
Data Structures &Algorithms II

Dynamic Programming

 Example - multi-stage graph

1

2

3

4

5

6

7

8

9

10

11

12

9

7

3

2

4

2

2

7

11

11
8

1

6

54

3

5

6

4

2

5
source sink

Data Structures &Algorithms II

 A labeled, directed graph

 Vertices can be partitioned into k disjoint sets

 Find the min cost path from source to sink

u v E u V v V i k

V V

i i

k

, , , ,

| | | |

1

1

1

1 (source) (sink)

Data Structures &Algorithms II

 Q: Will divide-and-conquer find the

minimum cost path?

 A: Probably not

best left-half path

best right-half path

best overall path

Data Structures &Algorithms II

 Best paths found independently may not

form a path

 Best overall paths may be suboptimal at

different subproblem stages

 Divide-and-Conquer requires subproblems

to be independent!

Data Structures &Algorithms II

 Q: Will the greedy method finds the minimum

cost path?

 A: May not (if you are not Dijkstra)

 Choose the shortest link first

 Solve the problem stage-by-stage

Cost may be very high

Cost may be very low

minimum
cost at
stage 1

Data Structures &Algorithms II

 A low cost edge may be followed by paths

of a very high cost

 A high cost edge may be followed by paths

of a very low cost

 Based on local information (one stage at a

time) it might not be possible to “look-

ahead”

 Picking the remaining lowest cost edge may

not generate a path

Data Structures &Algorithms II

 Q: Is there an application?

 A: Yes, e.g., resource allocation

 n units of resources to be allocated to r projects

 N(i,j) profit earned if j units of resources are

allocated to project i

 goal is to maximize the profit earned

Data Structures &Algorithms II

N(1,0)

N(1,1)

N(1,2)

N(1,3)

V(1,0)

V(2,0)

V(2,1)

V(2,2)

V(2,3)

V(3,0)

V(3,1)

V(3,2)

V(3,3)

V(4,3)

N(2,0)

N(2,1)

N(2,2)

N(2,3)

V(project being considered, resources committed)

3 projects

3 PCs

Surface Generation in Tomography

p1

p2

 m by n lattice

 Vertical edge: an upright triangle

 Horizontal edge: an inverted triangle

 Closed surfaces correspond to paths of length m+n

 Best path (surface) has the lowest cost

Data Structures &Algorithms II

 Q: What should we do?

 A: Enumerate all possibilities

 Q: How much is the cost of enumeration?

 A: High, for

 complete connection between two adjacent

stages

 n stages

 m vertices per stages O mn()

S
D

1

2

3

4

5

6

S D

S D

S D

S D

S D

S D

S D

S D

1 3 5

1 3 6

1 4 5

1 4 6

2 3 5

2 3 6

2 4 5

2 4 6

S D

S D

S D

S D

S D

S D

S D

S D

1 3 5

1 3 6

1 4 5

1 4 6

2 3 5

2 3 6

2 4 5

2 4 6

A lot of repetitions:

build tables to remember

partial solutions

(reuse)

A lot of alternatives:

build tables to remember

optimal partial solutions

(principle of optimality)

Data Structures &Algorithms II

 Q: Is there a more efficient method of

enumeration?

 A: Yes, dynamic programming

 Underlying principles:

 Principle of optimality

Early elimination of suboptimal subsolutions

 Recursion and reuse

Construct solutions by reusing optimal subsolutions

 Early termination

By feasibility or optimality

Data Structures &Algorithms II

 Principle of Optimality

i

Right halfLeft half

source sink

(source to i) (i to sink)

Data Structures &Algorithms II

 The optimal solution (if it go through node i)

must contains the best left path from source to

i and best right path from i to sink

 Any other left paths from source to i and any

other right paths from i to sink need not be

extended any further

 Recursion and Reuse

 Identify subproblems

 Record the optimal solutions of subproblems

 Build larger and larger solutions

source
sinke1

e2

i

• Any path that includes a portion of (source to i),

the cost of that particular portion is known

 Feasibility

 Is a partial solution still feasible?

 Based on the current path alone

 Optimality

 Is a partial solution going to be optimal?

 Based on comparison of the current path with

others

Data Structures &Algorithms II

 Backward approach

() () () (

()

(min(,))

()

(min(, ,))

()

(min(, ,))

()

(min(,))

()

(min(, ,))

()

()

()

(min(, ,))

1 2

9

1 3

7

1 4

3

1 5)

2

1 6

9 4 9 2 7

1 7

11 2 9 7 7 11 2

1 8

10 1 9 11 3 8 2

1 9

15 9 6 4 11

1 10

14 5 9 3 11 5 10

1 11

16 6 10

1 12

16 4 15 2 14 5 16

BCost i j

BCost i j BCost i l c j l
l V

j l E
i

(,):

(,) min { (,) (,)}

,

 the cost of the optimal path

from the source to vertex j at stage i

1

1

1

2

3

4

5

6

7

8

9

10

11

12

9

7

3

2

4

2
2

7

11

11
8

1

6

54

3

5

6

4

2

5
source sink

Data Structures &Algorithms II

() () ()

()

(min(,))

()

(min(,))

()

(min(,

()

(min(, ,))

()

(min(,

()

()

()

(min(,))

()

((min(, , ,

9 12

4

10 12

2

11 12

5

6 12

7 6 4 5 2

7 12

5 4 4 3 2

8 12

7 5 2 6 5))

2 12

7 4 7 2 51 7

3 12

9 2 7 7 5))

4 12

18 11 7

5 12

15 11 5 8 7

1 12

16 9 7 7 9 3 18 2 15))

Cost i j

Cost i j c j l Cost i l
l V

j l E
i

(,):

(,) min { (,) (,)}

,

 the cost of the optimal path

from vertex j at stage i to sink

1

1

 Forward approach
1

2

3

4

5

6

7

8

9

10

11

12

9

7

3

2

4

2
2

7

11

11
8

1

6

54

3

5

6

4

2

5
source sink

Intuition on DP
 Dynamic programming sometimes can be

confusing because it is basically recursion

but is slightly more than recursion

 A general solution pattern is

 identify stages and all possible alternatives in a

stage

 recursion to generate all possible solutions

 need to combine and eliminate partial solutions

using principle of optimality

1

2
3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

 For multi-stage graph

 steps are defined by stages

 straight recursion generates brushy tree

O(node^stage)

 The important thing is to trim the tree by

combining and coalescing nodes by

principle of optimality

2 3 4

5 6 5 6 5 6

2 3 4

5 6

1

2 3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

1

2 3 4

5 6

7 8

1

2 3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

Fancy Recursive Equations

Cost (node 1 at level 1)

Min (c(1,2)+Cost(node 2 at level2),

c(1,3)+Cost(node 3 at level2),

c(1,4)+Cost(node 4 at level2),)

Fancy equation describes the recursion

DP says that all such Cost functions should be reused!!

1

2 3 4

5 6 5 6 5 6

7 8 7 8 7 8 7
8

7 8 7 8

1

2 3 4

5 6

7 8

Remember the costs here

Don’t compute again and again

Data Structures &Algorithms II

 A sequence of decisions to be made

 Decisions are inter-dependent (Divide-and-

Conquer not applicable)

 Local information not sufficient (Greedy

not work)

Important Characteristics of

Dynamic Programming

Data Structures &Algorithms II

 It examines all solutions in an efficient manner

 It involves building solutions recursively

 Principle of optimality is used to eliminate sub-

optimal solutions

 Table of some sort are usually used to store

optimal partial solutions

 Some reuse of optimal partial solutions

 Mathematically as recursion

Important Characteristics of

Dynamic Programming (cont.)

Data Structures &Algorithms II

Time Complexity of DP

 DP == building tables of partial solutions

1. How many tables?

2. How many entries per table?

3. How much effort to fill in entries?

 1*2*3 gives the complexity

Data Structures &Algorithms II

 Time complexity of multi-stage graph

 One table is built

 There are |V| entries in the table

 The cost of generating an entry is proportional

to the incident edges

 O(|V|+|E|): a significant saving over exponent

runtime

Data Structures &Algorithms II

0/1-Knapsack

 Input:

 a set of n objects

 a knapsack of capacity M

 Output: fill the knapsack (no partial

inclusion) to maximize the total profit

earned

Data Structures &Algorithms II

 Greedy method can fail

• Divide-and-conquer may not apply

P W M (, ,), (, ,),9 7 7 6 5 5 10

Greedy

Optimal

P1

P2 P3

a a a a a
n n n1 2

2 2
1

subproblem (X?) subproblem (M-X)

Data Structures &Algorithms II

 How to build solutions recursively?

 One object at a time

 How does principle of optimality apply?
x x x x

x x x x x x M W

y y y y y y M

i n1 2

11

0

(,):()

(,):()

 must be optimal for

 must be optimal for

• How to identify sub-optimal solutions?

– if two solutions: (1,…,0,x,…,x), and

(0,…,1,x,…, x) are such that one achieves

better profit with less weight, then the other

cannot be optimal

Data Structures &Algorithms II

 How to build table?

(0,0)

(1,2) (0,0)

(1,2)(3,5) (0,0)(2,3)

(1,2) (0,0)(2,3)(3,5)(6,6) (5,4)(7,7)(8,9)

(Profit earned, Weight used)

P=(1,2,5), W=(2,3,4),M=6

,,

,,Weight

Profit

Bounding possible!

Data Structures &Algorithms II

 How to write the recursive equation?

 Knap(i,X): current profit with objects i to n left

to be processed with a remaining capacity of X

 Initially, we have Knap(1,M)

Knap M Knap M Knap M W P

Knap i X Knap i X Knap i X W Pi i

(,) max{ (,), (,) }

(,) max{ (,), (,) }

1 2 2

1 1

1 1

• Time complexity

– An brushy tree for the table

– Constant time to generate entries

– DP can help, but the complexity will depend on

actual problem instance

O n()2

Three Useful Tricks

 Feasibility

 If a branch is over capacity, don’t expand it anymore

 Optimality

 If a branch is worse than another branch (more capacity

used with smaller profit), don’t expand it anymore

 Feasibility and optimality are problem instance specific,

cannot guarantee worst runtime in general

 Reuse

 Remember optimal partial solutions, don’t regenerate

over and over again

Reuse Examples

Weight = (3, 2, 3, 1, 4, 5), knapsack capacity = 10

Profit = (2, 3, 4, 1, 5, 1)

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 2

30 2 5

0
3 Max(2,4) Max(6,7)

6 9

The complexity is O(n) with reuse!

Used capacity

Data Structures &Algorithms II

Reliable Design

 Input:

 A system composed of several devices in serial

 Each device (D) has a fixed reliability rating (r)

 Multiple copies of the same device can be used

in parallel to increase reliability

 Output:

 A system with highest reliability rating subject

to a cost constraint

Data Structures &Algorithms II

D1

D1

D1

D2

D2

Di

Di

Di

Di

Di

Dn

nimCmc

m

r

sayriDm

ii

ni

i

ii
ni

m

ii

iii

i

1,1 and subject to

)(max

)1(1 of ratingy reliabilit awith

%90,: , stageat devices of copies

1

1

Connected in parallel

At least one should work

Connected in series

All of them have to work

Data Structures &Algorithms II

 Greedy method may not be applicable

 Strategy to maximize reliability: Buy more less

reliable units (Costs may be high)

 Strategy to minimize cost: Buy more less

expensive units (Reliability may not improve

significantly)

 Divide-and-Conquer may fail

D D D D D
n n n1 2

2 2
1

subproblem (X?) subproblem (C-X)

Data Structures &Algorithms II

Comparison

 A knapsack of

capacity C

 Objects of size ci and

profit pi

 Fill up the knapsack

with 0 or 1 copy of i

 Maximize profit

 Total expenditure of C

 Stages of cost ci and

reliability ri

 Construct a system

with 1 or more copies

of i

 Maximize reliability

u

C c

ci

j
j

n

i

1

1

Data Structures &Algorithms II

 How to build solutions recursively?

 One stage and one device at a time

 How does principle of optimality apply?
m m m m

x x x x x x C c

y y y y y y C c

u y y y y y y C u c

i n1 2

1

1

1 1 1

1

2 2

(,):()

(,):()

(,):()

 must be optimal for

 must be optimal for

 must be optimal for

• How to identify sub-optimal solutions?

– if two solutions: (m1,…,mi,x,…,x), and

(n1,…,ni,x,…, x) are such that one achieves

higher reliability with a smaller cost, then the

other cannot be optimal

• How to build table?

(1,65)

(0.9,65) (0.99,95)

(0.893,95)(0.72,65) (0.792,95)(0.864,80)

(0.446,95)

(0.70,115)(0.756,110)

(0.648,95)(0.63,105)

(0.432,80)(0.54,85)

(0.36,65)

(reliability, cost)

r=(0.9,0.8,0.5), c=(30,15,20),C=105

1 1 0 9 0 9 (.) .
1 1 0 9 0 992 (.) .

1 1 0 8 0 8 (.) .

1 1 0 8 0 962 (.) .

1 1 08 09923 (.) .

(0.95,110) (0.98,125)

1 1 0 5) 0 5 (. .
1 1 0 5) 0 752 (. .

1 1 05) 08753 (. .

(0.781,135)

Data Structures &Algorithms II

• How to write the recursive equation?
f X m

subject to c m X m j i

f C m f C c m

f X m f X c m

i
j i

j j

j j
j i

j jn

n
m

n n n n n

i
m

i i i i i

n n

i i

(): max ()

, ,

() max { () ()}

() max{ () ()}

1

1

1
1

1
1

1 1

• Time complexity
– An brushy tree for the table

– Constant time to generate entries

O n()2

Chain Matrix Multiplication

 Input:

 A sequence of n matrices

 Output

 Their products

 Even though not so obvious, greedy

algorithms (e.g., keep individual

multiplications small) do not always

produce optimal solutions

 Furthermore, the costs can vary quite a bit

depending on the ordering

26418))((

4055))((

2856)((

54201))((

10582))((

343389895513

CDBA

DBCA

DBCA

CDAB

DCAB

DCBA

 Can dynamic programming be used?

 Does the principle of optimality apply?

 Are there small problems?

 Can the subsolutions be reused and how?

 Yes!

 There are many possible ways to apply DP,

as long as

 do things in stages

 merge and reuse nodes based on principle of

optimality

 We will show some examples below

)(AB
)(BC)(CD

))((CAB))((CDAB))((BCA))((DBC))((CDB))((CDAB

)))(((DCAB)))(((CDAB)))(((DBCA)))(((DBCA)))(((CDBA)))(((CDAB

 Based on the number of multiplications performed

 An obvious DP algorithm

 need to multiply all the matrices

 individual steps will be multiplying two

adjacent matrices and reduce the number of

matrices by one

 at each step, choose any two adjacent matrices

to multiply

 in n-1 steps, we will be done

 reuse: (ABC) = ((AB) C), reuse results of (AB)

 principle of optimality: ((AB) C) and (A (BC))

produce the same results, keep one

 A perfectly legal DP algorithm!

 The problem is that it is not a good DP

algorithm

 with n matrices

 first multiplication: n-1 possibilities

 second multiplication: ???

 third multiplication: ???

 even with reuse and principle of optimality the

numbers of intermediate stages are large

 many multiplications are repeated many times

AB ((CD)(EF)) and ((AB)C)D(EF), (EF) is

done more than once

 Based on the number of matrices multiplied together

 (the range of indices)

)(AB)(BC)(CD

)(A)(B)(C)(D

)(ABC)(BCD

)(ABCD

 Does the principle of optimality apply?

 Yes, whatever the last step in the chain

multiplication, the steps leading to those two

matrices must be optimal

 Are there small problems?

 Yes, multiplications of two adjacent matrices

 Can the subsolutions be reused and how?

 Yes,

1,...,2,1111, nidddm iiiii

snidddmmm sikisikki
siki

sii

 ,...,2,1)(min 1,1,,

004

1907803

21845133502

328561530578501

4321

s

s

s

si

j

343389895513 DCBA

2856)34313,348913

,34513min(

1845)3435,34895min(

1530)38913,3513min(

44133412

241114

4423342224

3312231113

mmmm

mmm

mmmmm

mmmmm

Longest Increasing Subsequence

 Given an array of n numbers [0..n-1], find a

subset of numbers that are increasing

 [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]

 [0 8 15]

 [2 6 11 15]

 [2 3 7]

 [0 2 6 9 11 15] <- longest one

 [0 4 6 9 11 15]

 [0 4 6 9 13 15]

Brute Force Method

 Every number can be either in or not in in

LIS

 With n numbers, there are 2n subsequences

 Generate all, discard those that are not

increasing subsequences

 Complexity O(2n)

DP – Key Idea

 An partial LIS soln (head) must end at some

index

 The same tail portion can be added to all

these solns

 Only best soln is kept

. . .
. . . .
. ..

tail

0 1

0

1
0 1

0
1 0 1 0 1

1

0

0: not in the IS

1: in the IS

Include 2

Include 3

Include 1

Include 4

LISk = best 0<=i<k (LISi +1)

0, 8, 4, 1, 2, 2, 10, 6, 14, 1, 9, 5, 13

0

8

1 (0)

2 (0, 8)

4 2 (0, 4)

1 2 (0, 1)

2 3 (0, 1, 2)

2 3 (0, 1, 2)

10

LISk = best 0<=i<k (LISi +1)

4 (0, 1, 2, 10) (0, 1, 2, 10)

6 4 (0, 1, 2, 6) (0, 1, 2, 6)

14 5 (0, 1, 2, 10, 14) (0, 1, 2, 10, 14)

(0,1,2,6, 14) (0, 1,2,6,14)

1 2 (0, 1)

9 5 (0, 1, 2, 6, 9) (0, 1, 2, 6, 9)

5 4 (0, 1, 2 , 5) (0, 1, 2, 5)

13 6 (0, 1, 2, 6, 9, 13) (0, 1, 2, 6, 9, 13)

DP – Key Idea (Reuse)

 How to build table?

 LISk = best 0<=i<k (LISi +1)

 Final solution?

 LIS = best 0<=k<n (LISk)

 Complexity

 One table

 n entries LISk

 Most expensive entry O(n)

 O(n2)

 More efficient (O(nlogn)) exists

Sequence Alignment

 Given two sequences a, b of length m, n

 Align them to match

 Use in DNA matching:

 a: AGCTTCGA

 b: GATCGA

 Deletion (insertion):

 1st A, 4th or5th T

 Change:

 3rd C->A

AGCTTCGA

GAT CGA

AGCTTCGA

GA TCGA

Constraints
 Linear ordering

 If ai matches with bj,

 ak, k<i must match only with bl, l<j

 ak, k>i must match only with bl, l>j

 Deletion, insertion, and change all have

associated costs (domain dependent)

 Also called the longest common

subsequence (LCS) problem (GTCGA)

AGCTTCGA

GA TCGA

Brute Force Method

 Again, think about tree

 At each tree node, looking at some ai and

some bj (initially, ao, bo)

 Match ai and bj

No change necessary

Change ai <-> bj

 Skip (delete) ai , but keep bj

 Skip (delete) bj , but keep ai

 Skip (delete) both ai and bj

 Max fan out is 4, Max tree depth is m+n,

bad

Principle of Optimality

. . .
. .

tail

 Similar to LIS

 Head: some partial results (match, delete,

insert, change, etc.) up to ai and bj

 Tail: (match, delete, insert, change) results for

ai+1 and bj+1

ai

bj

Reuse

 Build a table of size m by n to store the

partial results

 (i,j)th entry is results up to ai bj

 How to fill the table?

 Fill them in diagonally

 C(i,j) (W) = min among

R: C(i-1,j-1) + (match, change, skip) ai and bj

G: C(i,j-1) + skip bj

B: C(i-1,j) + skip ai

 Complexity: O(n2)
i

j

a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Match: 0

Delete (insert): 1

Change: 1

a

b

a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1 1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Match: 0

Delete (insert): 1

Change: 1

a

b

?

Polygon Triangulation
 Given: A convex polygon with n sides, a

triangulation is a set of chords of the

polygon that divide the polygon into

disjoint triangles

 There are n-2 triangles with n-3 chords

 Not all triangulations are equally good

 Need a cost function to evaluate the cost of

a triangulation

 The cost of a triangulation is the total costs

of its component triangles

 The cost of a particular triangle is the sum

of some distance measure (e.g., Euclidean)

of all its sides

|,||,||,|),,(ikkjjikji vvvvvvvvv

 Again, divide-and-conquer might not work

 say, chose a chord to divide the polygon into

two parts and perform triangulation for both

parts independently

 the said chord will be in the final triangulation

 however, the optimal triangulation may not

include that particular chord

 Greedy?

 the polygon of the smallest cost may not be in

the final triangulation

 Need to look at all possible combinations

 Intuitively, when we consider the first step
in triangulation, say, using v(0) and v(n-1)
as base, the vertex can be v(1), v(2), …,
v(n-2)

 we do not know which one is the best, should
consider all possibilities

0v

1nv

jv

iv

 Furthermore, if we pick, say
v(j), then triangulation of
v(0) to v(j) and v(j) to v(n-1)
must be optimal w.r.t each
sub problems (principle of
optimality)

Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two

matrices to multiply

 Better to do it by

gradually enlarge the

chain

 Adjacency

 Create one triangle

 Create n-2 triangles

 Randomly pick a

triangle to add

 Better to do it by

gradually enlarge the

triangle area

 Adjacency

1v 2v
iv 2nv

0v

1nv
iv

1v 1iv
1iv 2nv

 Principle of Optimality

 Reuse

 if we need to triangulate an area inside the

original polygon spanned by, say k, vertices

 if we already know the best way to triangulate

an area spanned by k-1 vertices or less

 then we can take advantage of that!

 That allows us to write the following

recurrence relation

 let c(i,j) be the cost of an optimal triangulation

of polygon <v(i), v(i+1), … v(j)>, then

jivvvjkckicjic

jiorjijic

jki
jki

1)),,(),(),((min),(

10),(

i
k

j

j

j-i=0

j-i=1

C(i,i)=0

C(i,i+1)=0

C(i,i+2)

C(k,j)C(i,j)

C(i,k)

= min{ +

+

…

}

jivvvjkckicjic

jiorjijic

jki
jki

1),,(),(),((min),(

10),(

starting

ending

Data Structures &Algorithms II

Optimal Binary Search Tree

 Input:

 A set of n identifiers

 Output:

 An optimal binary search tree that minimizes

the average search effort

n a a a

P i a

Q i

E a E a

P i Q i

n

i

i i i i

i

n

i

n

 identifiers

probability that is searched

probability that search is for a

symbol that

{ ,..., }

():

():

() ()

1 2

1

1 0

1

successful P i level a

failed Q i level E

i
i

n

i
i

n

: () ()

: () (())

1

0

1

successful

failed

if

switch

while

else

do end

Data Structures &Algorithms II

 Convince yourself that divide-and-conquer

and greedy methods are not suitable

 Dynamic Programming

 Identify small problems

 Progressively build larger problems

 Reuse optimal sub-solutions (table building)

Data Structures &Algorithms II

p Q Q() () ()1 0 1

a1

a2

a1 a2

a1

2))1()0()1((

)2()2(

QQp

Qp

p Q Q() () ()2 1 2

a2

p Q Q() () ()3 2 3

a3

2))2()1()2((

)0()1(

QQp

Qp

a3

a2 a3

a2

2))2()1()2((

)3()3(

QQp

Qp

2))3()2()3((

)1()2(

QQp

Qp

 How to build solution recursively (reuse)?

Data Structures &Algorithms II

a3

a1

a1

a1

a2

a2

a2a3

a3

)3))3()2()3((2))1()2(((

)0()1(

QQpQp

Qp

)3))1()0()1((2))2()2(((

)3()3(

QQpQp

Qp

2))3()2()3((

2))1()0()1((

)2(

QQp

QQp

p

a2

a1

2))1()0()1((

)2()2(

QQp

Qp

Data Structures &Algorithms II

 How does principle of optimality apply?

a2

a1 a2

a1
a3

a2 a3

a2

2))1()0()1((

)2()2(

QQp

Qp

2))2()1()2((

)0()1(

QQp

Qp

2))2()1()2((

)3()3(

QQp

Qp

3))3()2()3((

)1()2(

QQp

Qp

Only one of the two configurations should be kept!

Data Structures &Algorithms II

a3

a1

a1

a1

a2

a2

a2a3

a3

a1

a3

a2

a3

a2

a1

Only one of the five configurations should be kept!

Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two

matrices to multiply

 Better to do it by

gradually enlarge the

chain

 Adjacency

 Pull one node up to root

 Create n-2 subtrees

 Randomly pick a node up

to be root

 Better to do it by

gradually enlarge the

subtree size

 Adjacency

ak

L

R

E a E a a Ek k0 1 1 2 1 1, ...,, , , ,

E a E a a Ek k k k n n, ...,, , , , 1 1 2

L is optimal w.r.t.

all binary search trees

with the above elements

R is optimal w.r.t.

all binary search trees

with the above elements

C L p i level a

Q i level E

i
i k

i
i k

() () ()

() (())

1

0

1

C R p i level a

Q i level E

i
k i n

i
k i n

() () ()

() (())

1

Data Structures &Algorithms II

C combined p k C L C R

p i Q i

p i Q i

C L C R W combined

W combined p i Q i p k p i Q i

p i Q i

i k i k

k i n k i n

i k i k k i n k i n

i n i n

() () () ()

() ()

() ()

() () ()

() () () () () ()

() ()

1 0

1 0

1 0

C n C k C k n W n

C i j C i k C k j W i j

k n

i k j

(,) min{ (,) (,) (,)}

(,) min{ (,) (,) (,)}

0 0 1 0

1

0

• Recurrence relation

Red: left got one deeper

Blue: right got one deeper

Green: root

Data Structures &Algorithms II

C i j C i k C k j W i j
i k j

(,) min{ (,) (,) (,)}

1

j

j-i=0

j-i=1

i

C(i,i)

C(i,i+1)

C(i,i+2)

C(i+1,j) C(i+2,j)C(i,j) C(j-1,j)

C(i,j-1)

= min{ +

+

…

}

Data Structures &Algorithms II

• Table building

i

j
j-i=0

j-i=1

j-i=2

j-i=n

order of computation

C i i

W i i P k Q k Q i
i k i i k i

(,)

(,) () () ()

0

1

Data Structures &Algorithms II

• How to compute W(i,j)?

– Why not recursively?

E a E a E a a E a Ei i i i i i j j j j, , , , , ,..., , , , 1 1 2 2 3 1 1

W i j(,)1

W i j(,)

W i j p j Q j W i j(,) () () (,) 1

n

a a a a do if read while

p p p p

Q Q Q Q Q

4

3 311

2 3111

1 2 3 4

1 2 3 4

0 1 2 3 4

(, , ,) (, , ,)

(, , ,) (, , ,)

(, , , ,) (, , , ,)

i

j

j-i=0

j-i=1

2

3

1

1

1

8

7

3

3

12

9

5

14

1116

0 1 2 3 4

4

3

2

1

0

W i j p j Q j W i j(,) () () (,) 1

8=p(1)+Q(1)+2

Data Structures &Algorithms II

i

j

j-i=0

j-i=1

0

0

0

0

0

8

7

3

3

19

12

8

25

1932

0 1 2 3 4

4

3

2

1

0

C i j C i k C k j W i j
i k j

(,) min{ (,) (,) (,)}

1

C C k C k W

C C W

k
(,) min{ (,) (,) (,)}

(,) (,) (,)

0 1 0 1 1 0 1

0 0 11 0 1 0 0 8

0 1

C C k C k W

C C W

k
(,) min{ (,) (,) (,)}

(,) (,) (,)

1 2 1 1 2 1 2

11 2 2 1 2 0 0 7

1 2

1688)16(),4,0(

)}025(),4,4()3,0(

)319(),4,3()2,0(

)88(),4,2()1,0(

)190(),4,1()0,0(

min{

)}4,0()4,()1,0({min)4,0(
40

W

CC

CC

CC

CC

WkCkCC
k

Data Structures &Algorithms II

 Time Complexity - C(i,j)

 j-i=m, there are n-m+1 of them

 Each one takes minimum of m quantities

i

j

j-i=0

j-i=1

C(0,0)

0 1 2 … n

n

...

2

1

0

C(1,1)

C(2,2)

C(.,.)

C(n,n)

C(0,1)

C(n-1,n)

C(1,2)

C(2,3)

C(0,n)

() ()n m m O n
m n

1
0

3

Data Structures &Algorithms II

DP-based Graph Algorithms

 Graph = (vertices, edges)

 Edges

 Build a long path with many edges with short

paths with fewer edges

 Stop when the path is longer than min(e,n)

 Vertices

 Build a subgraph with with many vertices with

smaller subgraphs with fewer vertices

 Stop when all vertices are considered

Data Structures &Algorithms II

All Pairs of Shortest Paths

 Input: a labeled graph G=(V,E)

 Output: the shortest path from very vertex

to very other vertices

Data Structures &Algorithms II

 Solution 1: Iteration on the number of edges

 a direct path (length=1)

 paths of length=2

 …

 paths of length=min(e,n)

 Solution 2: Iteration on the number of

vertices

 a direct path (no intervening vertices)

 paths with one intervening vertex

 …

 paths with (n-2) intervening vertices

Data Structures &Algorithms II

 Both solutions have this recurrence relation:

)}},(),({min),,(min{),(11

,

1 jkCkiCjiCjiC t

jik

tt

6

4

2
11

3

V1

V3

V2

A1 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0

A2 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

A1’ 1 2 3

1 0+0

4+6(0)

11+3

0+4

4+0(4)

11+inf

0+11

4+2(6)

11+0

2 6+0

0+6(5)

2+3

6+4

0+0(0)

2+inf

6+11

0+3(2)

2+0

3 3+0

inf+6(3)

0+3

3+4

inf+0(7)

0+inf

3+11

inf+2(0)

0+0
min

Going through one vertex

Going through no other vertex

Data Structures &Algorithms II

 Time Complexity

 How many tables? O(min(e,n))

 How many entries per table?

 How much effort to generate each entry? O(n)

 OK solutions, but not great

 Try Floyd algorithm “iterating on vertex’s

cardinal number”

O n()2

O n O e n O n((min(,)) ()3 4

Data Structures &Algorithms II

Traveling Salesperson

 Input: a directed labeled graph G=(V,E)

 Output: a tour of the minimum cost

 a tour visits all vertices

 a tour visit any vertex exactly once

Data Structures &Algorithms II

 Multi-stage graph Traveling salesman

source sink source sink

difficult
difficult

source sink source sink

candidate: n-1 vertices

candidate: n-2 vertices

Cost i j c j l Cost i l
l V

j l E
i

(,) min { (,) (,)}

,

1

1 })}{,(),({min),(jSjgjicSig
Sj

 Difference

 For travelling salesman source = sink

 Every vertex can possibly be at every stage

 O((n-1)!) complexity

source sink

n-1 vertices!!

 Does the principle of optimality apply?

 Small problems with reuse?

source

source

Only one need

be kept!

Data Structures &Algorithms II

 g(i,S): the length of the shortest path

starting at vertex i, going through all

vertices in S, then back to the source

})}{,(),({min),(jSjgjicSig
Sj

})},1{,(),1({min})1{,1(
2

kVkgkcVg
nk

Data Structures &Algorithms II

1

4

2

3

10/5

9/13

12/9

20/8
10/8

15/6

35)2320,2515,2510min(

})4,3,2{,1(

23

)189,158min(

})3,2{,4(

25

)1312,1813min(

})4,2{,3(

25

)1510,209min(

})4,3{,2(

)69(15

})3{,4(

)58(13

})2{,4(

)812(20

})4{,3(

)513(18

})2{,3(

)810(18

})4{,2(

)69(15

})3{,2(

8

),4(

6

),3(

5

),2(

g

ggg

gggggg

ggg

 Time Complexity

 i: there are n-1 vertices to visit at each level

 S: there are choices

g(1,V-{1})

g(2,V-{1,2}) g(3,V-{1,3}) g(n,V-{1,n})

C12
C13

C n1

g(2,V-{1,2,3}) g(4,V-{1,3,4}) g(n,V-{1,3,n})

C32 C34 C n3

g(i,S)

() ()n
n

k
O n

k

n
n

1
2

2
0

2
2

n

k

2

C23

Data Structures &Algorithms II

World Series Odds
 DP may be used to solve problems where

principle of optimality is not applicable

 Input:

 two teams A and B

 play a maximum of 7 games

 whichever team first wins 4 wins the series

 Output:

 P(i,j): conditional probability(A wins the series|

A needs i more games and B need j more

games)

Data Structures &Algorithms II

 Even though principle of optimality does

not apply here, but

 the problem does possess recursive nature

 solutions can be constructed by reuse

P i j
i j

i j

P i j p i j p i j i j

(,)
,

,

(,) ((,) (,)) / , ,

1 0 0

0 0 0

1 1 2 0 0

P(i,j): conditional probability(A wins the series| A needs i more games and B need j more games)

Data Structures &Algorithms II

i

j

0 0 0 0

1

3/41

7/81

15/161

0 1 2 3 4

4

3

2

1

0

1/2 1/4 1/8 1/16

1/2 5/16 3/16

1/2

1/213/16 21/32

11/3211/16

P i j p i j p i j i j(,) ((,) (,)) / , , 1 1 2 0 0

i

j

(i,j)

(i,j-1)

(i-1,j)

Data Structures &Algorithms II

 Brute force method

p(4,4)

p(4,3) p(3,4)

p(4,2)p(3,3) p(3,3)p(2,4)

p(2,3) p(3,2) p(3,2) p(4,1) p(1,4) p(2,3) p(2,3) p(3,2)

A wins

O O nn() ()2 2 for brute force vs. for DP

i+j=7

i+j=8

i+j=6

A wins

B wins

B wins A wins B wins

A wins B wins

Lessons Learned

 Basic principles (Multi-stage graphs, 0/1-knapsack,
Reliable design)

 Brute force

 Reuse, Feasibility, Optimality

 Table building (recursion)

 Being Smart (Matrix multiplication, polygon
triangulation)

 There are different tables and different recursions

 Being flexible (World series odds)

 Reuse regardless of optimality constraint (more later)

 Nothing really matter much (Traveling Salesperson)

 There are hard problems in the universe

