
Data Structures &Algorithms II

Dynamic Programming

 Example - multi-stage graph

1

2

3

4

5

6

7

8

9

10

11

12

9

7

3

2

4

2

2

7

11

11
8

1

6

54

3

5

6

4

2

5
source sink

Data Structures &Algorithms II

 A labeled, directed graph

 Vertices can be partitioned into k disjoint sets

 Find the min cost path from source to sink

      

 

u v E u V v V i k

V V

i i

k

, , , ,

| | | |

1

1

1

1 (source) (sink)

Data Structures &Algorithms II

 Q: Will divide-and-conquer find the

minimum cost path?

 A: Probably not

best left-half path

best right-half path

best overall path

Data Structures &Algorithms II

 Best paths found independently may not

form a path

 Best overall paths may be suboptimal at

different subproblem stages

 Divide-and-Conquer requires subproblems

to be independent!

Data Structures &Algorithms II

 Q: Will the greedy method finds the minimum

cost path?

 A: May not (if you are not Dijkstra)

 Choose the shortest link first

 Solve the problem stage-by-stage

Cost may be very high

Cost may be very low

minimum
cost at
stage 1

Data Structures &Algorithms II

 A low cost edge may be followed by paths

of a very high cost

 A high cost edge may be followed by paths

of a very low cost

 Based on local information (one stage at a

time) it might not be possible to “look-

ahead”

 Picking the remaining lowest cost edge may

not generate a path

Data Structures &Algorithms II

 Q: Is there an application?

 A: Yes, e.g., resource allocation

 n units of resources to be allocated to r projects

 N(i,j) profit earned if j units of resources are

allocated to project i

 goal is to maximize the profit earned

Data Structures &Algorithms II

N(1,0)

N(1,1)

N(1,2)

N(1,3)

V(1,0)

V(2,0)

V(2,1)

V(2,2)

V(2,3)

V(3,0)

V(3,1)

V(3,2)

V(3,3)

V(4,3)

N(2,0)

N(2,1)

N(2,2)

N(2,3)

V(project being considered, resources committed)

3 projects

3 PCs

Surface Generation in Tomography

p1

p2

 m by n lattice

 Vertical edge: an upright triangle

 Horizontal edge: an inverted triangle

 Closed surfaces correspond to paths of length m+n

 Best path (surface) has the lowest cost

Data Structures &Algorithms II

 Q: What should we do?

 A: Enumerate all possibilities

 Q: How much is the cost of enumeration?

 A: High, for

 complete connection between two adjacent

stages

 n stages

 m vertices per stages O mn()

S
D

1

2

3

4

5

6

S D

S D

S D

S D

S D

S D

S D

S D

1 3 5

1 3 6

1 4 5

1 4 6

2 3 5

2 3 6

2 4 5

2 4 6

S D

S D

S D

S D

S D

S D

S D

S D

1 3 5

1 3 6

1 4 5

1 4 6

2 3 5

2 3 6

2 4 5

2 4 6

A lot of repetitions:

build tables to remember

partial solutions

(reuse)

A lot of alternatives:

build tables to remember

optimal partial solutions

(principle of optimality)

Data Structures &Algorithms II

 Q: Is there a more efficient method of

enumeration?

 A: Yes, dynamic programming

 Underlying principles:

 Principle of optimality

Early elimination of suboptimal subsolutions

 Recursion and reuse

Construct solutions by reusing optimal subsolutions

 Early termination

By feasibility or optimality

Data Structures &Algorithms II

 Principle of Optimality

i

Right halfLeft half

source sink

(source to i) (i to sink)

Data Structures &Algorithms II

 The optimal solution (if it go through node i)

must contains the best left path from source to

i and best right path from i to sink

 Any other left paths from source to i and any

other right paths from i to sink need not be

extended any further

 Recursion and Reuse

 Identify subproblems

 Record the optimal solutions of subproblems

 Build larger and larger solutions

source
sinke1

e2

i

• Any path that includes a portion of (source to i),

the cost of that particular portion is known

 Feasibility

 Is a partial solution still feasible?

 Based on the current path alone

 Optimality

 Is a partial solution going to be optimal?

 Based on comparison of the current path with

others

Data Structures &Algorithms II

 Backward approach

() () () (

()

(min(,))

()

(min(, ,))

()

(min(, ,))

()

(min(,))

()

(min(, ,))

()

()

()

(min(, ,))

1 2

9

1 3

7

1 4

3

1 5)

2

1 6

9 4 9 2 7

1 7

11 2 9 7 7 11 2

1 8

10 1 9 11 3 8 2

1 9

15 9 6 4 11

1 10

14 5 9 3 11 5 10

1 11

16 6 10

1 12

16 4 15 2 14 5 16

   



 



  



  



 



  







  

BCost i j

BCost i j BCost i l c j l
l V

j l E
i

(,):

(,) min { (,) (,)}

,

 the cost of the optimal path

from the source to vertex j at stage i

  

 

1

1

1

2

3

4

5

6

7

8

9

10

11

12

9

7

3

2

4

2
2

7

11

11
8

1

6

54

3

5

6

4

2

5
source sink

Data Structures &Algorithms II

() () ()

()

(min(,))

()

(min(,))

()

(min(,

()

(min(, ,))

()

(min(,

()

()

()

(min(,))

()

((min(, , ,

9 12

4

10 12

2

11 12

5

6 12

7 6 4 5 2

7 12

5 4 4 3 2

8 12

7 5 2 6 5))

2 12

7 4 7 2 51 7

3 12

9 2 7 7 5))

4 12

18 11 7

5 12

15 11 5 8 7

1 12

16 9 7 7 9 3 18 2 15))

  



 



 



 



  



 







 



   

Cost i j

Cost i j c j l Cost i l
l V

j l E
i

(,):

(,) min { (,) (,)}

,

 the cost of the optimal path

from vertex j at stage i to sink

  

 

1

1

 Forward approach
1

2

3

4

5

6

7

8

9

10

11

12

9

7

3

2

4

2
2

7

11

11
8

1

6

54

3

5

6

4

2

5
source sink

Intuition on DP
 Dynamic programming sometimes can be

confusing because it is basically recursion

but is slightly more than recursion

 A general solution pattern is

 identify stages and all possible alternatives in a

stage

 recursion to generate all possible solutions

 need to combine and eliminate partial solutions

using principle of optimality

1

2
3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

 For multi-stage graph

 steps are defined by stages

 straight recursion generates brushy tree

O(node^stage)

 The important thing is to trim the tree by

combining and coalescing nodes by

principle of optimality

2 3 4

5 6 5 6 5 6

2 3 4

5 6

1

2 3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

1

2 3 4

5 6

7 8

1

2 3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

Fancy Recursive Equations

Cost (node 1 at level 1)

Min (c(1,2)+Cost(node 2 at level2),

c(1,3)+Cost(node 3 at level2),

c(1,4)+Cost(node 4 at level2),)

Fancy equation describes the recursion

DP says that all such Cost functions should be reused!!

1

2 3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

1

2 3 4

5 6

7 8

Remember the costs here

Don’t compute again and again

Data Structures &Algorithms II

 A sequence of decisions to be made

 Decisions are inter-dependent (Divide-and-

Conquer not applicable)

 Local information not sufficient (Greedy

not work)

Important Characteristics of

Dynamic Programming

Data Structures &Algorithms II

 It examines all solutions in an efficient manner

 It involves building solutions recursively

 Principle of optimality is used to eliminate sub-

optimal solutions

 Table of some sort are usually used to store

optimal partial solutions

 Some reuse of optimal partial solutions

 Mathematically as recursion

Important Characteristics of

Dynamic Programming (cont.)

Data Structures &Algorithms II

Time Complexity of DP

 DP == building tables of partial solutions

1. How many tables?

2. How many entries per table?

3. How much effort to fill in entries?

 1*2*3 gives the complexity

Data Structures &Algorithms II

 Time complexity of multi-stage graph

 One table is built

 There are |V| entries in the table

 The cost of generating an entry is proportional

to the incident edges

 O(|V|+|E|): a significant saving over exponent

runtime

Data Structures &Algorithms II

0/1-Knapsack

 Input:

 a set of n objects

 a knapsack of capacity M

 Output: fill the knapsack (no partial

inclusion) to maximize the total profit

earned

Data Structures &Algorithms II

 Greedy method can fail

• Divide-and-conquer may not apply

P W M  (, ,), (, ,),9 7 7 6 5 5 10

Greedy

Optimal

P1

P2 P3

a a a a a
n n n1 2

2 2
1

 




















subproblem (X?) subproblem (M-X)

Data Structures &Algorithms II

 How to build solutions recursively?

 One object at a time

 How does principle of optimality apply?
x x x x

x x x x x x M W

y y y y y y M

i n1 2

11

0

 

   

   

(,):()

(,):()

 must be optimal for

 must be optimal for



• How to identify sub-optimal solutions?

– if two solutions: (1,…,0,x,…,x), and

(0,…,1,x,…, x) are such that one achieves

better profit with less weight, then the other

cannot be optimal

Data Structures &Algorithms II

 How to build table?

(0,0)

(1,2) (0,0)

(1,2)(3,5) (0,0)(2,3)

(1,2) (0,0)(2,3)(3,5)(6,6) (5,4)(7,7)(8,9)

(Profit earned, Weight used)

P=(1,2,5), W=(2,3,4),M=6 



,,

,,Weight

Profit

Bounding possible!

Data Structures &Algorithms II

 How to write the recursive equation?

 Knap(i,X): current profit with objects i to n left

to be processed with a remaining capacity of X

 Initially, we have Knap(1,M)

Knap M Knap M Knap M W P

Knap i X Knap i X Knap i X W Pi i

(,) max{ (,), (,) }

(,) max{ (,), (,) }

1 2 2

1 1

1 1  

    

• Time complexity

– An brushy tree for the table

– Constant time to generate entries

– DP can help, but the complexity will depend on

actual problem instance

O n()2

Three Useful Tricks

 Feasibility

 If a branch is over capacity, don’t expand it anymore

 Optimality

 If a branch is worse than another branch (more capacity

used with smaller profit), don’t expand it anymore

 Feasibility and optimality are problem instance specific,

cannot guarantee worst runtime in general

 Reuse

 Remember optimal partial solutions, don’t regenerate

over and over again

Reuse Examples

Weight = (3, 2, 3, 1, 4, 5), knapsack capacity = 10

Profit = (2, 3, 4, 1, 5, 1)

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 2

30 2 5

0
3 Max(2,4) Max(6,7)

6 9

The complexity is O(n) with reuse!

Used capacity

Data Structures &Algorithms II

Reliable Design

 Input:

 A system composed of several devices in serial

 Each device (D) has a fixed reliability rating (r)

 Multiple copies of the same device can be used

in parallel to increase reliability

 Output:

 A system with highest reliability rating subject

to a cost constraint

Data Structures &Algorithms II

D1

D1

D1

D2

D2

Di

Di

Di

Di

Di

Dn

nimCmc

m

r

sayriDm

ii

ni

i

ii
ni

m

ii

iii

i












1,1 and subject to

)(max

)1(1 of ratingy reliabilit awith

%90,: , stageat devices of copies

1

1

Connected in parallel

At least one should work

Connected in series

All of them have to work

Data Structures &Algorithms II

 Greedy method may not be applicable

 Strategy to maximize reliability: Buy more less

reliable units (Costs may be high)

 Strategy to minimize cost: Buy more less

expensive units (Reliability may not improve

significantly)

 Divide-and-Conquer may fail

D D D D D
n n n1 2

2 2
1

 




















subproblem (X?) subproblem (C-X)

Data Structures &Algorithms II

Comparison

 A knapsack of

capacity C

 Objects of size ci and

profit pi

 Fill up the knapsack

with 0 or 1 copy of i

 Maximize profit

 Total expenditure of C

 Stages of cost ci and

reliability ri

 Construct a system

with 1 or more copies

of i

 Maximize reliability

u

C c

ci

j
j

n

i

 























1

1

Data Structures &Algorithms II

 How to build solutions recursively?

 One stage and one device at a time

 How does principle of optimality apply?
m m m m

x x x x x x C c

y y y y y y C c

u y y y y y y C u c

i n1 2

1

1

1 1 1

1

2 2

 

   

   



   

(,):()

(,):()

(,):()

 must be optimal for

 must be optimal for

 must be optimal for



 

 

• How to identify sub-optimal solutions?

– if two solutions: (m1,…,mi,x,…,x), and

(n1,…,ni,x,…, x) are such that one achieves

higher reliability with a smaller cost, then the

other cannot be optimal

• How to build table?

(1,65)

(0.9,65) (0.99,95)

(0.893,95)(0.72,65) (0.792,95)(0.864,80)

(0.446,95)

(0.70,115)(0.756,110)

(0.648,95)(0.63,105)

(0.432,80)(0.54,85)

(0.36,65)

(reliability, cost)

r=(0.9,0.8,0.5), c=(30,15,20),C=105

1 1 0 9 0 9  (.) .
1 1 0 9 0 992  (.) .

1 1 0 8 0 8  (.) .

1 1 0 8 0 962  (.) .

1 1 08 09923  (.) .

(0.95,110) (0.98,125)

1 1 0 5) 0 5  (. .
1 1 0 5) 0 752  (. .

1 1 05) 08753  (. .

(0.781,135)

Data Structures &Algorithms II

• How to write the recursive equation?
f X m

subject to c m X m j i

f C m f C c m

f X m f X c m

i
j i

j j

j j
j i

j jn

n
m

n n n n n

i
m

i i i i i

n n

i i

(): max ()

, ,

() max { () ()}

() max{ () ()}

 





1

1

1
1

1
1

1 1

 

 

 


 


    

 

 

 





• Time complexity
– An brushy tree for the table

– Constant time to generate entries

O n()2

Chain Matrix Multiplication

 Input:

 A sequence of n matrices

 Output

 Their products

 Even though not so obvious, greedy

algorithms (e.g., keep individual

multiplications small) do not always

produce optimal solutions

 Furthermore, the costs can vary quite a bit

depending on the ordering

26418))((

4055))((

2856)((

54201))((

10582))((

343389895513

CDBA

DBCA

DBCA

CDAB

DCAB

DCBA  

 Can dynamic programming be used?

 Does the principle of optimality apply?

 Are there small problems?

 Can the subsolutions be reused and how?

 Yes!

 There are many possible ways to apply DP,

as long as

 do things in stages

 merge and reuse nodes based on principle of

optimality

 We will show some examples below

)(AB
)(BC)(CD

))((CAB))((CDAB))((BCA))((DBC))((CDB))((CDAB

)))(((DCAB)))(((CDAB)))(((DBCA)))(((DBCA)))(((CDBA)))(((CDAB

 Based on the number of multiplications performed

 An obvious DP algorithm

 need to multiply all the matrices

 individual steps will be multiplying two

adjacent matrices and reduce the number of

matrices by one

 at each step, choose any two adjacent matrices

to multiply

 in n-1 steps, we will be done

 reuse: (ABC) = ((AB) C), reuse results of (AB)

 principle of optimality: ((AB) C) and (A (BC))

produce the same results, keep one

 A perfectly legal DP algorithm!

 The problem is that it is not a good DP

algorithm

 with n matrices

 first multiplication: n-1 possibilities

 second multiplication: ???

 third multiplication: ???

 even with reuse and principle of optimality the

numbers of intermediate stages are large

 many multiplications are repeated many times

AB ((CD)(EF)) and ((AB)C)D(EF), (EF) is

done more than once

 Based on the number of matrices multiplied together

 (the range of indices)

)(AB)(BC)(CD

)(A)(B)(C)(D

)(ABC)(BCD

)(ABCD

 Does the principle of optimality apply?

 Yes, whatever the last step in the chain

multiplication, the steps leading to those two

matrices must be optimal

 Are there small problems?

 Yes, multiplications of two adjacent matrices

 Can the subsolutions be reused and how?

 Yes,

1,...,2,1111,   nidddm iiiii

snidddmmm sikisikki
siki

sii  


 ,...,2,1)(min 1,1,,

004

1907803

21845133502

328561530578501

4321











s

s

s

si

j

343389895513   DCBA

2856)34313,348913

,34513min(

1845)3435,34895min(

1530)38913,3513min(

44133412

241114

4423342224

3312231113









mmmm

mmm

mmmmm

mmmmm

Longest Increasing Subsequence

 Given an array of n numbers [0..n-1], find a

subset of numbers that are increasing

 [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]

 [0 8 15]

 [2 6 11 15]

 [2 3 7]

 [0 2 6 9 11 15] <- longest one

 [0 4 6 9 11 15]

 [0 4 6 9 13 15]

Brute Force Method

 Every number can be either in or not in in

LIS

 With n numbers, there are 2n subsequences

 Generate all, discard those that are not

increasing subsequences

 Complexity O(2n)

DP – Key Idea

 An partial LIS soln (head) must end at some

index

 The same tail portion can be added to all

these solns

 Only best soln is kept

. . .
. . . .
. ..

tail

0 1

0

1
0 1

0
1 0 1 0 1

1

0

0: not in the IS

1: in the IS

Include 2

Include 3

Include 1

Include 4

LISk = best 0<=i<k (LISi +1)

0, 8, 4, 1, 2, 2, 10, 6, 14, 1, 9, 5, 13

0

8

1 (0)

2 (0, 8)

4 2 (0, 4)

1 2 (0, 1)

2 3 (0, 1, 2)

2 3 (0, 1, 2)

10

LISk = best 0<=i<k (LISi +1)

4 (0, 1, 2, 10) (0, 1, 2, 10)

6 4 (0, 1, 2, 6) (0, 1, 2, 6)

14 5 (0, 1, 2, 10, 14) (0, 1, 2, 10, 14)

(0,1,2,6, 14) (0, 1,2,6,14)

1 2 (0, 1)

9 5 (0, 1, 2, 6, 9) (0, 1, 2, 6, 9)

5 4 (0, 1, 2 , 5) (0, 1, 2, 5)

13 6 (0, 1, 2, 6, 9, 13) (0, 1, 2, 6, 9, 13)

DP – Key Idea (Reuse)

 How to build table?

 LISk = best 0<=i<k (LISi +1)

 Final solution?

 LIS = best 0<=k<n (LISk)

 Complexity

 One table

 n entries LISk

 Most expensive entry O(n)

 O(n2)

 More efficient (O(nlogn)) exists

Sequence Alignment

 Given two sequences a, b of length m, n

 Align them to match

 Use in DNA matching:

 a: AGCTTCGA

 b: GATCGA

 Deletion (insertion):

 1st A, 4th or5th T

 Change:

 3rd C->A

AGCTTCGA

GAT CGA

AGCTTCGA

GA TCGA

Constraints
 Linear ordering

 If ai matches with bj,

 ak, k<i must match only with bl, l<j

 ak, k>i must match only with bl, l>j

 Deletion, insertion, and change all have

associated costs (domain dependent)

 Also called the longest common

subsequence (LCS) problem (GTCGA)

AGCTTCGA

GA TCGA

Brute Force Method

 Again, think about tree

 At each tree node, looking at some ai and

some bj (initially, ao, bo)

 Match ai and bj

No change necessary

Change ai <-> bj

 Skip (delete) ai , but keep bj

 Skip (delete) bj , but keep ai

 Skip (delete) both ai and bj

 Max fan out is 4, Max tree depth is m+n,

bad

Principle of Optimality

. . .
. .

tail

 Similar to LIS

 Head: some partial results (match, delete,

insert, change, etc.) up to ai and bj

 Tail: (match, delete, insert, change) results for

ai+1 and bj+1

ai

bj

Reuse

 Build a table of size m by n to store the

partial results

 (i,j)th entry is results up to ai bj

 How to fill the table?

 Fill them in diagonally

 C(i,j) (W) = min among

R: C(i-1,j-1) + (match, change, skip) ai and bj

G: C(i,j-1) + skip bj

B: C(i-1,j) + skip ai

 Complexity: O(n2)
i

j

a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Match: 0

Delete (insert): 1

Change: 1

a

b

a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1 1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Match: 0

Delete (insert): 1

Change: 1

a

b

?

Polygon Triangulation
 Given: A convex polygon with n sides, a

triangulation is a set of chords of the

polygon that divide the polygon into

disjoint triangles

 There are n-2 triangles with n-3 chords

 Not all triangulations are equally good

 Need a cost function to evaluate the cost of

a triangulation

 The cost of a triangulation is the total costs

of its component triangles

 The cost of a particular triangle is the sum

of some distance measure (e.g., Euclidean)

of all its sides

|,||,||,|),,(ikkjjikji vvvvvvvvv 

 Again, divide-and-conquer might not work

 say, chose a chord to divide the polygon into

two parts and perform triangulation for both

parts independently

 the said chord will be in the final triangulation

 however, the optimal triangulation may not

include that particular chord

 Greedy?

 the polygon of the smallest cost may not be in

the final triangulation

 Need to look at all possible combinations

 Intuitively, when we consider the first step
in triangulation, say, using v(0) and v(n-1)
as base, the vertex can be v(1), v(2), …,
v(n-2)

 we do not know which one is the best, should
consider all possibilities

0v

1nv

jv

iv

 Furthermore, if we pick, say
v(j), then triangulation of
v(0) to v(j) and v(j) to v(n-1)
must be optimal w.r.t each
sub problems (principle of
optimality)

Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two

matrices to multiply

 Better to do it by

gradually enlarge the

chain

 Adjacency

 Create one triangle

 Create n-2 triangles

 Randomly pick a

triangle to add

 Better to do it by

gradually enlarge the

triangle area

 Adjacency

1v 2v
iv 2nv

0v

1nv
iv

1v 1iv
1iv 2nv

 Principle of Optimality

 Reuse

 if we need to triangulate an area inside the

original polygon spanned by, say k, vertices

 if we already know the best way to triangulate

an area spanned by k-1 vertices or less

 then we can take advantage of that!

 That allows us to write the following

recurrence relation

 let c(i,j) be the cost of an optimal triangulation

of polygon <v(i), v(i+1), … v(j)>, then

jivvvjkckicjic

jiorjijic

jki
jki






1)),,(),(),((min),(

10),(

i
k

j

j

j-i=0

j-i=1

C(i,i)=0

C(i,i+1)=0

C(i,i+2)

C(k,j)C(i,j)

C(i,k)

= min{ +

+

…

}

jivvvjkckicjic

jiorjijic

jki
jki






1),,(),(),((min),(

10),(

starting

ending

Data Structures &Algorithms II

Optimal Binary Search Tree

 Input:

 A set of n identifiers

 Output:

 An optimal binary search tree that minimizes

the average search effort

   





 

  



 

n a a a

P i a

Q i

E a E a

P i Q i

n

i

i i i i

i

n

i

n

 identifiers

probability that is searched

probability that search is for a

symbol that

{ ,..., }

():

():

() ()

1 2

1

1 0

1

successful P i level a

failed Q i level E

i
i

n

i
i

n

: () ()

: () (())



 





1

0

1

successful

failed

if

switch

while

else

do end

Data Structures &Algorithms II

 Convince yourself that divide-and-conquer

and greedy methods are not suitable

 Dynamic Programming

 Identify small problems

 Progressively build larger problems

 Reuse optimal sub-solutions (table building)

Data Structures &Algorithms II

p Q Q() () ()1 0 1 

a1

a2

a1 a2

a1

2))1()0()1((

)2()2(





QQp

Qp

p Q Q() () ()2 1 2 

a2

p Q Q() () ()3 2 3 

a3

2))2()1()2((

)0()1(





QQp

Qp

a3

a2 a3

a2

2))2()1()2((

)3()3(





QQp

Qp

2))3()2()3((

)1()2(





QQp

Qp

 How to build solution recursively (reuse)?

Data Structures &Algorithms II

a3

a1

a1

a1

a2

a2

a2a3

a3

)3))3()2()3((2))1()2(((

)0()1(





QQpQp

Qp

)3))1()0()1((2))2()2(((

)3()3(





QQpQp

Qp

2))3()2()3((

2))1()0()1((

)2(





QQp

QQp

p

a2

a1

2))1()0()1((

)2()2(





QQp

Qp

Data Structures &Algorithms II

 How does principle of optimality apply?

a2

a1 a2

a1
a3

a2 a3

a2

2))1()0()1((

)2()2(





QQp

Qp

2))2()1()2((

)0()1(





QQp

Qp

2))2()1()2((

)3()3(





QQp

Qp

3))3()2()3((

)1()2(





QQp

Qp

Only one of the two configurations should be kept!

Data Structures &Algorithms II

a3

a1

a1

a1

a2

a2

a2a3

a3

a1

a3

a2

a3

a2

a1

Only one of the five configurations should be kept!

Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two

matrices to multiply

 Better to do it by

gradually enlarge the

chain

 Adjacency

 Pull one node up to root

 Create n-2 subtrees

 Randomly pick a node up

to be root

 Better to do it by

gradually enlarge the

subtree size

 Adjacency

ak

L

R

E a E a a Ek k0 1 1 2 1 1, ...,, , , , 

E a E a a Ek k k k n n, ...,, , , ,  1 1 2

L is optimal w.r.t.

all binary search trees

with the above elements

R is optimal w.r.t.

all binary search trees

with the above elements

C L p i level a

Q i level E

i
i k

i
i k

() () ()

() (())

  

 

 

 

1

0

1

C R p i level a

Q i level E

i
k i n

i
k i n

() () ()

() (())

  

 

 

 

1

Data Structures &Algorithms II

C combined p k C L C R

p i Q i

p i Q i

C L C R W combined

W combined p i Q i p k p i Q i

p i Q i

i k i k

k i n k i n

i k i k k i n k i n

i n i n

() () () ()

() ()

() ()

() () ()

() () () () () ()

() ()

  

   

   

  

        

  

   

   

       

   

1 0

1 0

1 0



C n C k C k n W n

C i j C i k C k j W i j

k n

i k j

(,) min{ (,) (,) (,)}

(,) min{ (,) (,) (,)}

0 0 1 0

1

0
   

   

 

 

• Recurrence relation

Red: left got one deeper

Blue: right got one deeper

Green: root

Data Structures &Algorithms II

C i j C i k C k j W i j
i k j

(,) min{ (,) (,) (,)}   
 

1

j

j-i=0

j-i=1

i

C(i,i)

C(i,i+1)

C(i,i+2)

C(i+1,j) C(i+2,j)C(i,j) C(j-1,j)

C(i,j-1)

= min{ +

+

…

}

Data Structures &Algorithms II

• Table building

i

j
j-i=0

j-i=1

j-i=2

j-i=n

order of computation

C i i

W i i P k Q k Q i
i k i i k i

(,)

(,) () () ()



  
    

 

0

1

Data Structures &Algorithms II

• How to compute W(i,j)?

– Why not recursively?

E a E a E a a E a Ei i i i i i j j j j, , , , , ,..., , , ,      1 1 2 2 3 1 1

W i j(,)1

W i j(,)

W i j p j Q j W i j(,) () () (,)   1

n

a a a a do if read while

p p p p

Q Q Q Q Q









4

3 311

2 3111

1 2 3 4

1 2 3 4

0 1 2 3 4

(, , ,) (, , ,)

(, , ,) (, , ,)

(, , , ,) (, , , ,)

i

j

j-i=0

j-i=1

2

3

1

1

1

8

7

3

3

12

9

5

14

1116

0 1 2 3 4

4

3

2

1

0

W i j p j Q j W i j(,) () () (,)   1

8=p(1)+Q(1)+2

Data Structures &Algorithms II

i

j

j-i=0

j-i=1

0

0

0

0

0

8

7

3

3

19

12

8

25

1932

0 1 2 3 4

4

3

2

1

0

C i j C i k C k j W i j
i k j

(,) min{ (,) (,) (,)}   
 

1

C C k C k W

C C W

k
(,) min{ (,) (,) (,)}

(,) (,) (,)

0 1 0 1 1 0 1

0 0 11 0 1 0 0 8

0 1
   

     

 

C C k C k W

C C W

k
(,) min{ (,) (,) (,)}

(,) (,) (,)

1 2 1 1 2 1 2

11 2 2 1 2 0 0 7

1 2
   

     

 

1688)16(),4,0(

)}025(),4,4()3,0(

)319(),4,3()2,0(

)88(),4,2()1,0(

)190(),4,1()0,0(

min{

)}4,0()4,()1,0({min)4,0(
40
















W

CC

CC

CC

CC

WkCkCC
k

Data Structures &Algorithms II

 Time Complexity - C(i,j)

 j-i=m, there are n-m+1 of them

 Each one takes minimum of m quantities

i

j

j-i=0

j-i=1

C(0,0)

0 1 2 … n

n

...

2

1

0

C(1,1)

C(2,2)

C(.,.)

C(n,n)

C(0,1)

C(n-1,n)

C(1,2)

C(2,3)

C(0,n)

() ()n m m O n
m n

  
 

1
0

3

Data Structures &Algorithms II

DP-based Graph Algorithms

 Graph = (vertices, edges)

 Edges

 Build a long path with many edges with short

paths with fewer edges

 Stop when the path is longer than min(e,n)

 Vertices

 Build a subgraph with with many vertices with

smaller subgraphs with fewer vertices

 Stop when all vertices are considered

Data Structures &Algorithms II

All Pairs of Shortest Paths

 Input: a labeled graph G=(V,E)

 Output: the shortest path from very vertex

to very other vertices

Data Structures &Algorithms II

 Solution 1: Iteration on the number of edges

 a direct path (length=1)

 paths of length=2

 …

 paths of length=min(e,n)

 Solution 2: Iteration on the number of

vertices

 a direct path (no intervening vertices)

 paths with one intervening vertex

 …

 paths with (n-2) intervening vertices

Data Structures &Algorithms II

 Both solutions have this recurrence relation:

)}},(),({min),,(min{),(11

,

1 jkCkiCjiCjiC t

jik

tt 



 

6

4

2
11

3

V1

V3

V2

A1 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0

A2 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

A1’ 1 2 3

1 0+0

4+6(0)

11+3

0+4

4+0(4)

11+inf

0+11

4+2(6)

11+0

2 6+0

0+6(5)

2+3

6+4

0+0(0)

2+inf

6+11

0+3(2)

2+0

3 3+0

inf+6(3)

0+3

3+4

inf+0(7)

0+inf

3+11

inf+2(0)

0+0
min

Going through one vertex

Going through no other vertex

Data Structures &Algorithms II

 Time Complexity

 How many tables? O(min(e,n))

 How many entries per table?

 How much effort to generate each entry? O(n)

 OK solutions, but not great

 Try Floyd algorithm “iterating on vertex’s

cardinal number”

O n()2

O n O e n O n((min(,)) ()3 4 

Data Structures &Algorithms II

Traveling Salesperson

 Input: a directed labeled graph G=(V,E)

 Output: a tour of the minimum cost

 a tour visits all vertices

 a tour visit any vertex exactly once

Data Structures &Algorithms II

 Multi-stage graph  Traveling salesman

source sink source sink

difficult
difficult

source sink source sink

candidate: n-1 vertices

candidate: n-2 vertices

Cost i j c j l Cost i l
l V

j l E
i

(,) min { (,) (,)}

,

  

 

1

1 })}{,(),({min),(jSjgjicSig
Sj




 Difference

 For travelling salesman source = sink

 Every vertex can possibly be at every stage

 O((n-1)!) complexity

source sink

n-1 vertices!!

 Does the principle of optimality apply?

 Small problems with reuse?

source

source

Only one need

be kept!

Data Structures &Algorithms II

 g(i,S): the length of the shortest path

starting at vertex i, going through all

vertices in S, then back to the source

})}{,(),({min),(jSjgjicSig
Sj




})},1{,(),1({min})1{,1(
2

kVkgkcVg
nk




Data Structures &Algorithms II

1

4

2

3

10/5

9/13

12/9

20/8
10/8

15/6

35)2320,2515,2510min(

})4,3,2{,1(

23

)189,158min(

})3,2{,4(

25

)1312,1813min(

})4,2{,3(

25

)1510,209min(

})4,3{,2(

)69(15

})3{,4(

)58(13

})2{,4(

)812(20

})4{,3(

)513(18

})2{,3(

)810(18

})4{,2(

)69(15

})3{,2(

8

),4(

6

),3(

5

),2(

















g

ggg

gggggg

ggg 

 Time Complexity

 i: there are n-1 vertices to visit at each level

 S: there are choices

g(1,V-{1})

g(2,V-{1,2}) g(3,V-{1,3}) g(n,V-{1,n})

C12 
C13 

C n1 

g(2,V-{1,2,3}) g(4,V-{1,3,4}) g(n,V-{1,3,n})

C32  C34  C n3 

g(i,S)

() ()n
n

k
O n

k

n
n









 





1
2

2
0

2
2

n

k











2

C23 

Data Structures &Algorithms II

World Series Odds
 DP may be used to solve problems where

principle of optimality is not applicable

 Input:

 two teams A and B

 play a maximum of 7 games

 whichever team first wins 4 wins the series

 Output:

 P(i,j): conditional probability(A wins the series|

A needs i more games and B need j more

games)

Data Structures &Algorithms II

 Even though principle of optimality does

not apply here, but

 the problem does possess recursive nature

 solutions can be constructed by reuse

P i j
i j

i j

P i j p i j p i j i j

(,)
,

,

(,) ((,) (,)) / , ,


 

 





     

1 0 0

0 0 0

1 1 2 0 0

P(i,j): conditional probability(A wins the series| A needs i more games and B need j more games)

Data Structures &Algorithms II

i

j

0 0 0 0

1

3/41

7/81

15/161

0 1 2 3 4

4

3

2

1

0

1/2 1/4 1/8 1/16

1/2 5/16 3/16

1/2

1/213/16 21/32

11/3211/16

P i j p i j p i j i j(,) ((,) (,)) / , ,     1 1 2 0 0

i

j

(i,j)

(i,j-1)

(i-1,j)

Data Structures &Algorithms II

 Brute force method

p(4,4)

p(4,3) p(3,4)

p(4,2)p(3,3) p(3,3)p(2,4)

p(2,3) p(3,2) p(3,2) p(4,1) p(1,4) p(2,3) p(2,3) p(3,2)

A wins

O O nn() ()2 2 for brute force vs. for DP

i+j=7

i+j=8

i+j=6

A wins

B wins

B wins A wins B wins

A wins B wins

Lessons Learned

 Basic principles (Multi-stage graphs, 0/1-knapsack,
Reliable design)

 Brute force

 Reuse, Feasibility, Optimality

 Table building (recursion)

 Being Smart (Matrix multiplication, polygon
triangulation)

 There are different tables and different recursions

 Being flexible (World series odds)

 Reuse regardless of optimality constraint (more later)

 Nothing really matter much (Traveling Salesperson)

 There are hard problems in the universe

