

+ Reuse

o If we need to triangulate an area inside the
original polygon spanned by, say k, vertices

o If we already know the best way to triangulate
an area spanned by k-1 vertices or less

o then we can take advantage of that!

aNaw

» That allows us to write the following
recurrence relation

a let c(1,)) be the cost of an optimal triangulation
of polygon <v(1), v(1+1), ... v(j)>, then

c(l,])=0 I=jori= -1
c(i,j)zirglr}(c(i,k)+c(k,j)+A(vi,vk,vj)) 1+1< |

K

c(1,J)=0

c(l, J) = min(c(l, k) + ek, 1) +AVi Vi, Vi)

ending

@@

l=jori=]-1
| +1< |

¢ C(i.K)

\\

m =min{®+ @
® | @

starting

Optimal Binary Search Tree

» Input:
o A set of n identifiers
» Output:

o An optimal binary search tree that minimizes
the average search effort

Data Structures & Algorithms I1

—n identifiers{a; <a, <,...,.<a,}

— P(i):probability that a, is searched

— Q(1):probability that search Is for a
symbol E; that a; < E; <a

~ S P(i)+3Q(i) =1
=1 =0

If

1+1

else

- n
W Successful: 3 P(i) x level (a,)

do end =

while
failed: 3" Q(i) x (level (E;) —1)
1=0

O successful
B failed

« Convince yourself that divide-and-conquer
and greedy methods are not suitable

» Dynamic Programming
o ldentify small problems

o Progressively build larger problems
o Reuse optimal sub-solutions (table building)

Data Structures &Algorithms II

How to build solution recursively (reuse)?

IO(l) +Q(0) + Q(l) p(2)+ QM)+ Q(2) p(3) +Q(2) + Q(3)

p(2) +Q(2) + p(1) +Q(0) + p(3) +Q(3) + p(2) +Q(1) +
(P(M) +Q(0) +Q(M)) = 2 (p(2)+QD)+Q(2))x2 (p(2)+QM) +Q(2) 32 (p(3)+Q(2)+Q(3)) §2

Data Structures & Algorithms I1

p(2) +Q(2) +
(P(M)+Q(0) + QD)) x 2

p(2) :
+(p(D) +Q(0) +Q)) <2
+(P(3) +Q(2) +Q(3)) x 2 Sty A\ B
p(3)+Q(3)+
((p(2)+Q(2))x2+(p(L) +Q(0) + Q(L)) x3)

pD)+Q(0) +
((p(2) +Q(D)) x2+(p(3) +Q(2) +Q(3)) x3)

= ————— — ———

Data Structures & Algorithms I1

« How does principle of optimality apply?

P(2)+Q(2) + p(M)+Q(0)+ P(3)+QE3) + p(2)+Q(M) +
(P +Q(0) +Q(D) x 2 (P(2)+Q(M) +Q(2))*x2 (P(2)+QM) +Q(2))*x2 (P(3)+Q(2) +Q(3)) <3

Only one of the two configurations should be kept!

Data Structures & Algorithms I1

Only one of the five configurations should be kept!

Data Structures & Algorithms I1

Like Matrix Multiplication

» Multiple two matrices
» Multiply n-1 times
» Randomly pick two

matrices to multiply

. Better to do It by
gradually enlarge the
chain

» Adjacency

« Pull one node up to root
« Create n-2 subtrees
» Randomly pick a node up

to be root

. Better to do It by

gradually enlarge the
subtree size

» Adjacency

Er 8,1 Brir 80,85 By

R is optimal w.r.t.
Ba, Efailia rEsy all binary search trees

. . with the above elements
L is optimal w.r.t.

all binary search trees
with the above elements

C(L)= X p(i)xlevel(a;)+ C(R)= > p(i)xIlevel(a;)+

1<i<k k<i<n

> Q(i) x (level(E;) - 1) 3 Q(i) x (level (E;) —1)

0<i<k k<i<n

C(combined) = p(k)+C(L)+ C(R)
+ 2 p()+ 2Q(i)

1<i<k 0<i<k
+kZ p(i)+kZQ(i)

=C(L)+C(R)+W (combined)
W(combined) = > p(i)+ 2 Q(i)+ p(k)+ X p(i)+ 2Q(i)

1<i<k 0<i<k k<i<n k<i<n

= 2 p()+ XQ()

1<i<n 0<i<n Red: left got one deeper

Blue: right got one deeper
Green: root

e Recurrence relation
C(0,n) = min{C(0,k —1) + C(k,n) +W(0,n)}

O<k<n

C(1, J) = _mi<n_{C(i, k—-1)+C(k, J)+W(, J)}

I<k<

Data Structures &Algorithms II

CQ, 1) = mIC3L, K —1) + C(K, 1) +W(I,.1)}

m =min{®+ @
® | @

Data Structures & Algorithms I1

 Table building

J-1=2
i J-1=n jffl
J-1=0

/ order of computation

L

i
C(i,i)=0
W(i,i)= D P(k)+ > Q(k) = Q(i)

Data Structures &Algorithms II

« How to compute W(i,})?
— Why not recursively?

Ei & E, a"+2’ Ei+2’a

1+1? =1+ 0

8;,,E,8;,F,

431+

W(, J-1)
W(, J)

W,)= p(J)+Q()H+W(, j-1)

Data Structures &Algorithms II

n=4

(a,,a,,a,,8,) = (do,if ,read, while)
(p1’ P2, Ps, p4) — (3’311’1)

(QO’Q11 Q21Q3’Q4) - (2’3’111’1)

< J . J-1=l

sl Saliten bR SRS 8 ZE R

?«3 14| 9| 3,/1“1r

= T 1 Z

[Al 47 ‘e _ _ & .

S 2 121*/7}/1 Wi, j) = p(j)+Q(j) +W(i, j —1)
1|83
0 |.2°| 8=p(1)+Q(1)+2

0 1" esSand

CQ, D =mHCA.k=1)+C(k,) +W(I, 1)}

A

J L ji=l

C(0,4) = min{C(0,k —1) + C(k,4) + W (0,4)} Pl ..
_minC 32| 19| 8 | 3] 0|)70
C(0,0)+C(L4),(0+19) -

C(01)+C(2,4),(8+8)
C(0,2) +C(3,4),(19+3)
C(0,3) + C(4,4),(25+0)}
+W (0,4),(16) =8+8+16

25| 12| 37| 0

N P4

19| 7.0
- ; ’C(1,2)zlmki<nZ{C(1,k—1)+c(k,2)+w(1,2)}
: /,/8 ,’@ =C(L1)+C(22)+W(L2)=0+0+7

“A

N W b

N
A

N
ZA

11 C(01) = gnkigl{C(O, k-1)+C(k1)+W(0,1)}
=C(0,00+C(1,1)+W(0,1)=0+0+8

0O 1 2 3 4

Y
—

Data Structures &Algorithms II

« Time Complexity - C(i,))
o J-1=m, there are n-m+1 of them

a Each one takes minimum of m quantities
> (n—=m+1)m=0(n?)

0<m<n

j L JEl

n [con) ¢o-1mf cainy 11

(1)

-
3
>

n Data Structures &Algorithms II

DP-based Graph Algorithms

« Graph = (vertices, edges)
~ Edges

o Build a long path with many edges with short
paths with fewer edges

o Stop when the path is longer than min(e,n)

+ Vertices

o Build a subgraph with with many vertices with
smaller subgraphs with fewer vertices

o Stop when all vertices are considered

Data Structures &Algorithms II

All Pairs of Shortest Paths

« Input: a labeled graph G=(V,E)

» Output: the shortest path from very vertex
to very other vertices

Data Structures & Algorithms I1

» Solution 1: Iteration on the number of edges
o a direct path (length=1)
a paths of length=2
I gy ™
o paths of length=min(e,n)
» Solution 2: Iteration on the number of
vertices
o a direct path (no intervening vertices)
o paths with one intervening vertex
k%,

o paths with (n-2) intervening vertices

or o S m ’
S,
&4 N
S8 % ‘
| b
T > University of Calitorma)
T - <& - ¥ ~ D i1
L ASdantaBarbara)

Data Structures &Algorithms II

» Both solutions have this recurrence relation:
C'(i, j) =min{C"(i, j), rkn_in{Cl(i, K)+C' (K, j)}}
#1, |

Going through no other vertex

Al JE0aT |8
1 0 4 11
7 [- . 7
3 3 inf
min
TNy
1] Owa2fs §
D S — i
343 F= 0

Going through one vertex

Al’ |1 2 3

1 0+0 0+4 0+11
4+6(0) [(4+0(4) |4+2(6)
11+3 11+inf |11+0

2 6+0 6+4 6+11
0+6(5) |0+0(0) |0+3(2)
2+3 2+inf |2+0

3 3+0 3+4 3+11
Inf+6(3) |inf+0(7) |inf+2(0)
0+3 O+inf 0+0

Data Structures & Algorithms I1

« Time Complexity
o How many tables? O(min(e,n))

o How many entries per table? O(n?)

o How much effort to generate each entry? O(n)
O(n°® x O(min(e,n)) = O(n*)

» OK solutions, but not great

» Try Floyd algorithm “iterating on vertex’s

cardinal number”

Data Structures &Algorithms II

Traveling Salesperson

« Input: a directed labeled graph G=(V,E)

» Qutput: a tour of the minimum cost
o a tour visits all vertices
o a tour visit any vertex exactly once

Data Structures & Algorithms I1

» Multi-stage graph

sink

difficult

sourc sink

Cost(i, j)= min {c(J,l)+ Cost(i+1,1)}

l€Viiq

« Traveling salesman

sink
@)

source

difficult

i |1 candidate: n-1 vertices

candidate: n-2 vertices

g(1,5) = min{c(i,))+9(J, 5 -{Ih}

Data Structures & Algorithms I1

« Difference
o For travelling salesman source = sink
o Every vertex can possibly be at every stage
a O((n-1)!) complexity

n-1 vertices!!
Nt

=00

» Does the principle of optimality apply?
» Small problems with reuse?

Only one ne
be kept!

(LY ~{3) = minfe(Lk) + g(k.V ~{LKD)}
g(i,5) = minfe(i, j) + 9(j.S ~{i})}

« g(1,S): the length of the shortest path
starting at vertex 1, going through all
vertices In S, then back to the source

Data Structures &Algorithms II

|9/13

12/9

9(2,4) 9, 4 9(4,9)

5 6 8

g(2,{3})| 9(2{4})| 9BA2}) | 9(3{4})) | 9(4{2}) | 9(4.{3})
15(9+6)| 18(10+8) 18(13+5)| 20(12+8) | 13(8+5) | 15(9 + 6)
9(2,{3.4}) 9(3.{2,4}) 9(4.{2,3})

min(9 + 20,10 +15) min(13+18,12 +13) | min(8+15,9 +18)

=25 =25 = 23

9(1,{2,3,4})

= min(10 + 25,15 + 25,20 + 23) = 35

Data Structures & Algorithms I1

« Time Complexity
a I: there are n-1 vertices to visit at each level
oS there are (")) choices

”f(n—l)[”_z] = 0(n%2")
k=0 k

9(LV-{1)

02V 9BVALID giis) gnV-{1,n})

Cy +

9(2,v-{1,2,3}) 9(4,vV-{1,3,4}) g(n,V-{1,3,n})

World Series Odds

« DP may be used to solve problems where
principle of optimality is not applicable

» Input:
o two teams A and B
o play a maximum of 7 games
a Whichever team first wins 4 wins the series

» Output:

a P(1,)): conditional probability(A wins the series|
A needs I more games and B need j more
___games)

Qg J‘ Data Structures &Algorithms 11

« Even though principle of optimality does
not apply here, but
o the problem does possess recursive nature
o solutions can be constructed by reuse

o(i i) 1 1=0,]>0
("J)_{o i>0,j=0
P(i, j)=(p(i-1 j)+ p(i, j-1))/2,i>0,j>0

P(i,j): conditional probability(A wins the series| A needs i more games and B need j more games)

Data Structures &Algorithms II

15/16

13/16

21/32 1/2

/8

11/16

1/2

11/32

N W B

3/4

1/2

5/16 3/16

1/2

1/4

1/8

1/16

(p(i-1J)+p(i,j-1))/2,1>0,]>0

O
—
o
N

]

2

3

A

Data Structures & Algorithms I1

+ Brute force method

/BAN’/pWD\A\wm\ .
p(4,3) p3,4) =T
A ns Wlns w/ X\
p(3, 3) p(4 2) p(2,4) p(3,3) 1+]=6

peFate

p(23) P2 pB2) p@dl) pld) p3) pR3) PE2)

O(2") for brute force vs. O(n®) for DP

Data Structures &Algorithms II

| essons Learned

« Basic principles (Multi-stage graphs, 0/1-knapsack,
Reliable design)
o Brute force
o Reuse, Feasibility, Optimality
o Table building (recursion)
~ Being Smart (Matrix multiplication, polygon
triangulation)
o There are different tables and different recursions

» Belng flexible (World series odds)
o Reuse regardless of optimality constraint (more later)

» Nothing really matter much (Traveling Salesperson)
o There are hard problems in the universe

