
Data Structures &Algorithms II

Dynamic Programming

 Example  - multi-stage graph 
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Data Structures &Algorithms II

 A labeled, directed graph

 Vertices can be partitioned into k disjoint sets

 Find the min cost path from source to sink
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 Q: Will divide-and-conquer find the 

minimum cost path?

 A: Probably not

best left-half path

best right-half path

best overall path



Data Structures &Algorithms II

 Best paths found independently may not 

form a path

 Best overall paths may be suboptimal at 

different subproblem stages

 Divide-and-Conquer requires subproblems 

to be independent!
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 Q: Will the greedy method finds the minimum 

cost path?

 A: May not (if you are not Dijkstra)

 Choose the shortest link first

 Solve the problem stage-by-stage

Cost may be very high

Cost may be very low

minimum
cost at
stage 1
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 A low cost edge may be followed by paths 

of a very high cost

 A high cost edge may be followed by paths 

of a very low cost

 Based on local information (one stage at a 

time) it might not be possible to “look-

ahead”

 Picking the remaining lowest cost edge may 

not generate a path
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 Q: Is there an application?

 A: Yes, e.g., resource allocation

 n units of resources to be allocated to r projects

 N(i,j) profit earned if j units of resources are 

allocated to project i

 goal is to maximize the profit earned
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N(1,0)

N(1,1)

N(1,2)

N(1,3)

V(1,0)

V(2,0)

V(2,1)

V(2,2)

V(2,3)

V(3,0)

V(3,1)

V(3,2)

V(3,3)

V(4,3)

N(2,0)

N(2,1)

N(2,2)

N(2,3)

V(project being considered, resources committed)

3 projects

3 PCs



Surface Generation in Tomography



p1

p2

 m by n lattice

 Vertical edge: an upright triangle

 Horizontal edge: an inverted triangle

 Closed surfaces correspond to paths of length m+n

 Best path (surface) has the lowest cost 
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 Q: What should we do?

 A: Enumerate all possibilities

 Q: How much is the cost of enumeration?

 A: High, for 

 complete connection between two adjacent 

stages

 n stages 

 m vertices per stages O mn( )





S
D

1

2

3

4

5

6

S D

S D

S D

S D

S D

S D

S D

S D

1 3 5

1 3 6

1 4 5

1 4 6

2 3 5

2 3 6

2 4 5

2 4 6

S D

S D

S D

S D

S D

S D

S D

S D

1 3 5

1 3 6

1 4 5

1 4 6

2 3 5

2 3 6

2 4 5

2 4 6

A lot of repetitions:

build tables to remember

partial solutions

(reuse)

A lot of alternatives:

build tables to remember

optimal partial solutions

(principle of optimality)
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 Q: Is there a more efficient method of 

enumeration?

 A: Yes, dynamic programming

 Underlying principles:

 Principle of optimality

Early elimination of suboptimal subsolutions

 Recursion and reuse

Construct solutions by reusing optimal subsolutions

 Early termination

By feasibility or optimality
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 Principle of Optimality

i

Right halfLeft half

source sink

(source to i) (i to sink)
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 The optimal solution (if it go through node i) 

must contains the best left path from source to 

i and best right path from i to sink

 Any other left paths from source to i and any 

other right paths from i to sink need not be 

extended any further



 Recursion and Reuse

 Identify subproblems 

 Record the optimal solutions of subproblems

 Build larger and larger solutions

source
sinke1

e2

i

• Any path that includes a portion of (source to i), 

the cost of that particular portion is known



 Feasibility

 Is a partial solution still feasible?

 Based on the current path alone

 Optimality

 Is a partial solution going to be optimal? 

 Based on comparison of the current path with 

others
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 Backward approach
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 the cost of the optimal path 

from the source to vertex j at stage i 
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 the cost of the optimal path 

from vertex j at stage i to sink
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Intuition on DP
 Dynamic programming sometimes can be 

confusing because it is basically recursion 

but is slightly more than recursion

 A general solution pattern is

 identify stages and all possible alternatives in a 

stage

 recursion to generate all possible solutions

 need to combine and eliminate partial solutions 

using principle of optimality
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 For multi-stage graph

 steps are defined by stages

 straight recursion generates brushy tree  

O(node^stage)



 The important thing is to trim the tree by 

combining and coalescing nodes by 

principle of optimality
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Fancy Recursive Equations

Cost (node 1 at level 1)

Min (c(1,2)+Cost(node 2 at level2),

c(1,3)+Cost(node 3 at level2),

c(1,4)+Cost(node 4 at level2),)

Fancy equation describes the recursion

DP says that all such Cost functions should be reused!!
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Remember the costs here

Don’t compute again and again
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 A sequence of decisions to be made

 Decisions are inter-dependent (Divide-and-

Conquer not applicable)

 Local information not sufficient (Greedy 

not work)

Important Characteristics of 

Dynamic Programming
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 It examines all solutions in an efficient manner

 It involves building solutions recursively 

 Principle of optimality is used to eliminate sub-

optimal solutions

 Table of some sort are usually used to store 

optimal partial solutions

 Some reuse of optimal partial solutions

 Mathematically as recursion 

Important Characteristics of 

Dynamic Programming (cont.)
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Time Complexity of DP

 DP == building tables of partial solutions

1. How many tables?

2. How many entries per table?

3. How much effort to fill in entries?

 1*2*3 gives the complexity
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 Time complexity of multi-stage graph

 One table is built

 There are |V| entries in the table

 The cost of generating an entry is proportional 

to the incident edges

 O(|V|+|E|): a significant saving over exponent 

runtime
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0/1-Knapsack

 Input: 

 a set of n objects 

 a knapsack of capacity M

 Output: fill the knapsack (no partial 

inclusion) to maximize the total profit 

earned
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 Greedy method can fail

• Divide-and-conquer may not apply

P W M  ( , , ), ( , , ),9 7 7 6 5 5 10

Greedy

Optimal

P1

P2 P3

a a a a a
n n n1 2

2 2
1

 




















subproblem (X?) subproblem (M-X)
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 How to build solutions recursively?

 One object at a time

 How does principle of optimality apply?
x x x x

x x x x x x M W

y y y y y y M

i n1 2

11

0

 

   

   

( , ):( )

( , ):( )

 must be optimal for 

 must be optimal for



• How to identify sub-optimal solutions?

– if two solutions: (1,…,0,x,…,x), and 

(0,…,1,x,…, x) are such that one achieves 

better profit with less weight, then the other 

cannot be optimal
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 How to build table?

(0,0)

(1,2) (0,0)

(1,2)(3,5) (0,0)(2,3)

(1,2) (0,0)(2,3)(3,5)(6,6) (5,4)(7,7)(8,9)

(Profit earned, Weight used)

P=(1,2,5), W=(2,3,4),M=6 



,,

,,Weight

Profit

Bounding possible!
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 How to write the recursive equation?

 Knap(i,X): current profit with objects i to n left 

to be processed with a remaining capacity of X

 Initially, we have Knap(1,M)

Knap M Knap M Knap M W P

Knap i X Knap i X Knap i X W Pi i

( , ) max{ ( , ), ( , ) }

( , ) max{ ( , ), ( , ) }

1 2 2

1 1

1 1  

    

• Time complexity

– An brushy tree  for the table

– Constant time to generate entries

– DP can help, but the complexity will depend on 

actual problem instance

O n( )2



Three Useful Tricks

 Feasibility

 If a branch is over capacity, don’t expand it anymore

 Optimality

 If a branch is worse than another branch (more capacity 

used with smaller profit), don’t expand it anymore

 Feasibility and optimality are problem instance specific, 

cannot guarantee worst runtime in general

 Reuse

 Remember optimal partial solutions, don’t regenerate 

over and over again 



Reuse Examples

Weight = (3, 2, 3, 1, 4, 5), knapsack capacity = 10

Profit =   (2, 3, 4, 1, 5, 1)

0       1       2      3       4      5     6       7      8       9      10

0       1       2      3       4      5     6       7      8       9      10

0       1       2      3       4      5     6       7      8       9      10

0 2

30 2 5

0
3 Max(2,4) Max(6,7)

6 9

The complexity is O(n) with reuse!

Used capacity
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Reliable Design

 Input:

 A system composed of several devices in serial

 Each device (D) has a fixed reliability rating (r)

 Multiple copies of the same device can be used 

in parallel to increase reliability

 Output:

 A system with highest reliability rating subject 

to a cost constraint
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 Greedy method may not be applicable

 Strategy to maximize reliability: Buy more less 

reliable units (Costs may be high)

 Strategy to minimize cost: Buy more less 

expensive units (Reliability may not improve 

significantly)

 Divide-and-Conquer may fail

D D D D D
n n n1 2

2 2
1

 




















subproblem (X?) subproblem (C-X)
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Comparison

 A knapsack of 

capacity C

 Objects of size ci and 

profit pi

 Fill up the knapsack 

with 0 or 1 copy of i

 Maximize profit

 Total expenditure of C 

 Stages of cost ci and 

reliability ri

 Construct a system 

with 1 or more copies 

of i

 Maximize reliability

u

C c

ci

j
j

n

i
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 How to build solutions recursively?

 One stage and one device at a time

 How does principle of optimality apply?
m m m m

x x x x x x C c

y y y y y y C c

u y y y y y y C u c

i n1 2

1

1

1 1 1

1

2 2

 

   

   



   

( , ):( )

( , ):( )
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• How to identify sub-optimal solutions?

– if two solutions: (m1,…,mi,x,…,x), and 

(n1,…,ni,x,…, x) are such that one achieves 

higher reliability with a smaller cost, then the 

other cannot be optimal



• How to build table?

(1,65)

(0.9,65) (0.99,95)

(0.893,95)(0.72,65) (0.792,95)(0.864,80)

(0.446,95)

(0.70,115)(0.756,110)

(0.648,95)(0.63,105)

(0.432,80)(0.54,85)

(0.36,65)

(reliability, cost)

r=(0.9,0.8,0.5), c=(30,15,20),C=105

1 1 0 9 0 9  ( . ) .
1 1 0 9 0 992  ( . ) .

1 1 0 8 0 8  ( . ) .

1 1 0 8 0 962  ( . ) .

1 1 08 09923  ( . ) .

(0.95,110) (0.98,125)

1 1 0 5) 0 5  ( . .
1 1 0 5) 0 752  ( . .

1 1 05) 08753  ( . .

(0.781,135)
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• How to write the recursive equation?
f X m

subject to c m X m j i

f C m f C c m

f X m f X c m
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• Time complexity
– An brushy tree  for the table

– Constant time to generate entries

O n( )2



Chain Matrix Multiplication

 Input:

 A sequence of n matrices

 Output

 Their products



 Even though not so obvious, greedy 

algorithms (e.g., keep individual 

multiplications small) do not always 

produce optimal solutions

 Furthermore, the costs can vary quite a bit 

depending on the ordering

26418))((

4055))((

2856)((

54201))((

10582))((

343389895513

CDBA

DBCA

DBCA

CDAB

DCAB

DCBA  



 Can dynamic programming be used? 

 Does the principle of optimality apply? 

 Are there small problems? 

 Can the subsolutions be reused and how?



 Yes!

 There are many possible ways to apply DP, 

as long as

 do things in stages

 merge and reuse nodes based on principle of 

optimality

 We will show some examples below



)(AB
)(BC )(CD

))(( CAB ))(( CDAB ))(( BCA ))(( DBC ))(( CDB ))(( CDAB

)))((( DCAB )))((( CDAB )))((( DBCA )))((( DBCA )))((( CDBA )))((( CDAB

 Based on the number of multiplications performed



 An obvious DP algorithm

 need to multiply all the matrices

 individual steps will be multiplying two 

adjacent matrices and reduce the number of 

matrices by one 

 at each step, choose any two adjacent matrices 

to multiply

 in n-1 steps, we will be done

 reuse:  (ABC) = ((AB) C), reuse results of (AB)

 principle of optimality: ((AB) C) and (A (BC)) 

produce the same results, keep one

 A perfectly legal DP algorithm!



 The problem is that it is not a good DP 

algorithm

 with n matrices

 first multiplication: n-1 possibilities

 second multiplication: ???

 third multiplication: ???

 even with reuse and principle of optimality the 

numbers of intermediate stages are large

 many multiplications are repeated many times 

AB ((CD)(EF)) and ((AB)C)D(EF), (EF) is 

done more than once



 Based on the number of matrices multiplied together

 (the range of indices)

)(AB )(BC )(CD

)(A )(B )(C )(D

)(ABC )(BCD

)(ABCD



 Does the principle of optimality apply?

 Yes, whatever the last step in the chain 

multiplication, the steps leading to those two 

matrices must be optimal 

 Are there small problems? 

 Yes, multiplications of two adjacent matrices

 Can the subsolutions be reused and how?

 Yes, 

1,...,2,1111,   nidddm iiiii

snidddmmm sikisikki
siki

sii  


 ,...,2,1)(min 1,1,,



004

1907803

21845133502

328561530578501

4321











s

s

s

si

j

343389895513   DCBA
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Longest Increasing Subsequence

 Given an array of n numbers [0..n-1], find a 

subset of numbers that are increasing

 [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]

 [0 8 15]

 [ 2 6 11 15]

 [2 3 7 ]

 [0 2 6 9 11 15 ] <- longest one 

 [0 4 6 9 11 15]

 [0 4 6 9 13 15]



Brute Force Method

 Every number can be either in or not in in 

LIS

 With n numbers, there are 2n subsequences 

 Generate all, discard those that are not 

increasing subsequences

 Complexity O(2n)



DP – Key Idea

 An partial LIS soln (head) must end at some 

index

 The same tail portion can be added to all 

these solns 

 Only best soln is kept 

.  . .
.  . . .
.  ..

tail



0 1

0

1
0 1

0
1 0 1 0 1

1

0

0: not in the IS

1: in the IS



Include 2

Include 3

Include 1

Include 4

LISk = best 0<=i<k (LISi +1)



0, 8, 4, 1, 2, 2, 10, 6, 14, 1, 9, 5, 13

0

8

1 ( 0 )

2 ( 0, 8 )

4 2 ( 0, 4 )

1 2 ( 0, 1 ) 

2 3 ( 0, 1, 2 ) 

2 3 ( 0, 1, 2 ) 

10

LISk = best 0<=i<k (LISi +1)

4 ( 0, 1, 2, 10 ) (0, 1, 2, 10) 

6 4 ( 0, 1, 2, 6 ) (0, 1, 2, 6) 

14 5 ( 0, 1, 2, 10, 14 ) (0, 1, 2, 10, 14)

(0,1,2,6, 14) (0, 1,2,6,14) 

1 2 ( 0, 1 )

9 5 ( 0, 1, 2, 6, 9 ) (0, 1, 2, 6, 9) 

5 4 ( 0, 1, 2 , 5) (0, 1, 2, 5) 

13 6 ( 0, 1, 2, 6, 9, 13 ) (0, 1, 2, 6, 9, 13) 



DP – Key Idea (Reuse)

 How to build table?

 LISk = best 0<=i<k (LISi +1)

 Final solution?

 LIS = best 0<=k<n (LISk)

 Complexity

 One table

 n entries LISk

 Most expensive entry O(n)

 O(n2)

 More efficient (O(nlogn)) exists 



Sequence Alignment 

 Given two sequences a, b of length m, n

 Align them to match 

 Use in DNA matching:

 a: AGCTTCGA

 b: GATCGA

 Deletion (insertion):

 1st A, 4th or5th T

 Change:

 3rd C->A

AGCTTCGA

GAT   CGA

AGCTTCGA

GA   TCGA



Constraints
 Linear ordering

 If ai matches with bj, 

 ak, k<i must match only with bl, l<j

 ak, k>i must match only with bl, l>j

 Deletion, insertion, and change all have 

associated costs (domain dependent)

 Also called the longest common 

subsequence (LCS) problem (GTCGA)

AGCTTCGA

GA   TCGA



Brute Force Method

 Again, think about tree

 At each tree node, looking at some ai and 

some bj (initially, ao, bo)

 Match ai and bj

No change necessary

Change ai <-> bj

 Skip (delete) ai , but keep bj

 Skip (delete) bj , but keep ai

 Skip (delete) both ai and bj

 Max fan out is 4, Max tree depth is m+n, 

bad 



Principle of Optimality 

.  . .
. .

tail

 Similar to LIS

 Head: some partial results (match, delete, 

insert, change, etc.) up to ai and bj

 Tail: (match, delete, insert, change) results for 

ai+1 and bj+1

ai

bj



Reuse

 Build a table of size m by n to store the 

partial results 

 (i,j)th entry is results up to ai bj

 How to fill the table? 

 Fill them in diagonally

 C(i,j) (W) = min among

R: C(i-1,j-1) + (match, change, skip) ai and bj

G: C(i,j-1) + skip bj

B: C(i-1,j) + skip ai

 Complexity: O(n2)
i

j



a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0          1           2            3          4           5           6

Match: 0 

Delete (insert): 1

Change: 1

a

b



a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1 1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0          1           2            3          4           5           6

Match: 0 

Delete (insert): 1

Change: 1

a

b

?



Polygon Triangulation
 Given: A convex polygon with n sides, a 

triangulation is a set of chords of the 

polygon that divide the polygon into 

disjoint triangles

 There are n-2 triangles with n-3 chords



 Not all triangulations are equally good

 Need a cost function to evaluate the cost of 

a triangulation

 The cost of a triangulation is the total costs 

of its component triangles

 The cost of a particular triangle is the sum 

of some distance measure (e.g., Euclidean) 

of all its sides

|,||,||,|),,( ikkjjikji vvvvvvvvv 



 Again, divide-and-conquer might not work

 say, chose a chord to divide the polygon into 

two parts and perform triangulation for both 

parts independently

 the said chord will be in the final triangulation 

 however, the optimal triangulation may not 

include that particular chord

 Greedy?

 the polygon of the smallest cost may not be in 

the final triangulation

 Need to look at all possible combinations



 Intuitively, when we consider the first step 
in triangulation, say, using v(0) and v(n-1) 
as base, the vertex can be v(1), v(2), …, 
v(n-2) 

 we do not know which one is the best, should 
consider all possibilities

0v

1nv

jv

iv

 Furthermore, if we pick, say 
v(j), then triangulation of 
v(0) to v(j) and v(j) to v(n-1) 
must be optimal w.r.t each 
sub problems (principle of 
optimality)



Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two 

matrices to multiply

 Better to do it by 

gradually enlarge the 

chain

 Adjacency

 Create one triangle

 Create n-2 triangles

 Randomly pick a 

triangle to add

 Better to do it by 

gradually enlarge the 

triangle area

 Adjacency



1v 2v
iv 2nv

0v

1nv
iv

1v 1iv
1iv 2nv

 Principle of Optimality



 Reuse

 if we need to triangulate an area inside the 

original polygon spanned by, say k, vertices

 if we already know the best way to triangulate 

an area spanned by k-1 vertices or less

 then we can take advantage of that!



 That allows us to write the following 

recurrence relation

 let c(i,j) be the cost of an optimal triangulation 

of polygon <v(i), v(i+1), … v(j)>, then

jivvvjkckicjic

jiorjijic

jki
jki






1)),,(),(),((min),(

10),(

i
k

j



j

j-i=0

j-i=1

C(i,i)=0

C(i,i+1)=0

C(i,i+2)

C(k,j)C(i,j)

C(i,k)

= min{     +

+

…

}

jivvvjkckicjic

jiorjijic

jki
jki






1),,(),(),((min),(

10),(

starting

ending
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Optimal Binary Search Tree

 Input: 

 A set of n identifiers

 Output:

 An optimal binary search tree that minimizes 

the average search effort



   





 

  



 

n a a a

P i a

Q i

E a E a

P i Q i

n

i

i i i i

i

n

i

n

 identifiers 

probability that  is searched
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switch

while
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do end
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 Convince yourself that divide-and-conquer 

and greedy methods are not suitable

 Dynamic Programming

 Identify small problems

 Progressively build larger problems

 Reuse optimal sub-solutions (table building)
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p Q Q( ) ( ) ( )1 0 1 
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a1 a2
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QQp
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a3

a2 a3

a2
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QQp

Qp

 How to build solution recursively (reuse)?
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 How does principle of optimality apply?

a2

a1 a2

a1
a3

a2 a3

a2

2))1()0()1((

)2()2(





QQp

Qp

2))2()1()2((

)0()1(





QQp
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2))2()1()2((

)3()3(





QQp
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QQp

Qp

Only one of the two configurations should be kept!
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a3

a1

a1

a1

a2

a2

a2a3

a3

a1

a3

a2

a3

a2

a1

Only one of the five configurations should be kept!



Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two 

matrices to multiply

 Better to do it by 

gradually enlarge the 

chain

 Adjacency

 Pull one node up to root

 Create n-2 subtrees

 Randomly pick a node up 

to be root

 Better to do it by 

gradually enlarge the 

subtree size

 Adjacency



ak

L

R

E a E a a Ek k0 1 1 2 1 1, ...,, , , , 

E a E a a Ek k k k n n, ...,, , , ,  1 1 2

L is optimal w.r.t.

all binary search trees 

with the above elements

R is optimal w.r.t.

all binary search trees 

with the above elements
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C combined p k C L C R

p i Q i

p i Q i

C L C R W combined

W combined p i Q i p k p i Q i
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C n C k C k n W n

C i j C i k C k j W i j

k n

i k j

( , ) min{ ( , ) ( , ) ( , )}

( , ) min{ ( , ) ( , ) ( , )}

0 0 1 0

1

0
   

   

 

 

• Recurrence relation

Red: left got one deeper

Blue: right got one deeper

Green: root
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C i j C i k C k j W i j
i k j

( , ) min{ ( , ) ( , ) ( , )}   
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• Table building

i

j
j-i=0

j-i=1

j-i=2

j-i=n

order of computation

C i i

W i i P k Q k Q i
i k i i k i
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( , ) ( ) ( ) ( )
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• How to compute W(i,j)?

– Why not recursively?

E a E a E a a E a Ei i i i i i j j j j, , , , , ,..., , , ,      1 1 2 2 3 1 1

W i j( , )1

W i j( , )

W i j p j Q j W i j( , ) ( ) ( ) ( , )   1



n
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p p p p

Q Q Q Q Q
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 Time Complexity - C(i,j)

 j-i=m, there are n-m+1 of them 

 Each one takes minimum of m quantities

i

j

j-i=0

j-i=1

C(0,0)

0      1      2      …   n

n

...

2

1

0

C(1,1)
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C(1,2)

C(2,3)

C(0,n)
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DP-based Graph Algorithms

 Graph = (vertices, edges)

 Edges

 Build a long path with many edges with short 

paths with fewer edges

 Stop when the path is longer than min(e,n)

 Vertices

 Build a subgraph with with many vertices with 

smaller subgraphs with fewer vertices

 Stop when all vertices are considered
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All Pairs of Shortest Paths

 Input: a labeled graph G=(V,E)

 Output: the shortest path from very vertex 

to very other vertices
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 Solution 1: Iteration on the number of edges

 a direct path (length=1)

 paths of length=2

 …

 paths of length=min(e,n)

 Solution 2: Iteration on the number of 

vertices

 a direct path (no intervening vertices)

 paths with one intervening vertex

 …

 paths with (n-2) intervening vertices
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 Both solutions have this recurrence relation:

)}},(),({min),,(min{),( 11
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1 jkCkiCjiCjiC t

jik

tt 
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V3

V2

A1 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0

A2 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

A1’ 1 2 3

1 0+0

4+6(0)

11+3

0+4

4+0(4)

11+inf

0+11

4+2(6)

11+0

2 6+0

0+6(5)

2+3

6+4

0+0(0)

2+inf

6+11

0+3(2)

2+0

3 3+0

inf+6(3)

0+3

3+4

inf+0(7)

0+inf

3+11

inf+2(0)

0+0
min

Going through one vertex

Going through no other vertex
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 Time Complexity

 How many tables? O(min(e,n))

 How many entries per table? 

 How much effort to generate each entry? O(n)

 OK solutions, but not great

 Try Floyd algorithm “iterating on vertex’s 

cardinal number”

O n( )2

O n O e n O n( (min( , )) ( )3 4 
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Traveling Salesperson 

 Input: a directed labeled graph G=(V,E)

 Output: a tour of the minimum cost

 a tour visits all vertices

 a tour visit any vertex exactly once
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 Multi-stage graph  Traveling salesman

source sink source sink

difficult
difficult

source sink source sink

candidate: n-1 vertices

candidate: n-2 vertices

Cost i j c j l Cost i l
l V

j l E
i

( , ) min { ( , ) ( , )}

,

  

 

1

1 })}{,(),({min),( jSjgjicSig
Sj






 Difference

 For travelling salesman source = sink

 Every vertex can possibly be at every stage

 O((n-1)!) complexity

source sink

n-1 vertices!!



 Does the principle of optimality apply?

 Small problems with reuse? 

source

source

Only one need 

be kept!
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 g(i,S): the length of the shortest path 

starting at vertex i, going through all 

vertices in S, then back to the source

})}{,(),({min),( jSjgjicSig
Sj
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 Time Complexity

 i: there are n-1 vertices to visit at each level

 S:  there are choices
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World Series Odds
 DP may be used to solve problems where 

principle of optimality is not applicable

 Input: 

 two teams A and B

 play a maximum of 7 games

 whichever team first wins 4 wins the series

 Output:

 P(i,j): conditional probability(A wins the series| 

A needs i more games and B need j more 

games)
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 Even though principle of optimality does 

not apply here, but

 the problem does possess recursive nature

 solutions can be constructed by reuse

P i j
i j

i j

P i j p i j p i j i j

( , )
,

,

( , ) ( ( , ) ( , )) / , ,


 

 





     

1 0 0

0 0 0

1 1 2 0 0

P(i,j): conditional probability(A wins the series| A needs i more games and B need j more games)
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 Brute force method 

p(4,4)

p(4,3) p(3,4)

p(4,2)p(3,3) p(3,3)p(2,4)

p(2,3) p(3,2) p(3,2) p(4,1) p(1,4) p(2,3) p(2,3) p(3,2)

A wins

O O nn( ) ( )2 2 for brute force vs.  for DP

i+j=7

i+j=8

i+j=6

A wins

B wins

B wins A wins B wins

A wins B wins



Lessons Learned

 Basic principles (Multi-stage graphs, 0/1-knapsack, 
Reliable design)

 Brute force

 Reuse, Feasibility, Optimality

 Table building (recursion)

 Being Smart (Matrix multiplication, polygon 
triangulation)

 There are different tables and different recursions

 Being flexible (World series odds)

 Reuse regardless of optimality constraint (more later)

 Nothing really matter much (Traveling Salesperson)

 There are hard problems in the universe


