
Data Structures &Algorithms II

Dynamic Programming

 Example  - multi-stage graph 
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Data Structures &Algorithms II

 A labeled, directed graph

 Vertices can be partitioned into k disjoint sets

 Find the min cost path from source to sink
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 Q: Will divide-and-conquer find the 

minimum cost path?

 A: Probably not

best left-half path

best right-half path

best overall path
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 Best paths found independently may not 

form a path

 Best overall paths may be suboptimal at 

different subproblem stages

 Divide-and-Conquer requires subproblems 

to be independent!
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 Q: Will the greedy method finds the minimum 

cost path?

 A: May not (if you are not Dijkstra)

 Choose the shortest link first

 Solve the problem stage-by-stage

Cost may be very high

Cost may be very low

minimum
cost at
stage 1
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 A low cost edge may be followed by paths 

of a very high cost

 A high cost edge may be followed by paths 

of a very low cost

 Based on local information (one stage at a 

time) it might not be possible to “look-

ahead”

 Picking the remaining lowest cost edge may 

not generate a path
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 Q: Is there an application?

 A: Yes, e.g., resource allocation

 n units of resources to be allocated to r projects

 N(i,j) profit earned if j units of resources are 

allocated to project i

 goal is to maximize the profit earned
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N(1,0)

N(1,1)

N(1,2)

N(1,3)

V(1,0)

V(2,0)

V(2,1)

V(2,2)

V(2,3)

V(3,0)

V(3,1)

V(3,2)

V(3,3)

V(4,3)

N(2,0)

N(2,1)

N(2,2)

N(2,3)

V(project being considered, resources committed)

3 projects

3 PCs



Surface Generation in Tomography



p1

p2

 m by n lattice

 Vertical edge: an upright triangle

 Horizontal edge: an inverted triangle

 Closed surfaces correspond to paths of length m+n

 Best path (surface) has the lowest cost 
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 Q: What should we do?

 A: Enumerate all possibilities

 Q: How much is the cost of enumeration?

 A: High, for 

 complete connection between two adjacent 

stages

 n stages 

 m vertices per stages O mn( )
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A lot of repetitions:

build tables to remember

partial solutions

(reuse)

A lot of alternatives:

build tables to remember

optimal partial solutions

(principle of optimality)



Data Structures &Algorithms II

 Q: Is there a more efficient method of 

enumeration?

 A: Yes, dynamic programming

 Underlying principles:

 Principle of optimality

Early elimination of suboptimal subsolutions

 Recursion and reuse

Construct solutions by reusing optimal subsolutions

 Early termination

By feasibility or optimality
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 Principle of Optimality

i

Right halfLeft half

source sink

(source to i) (i to sink)
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 The optimal solution (if it go through node i) 

must contains the best left path from source to 

i and best right path from i to sink

 Any other left paths from source to i and any 

other right paths from i to sink need not be 

extended any further



 Recursion and Reuse

 Identify subproblems 

 Record the optimal solutions of subproblems

 Build larger and larger solutions

source
sinke1

e2

i

• Any path that includes a portion of (source to i), 

the cost of that particular portion is known



 Feasibility

 Is a partial solution still feasible?

 Based on the current path alone

 Optimality

 Is a partial solution going to be optimal? 

 Based on comparison of the current path with 

others
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 Backward approach
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Intuition on DP
 Dynamic programming sometimes can be 

confusing because it is basically recursion 

but is slightly more than recursion

 A general solution pattern is

 identify stages and all possible alternatives in a 

stage

 recursion to generate all possible solutions

 need to combine and eliminate partial solutions 

using principle of optimality
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 For multi-stage graph

 steps are defined by stages

 straight recursion generates brushy tree  

O(node^stage)



 The important thing is to trim the tree by 

combining and coalescing nodes by 

principle of optimality
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Fancy Recursive Equations

Cost (node 1 at level 1)

Min (c(1,2)+Cost(node 2 at level2),

c(1,3)+Cost(node 3 at level2),

c(1,4)+Cost(node 4 at level2),)

Fancy equation describes the recursion

DP says that all such Cost functions should be reused!!
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Remember the costs here

Don’t compute again and again
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 A sequence of decisions to be made

 Decisions are inter-dependent (Divide-and-

Conquer not applicable)

 Local information not sufficient (Greedy 

not work)

Important Characteristics of 

Dynamic Programming
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 It examines all solutions in an efficient manner

 It involves building solutions recursively 

 Principle of optimality is used to eliminate sub-

optimal solutions

 Table of some sort are usually used to store 

optimal partial solutions

 Some reuse of optimal partial solutions

 Mathematically as recursion 

Important Characteristics of 

Dynamic Programming (cont.)
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Time Complexity of DP

 DP == building tables of partial solutions

1. How many tables?

2. How many entries per table?

3. How much effort to fill in entries?

 1*2*3 gives the complexity
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 Time complexity of multi-stage graph

 One table is built

 There are |V| entries in the table

 The cost of generating an entry is proportional 

to the incident edges

 O(|V|+|E|): a significant saving over exponent 

runtime
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0/1-Knapsack

 Input: 

 a set of n objects 

 a knapsack of capacity M

 Output: fill the knapsack (no partial 

inclusion) to maximize the total profit 

earned
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 Greedy method can fail

• Divide-and-conquer may not apply

P W M  ( , , ), ( , , ),9 7 7 6 5 5 10

Greedy

Optimal

P1

P2 P3

a a a a a
n n n1 2

2 2
1

 




















subproblem (X?) subproblem (M-X)
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 How to build solutions recursively?

 One object at a time

 How does principle of optimality apply?
x x x x

x x x x x x M W

y y y y y y M

i n1 2

11

0

 

   

   

( , ):( )

( , ):( )

 must be optimal for 

 must be optimal for



• How to identify sub-optimal solutions?

– if two solutions: (1,…,0,x,…,x), and 

(0,…,1,x,…, x) are such that one achieves 

better profit with less weight, then the other 

cannot be optimal
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 How to build table?

(0,0)

(1,2) (0,0)

(1,2)(3,5) (0,0)(2,3)

(1,2) (0,0)(2,3)(3,5)(6,6) (5,4)(7,7)(8,9)

(Profit earned, Weight used)

P=(1,2,5), W=(2,3,4),M=6 



,,

,,Weight

Profit

Bounding possible!
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 How to write the recursive equation?

 Knap(i,X): current profit with objects i to n left 

to be processed with a remaining capacity of X

 Initially, we have Knap(1,M)

Knap M Knap M Knap M W P

Knap i X Knap i X Knap i X W Pi i

( , ) max{ ( , ), ( , ) }

( , ) max{ ( , ), ( , ) }

1 2 2

1 1

1 1  

    

• Time complexity

– An brushy tree  for the table

– Constant time to generate entries

– DP can help, but the complexity will depend on 

actual problem instance

O n( )2



Three Useful Tricks

 Feasibility

 If a branch is over capacity, don’t expand it anymore

 Optimality

 If a branch is worse than another branch (more capacity 

used with smaller profit), don’t expand it anymore

 Feasibility and optimality are problem instance specific, 

cannot guarantee worst runtime in general

 Reuse

 Remember optimal partial solutions, don’t regenerate 

over and over again 



Reuse Examples

Weight = (3, 2, 3, 1, 4, 5), knapsack capacity = 10

Profit =   (2, 3, 4, 1, 5, 1)

0       1       2      3       4      5     6       7      8       9      10

0       1       2      3       4      5     6       7      8       9      10

0       1       2      3       4      5     6       7      8       9      10

0 2

30 2 5

0
3 Max(2,4) Max(6,7)

6 9

The complexity is O(n) with reuse!

Used capacity
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Reliable Design

 Input:

 A system composed of several devices in serial

 Each device (D) has a fixed reliability rating (r)

 Multiple copies of the same device can be used 

in parallel to increase reliability

 Output:

 A system with highest reliability rating subject 

to a cost constraint
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At least one should work

Connected in series

All of them have to work
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 Greedy method may not be applicable

 Strategy to maximize reliability: Buy more less 

reliable units (Costs may be high)

 Strategy to minimize cost: Buy more less 

expensive units (Reliability may not improve 

significantly)

 Divide-and-Conquer may fail

D D D D D
n n n1 2

2 2
1

 




















subproblem (X?) subproblem (C-X)
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Comparison

 A knapsack of 

capacity C

 Objects of size ci and 

profit pi

 Fill up the knapsack 

with 0 or 1 copy of i

 Maximize profit

 Total expenditure of C 

 Stages of cost ci and 

reliability ri

 Construct a system 

with 1 or more copies 

of i

 Maximize reliability

u

C c

ci

j
j

n

i

 























1

1
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 How to build solutions recursively?

 One stage and one device at a time

 How does principle of optimality apply?
m m m m

x x x x x x C c

y y y y y y C c

u y y y y y y C u c

i n1 2

1

1

1 1 1

1

2 2

 

   

   



   

( , ):( )

( , ):( )

( , ):( )

 must be optimal for 

 must be optimal for

 must be optimal for 



 

 

• How to identify sub-optimal solutions?

– if two solutions: (m1,…,mi,x,…,x), and 

(n1,…,ni,x,…, x) are such that one achieves 

higher reliability with a smaller cost, then the 

other cannot be optimal



• How to build table?

(1,65)

(0.9,65) (0.99,95)

(0.893,95)(0.72,65) (0.792,95)(0.864,80)

(0.446,95)

(0.70,115)(0.756,110)

(0.648,95)(0.63,105)

(0.432,80)(0.54,85)

(0.36,65)

(reliability, cost)

r=(0.9,0.8,0.5), c=(30,15,20),C=105

1 1 0 9 0 9  ( . ) .
1 1 0 9 0 992  ( . ) .

1 1 0 8 0 8  ( . ) .

1 1 0 8 0 962  ( . ) .

1 1 08 09923  ( . ) .

(0.95,110) (0.98,125)

1 1 0 5) 0 5  ( . .
1 1 0 5) 0 752  ( . .

1 1 05) 08753  ( . .

(0.781,135)
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• How to write the recursive equation?
f X m

subject to c m X m j i

f C m f C c m

f X m f X c m

i
j i

j j

j j
j i

j jn

n
m

n n n n n

i
m

i i i i i

n n

i i

( ): max ( )

, ,

( ) max { ( ) ( )}

( ) max{ ( ) ( )}

 





1

1

1
1

1
1

1 1

 

 

 


 


    

 

 

 





• Time complexity
– An brushy tree  for the table

– Constant time to generate entries

O n( )2



Chain Matrix Multiplication

 Input:

 A sequence of n matrices

 Output

 Their products



 Even though not so obvious, greedy 

algorithms (e.g., keep individual 

multiplications small) do not always 

produce optimal solutions

 Furthermore, the costs can vary quite a bit 

depending on the ordering

26418))((

4055))((

2856)((

54201))((

10582))((

343389895513

CDBA

DBCA

DBCA

CDAB

DCAB

DCBA  



 Can dynamic programming be used? 

 Does the principle of optimality apply? 

 Are there small problems? 

 Can the subsolutions be reused and how?



 Yes!

 There are many possible ways to apply DP, 

as long as

 do things in stages

 merge and reuse nodes based on principle of 

optimality

 We will show some examples below



)(AB
)(BC )(CD

))(( CAB ))(( CDAB ))(( BCA ))(( DBC ))(( CDB ))(( CDAB

)))((( DCAB )))((( CDAB )))((( DBCA )))((( DBCA )))((( CDBA )))((( CDAB

 Based on the number of multiplications performed



 An obvious DP algorithm

 need to multiply all the matrices

 individual steps will be multiplying two 

adjacent matrices and reduce the number of 

matrices by one 

 at each step, choose any two adjacent matrices 

to multiply

 in n-1 steps, we will be done

 reuse:  (ABC) = ((AB) C), reuse results of (AB)

 principle of optimality: ((AB) C) and (A (BC)) 

produce the same results, keep one

 A perfectly legal DP algorithm!



 The problem is that it is not a good DP 

algorithm

 with n matrices

 first multiplication: n-1 possibilities

 second multiplication: ???

 third multiplication: ???

 even with reuse and principle of optimality the 

numbers of intermediate stages are large

 many multiplications are repeated many times 

AB ((CD)(EF)) and ((AB)C)D(EF), (EF) is 

done more than once



 Based on the number of matrices multiplied together

 (the range of indices)

)(AB )(BC )(CD

)(A )(B )(C )(D

)(ABC )(BCD

)(ABCD



 Does the principle of optimality apply?

 Yes, whatever the last step in the chain 

multiplication, the steps leading to those two 

matrices must be optimal 

 Are there small problems? 

 Yes, multiplications of two adjacent matrices

 Can the subsolutions be reused and how?

 Yes, 

1,...,2,1111,   nidddm iiiii

snidddmmm sikisikki
siki

sii  


 ,...,2,1)(min 1,1,,
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Longest Increasing Subsequence

 Given an array of n numbers [0..n-1], find a 

subset of numbers that are increasing

 [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]

 [0 8 15]

 [ 2 6 11 15]

 [2 3 7 ]

 [0 2 6 9 11 15 ] <- longest one 

 [0 4 6 9 11 15]

 [0 4 6 9 13 15]



Brute Force Method

 Every number can be either in or not in in 

LIS

 With n numbers, there are 2n subsequences 

 Generate all, discard those that are not 

increasing subsequences

 Complexity O(2n)



DP – Key Idea

 An partial LIS soln (head) must end at some 

index

 The same tail portion can be added to all 

these solns 

 Only best soln is kept 

.  . .
.  . . .
.  ..

tail



0 1

0

1
0 1

0
1 0 1 0 1

1

0

0: not in the IS

1: in the IS



Include 2

Include 3

Include 1

Include 4

LISk = best 0<=i<k (LISi +1)



0, 8, 4, 1, 2, 2, 10, 6, 14, 1, 9, 5, 13

0

8

1 ( 0 )

2 ( 0, 8 )

4 2 ( 0, 4 )

1 2 ( 0, 1 ) 

2 3 ( 0, 1, 2 ) 

2 3 ( 0, 1, 2 ) 

10

LISk = best 0<=i<k (LISi +1)

4 ( 0, 1, 2, 10 ) (0, 1, 2, 10) 

6 4 ( 0, 1, 2, 6 ) (0, 1, 2, 6) 

14 5 ( 0, 1, 2, 10, 14 ) (0, 1, 2, 10, 14)

(0,1,2,6, 14) (0, 1,2,6,14) 

1 2 ( 0, 1 )

9 5 ( 0, 1, 2, 6, 9 ) (0, 1, 2, 6, 9) 

5 4 ( 0, 1, 2 , 5) (0, 1, 2, 5) 

13 6 ( 0, 1, 2, 6, 9, 13 ) (0, 1, 2, 6, 9, 13) 



DP – Key Idea (Reuse)

 How to build table?

 LISk = best 0<=i<k (LISi +1)

 Final solution?

 LIS = best 0<=k<n (LISk)

 Complexity

 One table

 n entries LISk

 Most expensive entry O(n)

 O(n2)

 More efficient (O(nlogn)) exists 



Sequence Alignment 

 Given two sequences a, b of length m, n

 Align them to match 

 Use in DNA matching:

 a: AGCTTCGA

 b: GATCGA

 Deletion (insertion):

 1st A, 4th or5th T

 Change:

 3rd C->A

AGCTTCGA

GAT   CGA

AGCTTCGA

GA   TCGA



Constraints
 Linear ordering

 If ai matches with bj, 

 ak, k<i must match only with bl, l<j

 ak, k>i must match only with bl, l>j

 Deletion, insertion, and change all have 

associated costs (domain dependent)

 Also called the longest common 

subsequence (LCS) problem (GTCGA)

AGCTTCGA

GA   TCGA



Brute Force Method

 Again, think about tree

 At each tree node, looking at some ai and 

some bj (initially, ao, bo)

 Match ai and bj

No change necessary

Change ai <-> bj

 Skip (delete) ai , but keep bj

 Skip (delete) bj , but keep ai

 Skip (delete) both ai and bj

 Max fan out is 4, Max tree depth is m+n, 

bad 



Principle of Optimality 

.  . .
. .

tail

 Similar to LIS

 Head: some partial results (match, delete, 

insert, change, etc.) up to ai and bj

 Tail: (match, delete, insert, change) results for 

ai+1 and bj+1

ai

bj



Reuse

 Build a table of size m by n to store the 

partial results 

 (i,j)th entry is results up to ai bj

 How to fill the table? 

 Fill them in diagonally

 C(i,j) (W) = min among

R: C(i-1,j-1) + (match, change, skip) ai and bj

G: C(i,j-1) + skip bj

B: C(i-1,j) + skip ai

 Complexity: O(n2)
i

j



a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0          1           2            3          4           5           6

Match: 0 

Delete (insert): 1

Change: 1

a

b



a: AGCTTCGA

b: GATCGA

0 1 2 3 4 5 6

1 1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0          1           2            3          4           5           6

Match: 0 

Delete (insert): 1

Change: 1

a

b

?



Polygon Triangulation
 Given: A convex polygon with n sides, a 

triangulation is a set of chords of the 

polygon that divide the polygon into 

disjoint triangles

 There are n-2 triangles with n-3 chords



 Not all triangulations are equally good

 Need a cost function to evaluate the cost of 

a triangulation

 The cost of a triangulation is the total costs 

of its component triangles

 The cost of a particular triangle is the sum 

of some distance measure (e.g., Euclidean) 

of all its sides

|,||,||,|),,( ikkjjikji vvvvvvvvv 



 Again, divide-and-conquer might not work

 say, chose a chord to divide the polygon into 

two parts and perform triangulation for both 

parts independently

 the said chord will be in the final triangulation 

 however, the optimal triangulation may not 

include that particular chord

 Greedy?

 the polygon of the smallest cost may not be in 

the final triangulation

 Need to look at all possible combinations



 Intuitively, when we consider the first step 
in triangulation, say, using v(0) and v(n-1) 
as base, the vertex can be v(1), v(2), …, 
v(n-2) 

 we do not know which one is the best, should 
consider all possibilities

0v

1nv

jv

iv

 Furthermore, if we pick, say 
v(j), then triangulation of 
v(0) to v(j) and v(j) to v(n-1) 
must be optimal w.r.t each 
sub problems (principle of 
optimality)



Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two 

matrices to multiply

 Better to do it by 

gradually enlarge the 

chain

 Adjacency

 Create one triangle

 Create n-2 triangles

 Randomly pick a 

triangle to add

 Better to do it by 

gradually enlarge the 

triangle area

 Adjacency



1v 2v
iv 2nv

0v

1nv
iv

1v 1iv
1iv 2nv

 Principle of Optimality



 Reuse

 if we need to triangulate an area inside the 

original polygon spanned by, say k, vertices

 if we already know the best way to triangulate 

an area spanned by k-1 vertices or less

 then we can take advantage of that!



 That allows us to write the following 

recurrence relation

 let c(i,j) be the cost of an optimal triangulation 

of polygon <v(i), v(i+1), … v(j)>, then

jivvvjkckicjic

jiorjijic

jki
jki






1)),,(),(),((min),(

10),(

i
k

j



j

j-i=0

j-i=1

C(i,i)=0

C(i,i+1)=0

C(i,i+2)

C(k,j)C(i,j)

C(i,k)

= min{     +

+

…

}

jivvvjkckicjic

jiorjijic

jki
jki






1),,(),(),((min),(

10),(

starting

ending
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Optimal Binary Search Tree

 Input: 

 A set of n identifiers

 Output:

 An optimal binary search tree that minimizes 

the average search effort



   





 

  



 

n a a a

P i a

Q i

E a E a

P i Q i

n

i

i i i i

i

n

i

n

 identifiers 

probability that  is searched

probability that search is for a

symbol  that 

{ ,..., }

( ):

( ):

( ) ( )

1 2

1

1 0

1

successful P i level a

failed Q i level E

i
i

n

i
i

n

: ( ) ( )

: ( ) ( ( ) )



 





1

0

1

successful 

failed

if

switch

while

else

do end
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 Convince yourself that divide-and-conquer 

and greedy methods are not suitable

 Dynamic Programming

 Identify small problems

 Progressively build larger problems

 Reuse optimal sub-solutions (table building)
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p Q Q( ) ( ) ( )1 0 1 

a1

a2

a1 a2

a1

2))1()0()1((

)2()2(





QQp

Qp

p Q Q( ) ( ) ( )2 1 2 

a2

p Q Q( ) ( ) ( )3 2 3 

a3

2))2()1()2((

)0()1(





QQp

Qp

a3

a2 a3

a2

2))2()1()2((

)3()3(





QQp

Qp

2))3()2()3((

)1()2(





QQp

Qp

 How to build solution recursively (reuse)?
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a3

a1

a1

a1

a2

a2

a2a3

a3

)3))3()2()3((2))1()2(((

)0()1(





QQpQp

Qp

)3))1()0()1((2))2()2(((

)3()3(





QQpQp

Qp

2))3()2()3((

2))1()0()1((

)2(





QQp

QQp

p

a2

a1

2))1()0()1((

)2()2(





QQp

Qp
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 How does principle of optimality apply?

a2

a1 a2

a1
a3

a2 a3

a2

2))1()0()1((

)2()2(





QQp

Qp

2))2()1()2((

)0()1(





QQp

Qp

2))2()1()2((

)3()3(





QQp

Qp

3))3()2()3((

)1()2(





QQp

Qp

Only one of the two configurations should be kept!
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a3

a1

a1

a1

a2

a2

a2a3

a3

a1

a3

a2

a3

a2

a1

Only one of the five configurations should be kept!



Like Matrix Multiplication

 Multiple two matrices

 Multiply n-1 times

 Randomly pick two 

matrices to multiply

 Better to do it by 

gradually enlarge the 

chain

 Adjacency

 Pull one node up to root

 Create n-2 subtrees

 Randomly pick a node up 

to be root

 Better to do it by 

gradually enlarge the 

subtree size

 Adjacency



ak

L

R

E a E a a Ek k0 1 1 2 1 1, ...,, , , , 

E a E a a Ek k k k n n, ...,, , , ,  1 1 2

L is optimal w.r.t.

all binary search trees 

with the above elements

R is optimal w.r.t.

all binary search trees 

with the above elements

C L p i level a

Q i level E

i
i k

i
i k

( ) ( ) ( )

( ) ( ( ) )

  

 

 

 

1

0

1

C R p i level a

Q i level E

i
k i n

i
k i n

( ) ( ) ( )

( ) ( ( ) )

  

 

 

 

1
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C combined p k C L C R

p i Q i

p i Q i

C L C R W combined

W combined p i Q i p k p i Q i

p i Q i

i k i k

k i n k i n

i k i k k i n k i n

i n i n

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

  

   

   

  

        

  

   

   

       

   

1 0

1 0

1 0



C n C k C k n W n

C i j C i k C k j W i j

k n

i k j

( , ) min{ ( , ) ( , ) ( , )}

( , ) min{ ( , ) ( , ) ( , )}

0 0 1 0

1

0
   

   

 

 

• Recurrence relation

Red: left got one deeper

Blue: right got one deeper

Green: root



Data Structures &Algorithms II

C i j C i k C k j W i j
i k j

( , ) min{ ( , ) ( , ) ( , )}   
 

1

j

j-i=0

j-i=1

i

C(i,i)

C(i,i+1)

C(i,i+2)

C(i+1,j) C(i+2,j)C(i,j) C(j-1,j)

C(i,j-1)

= min{     +

+

…

}



Data Structures &Algorithms II

• Table building

i

j
j-i=0

j-i=1

j-i=2

j-i=n

order of computation

C i i

W i i P k Q k Q i
i k i i k i

( , )

( , ) ( ) ( ) ( )



  
    

 

0

1
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• How to compute W(i,j)?

– Why not recursively?

E a E a E a a E a Ei i i i i i j j j j, , , , , ,..., , , ,      1 1 2 2 3 1 1

W i j( , )1

W i j( , )

W i j p j Q j W i j( , ) ( ) ( ) ( , )   1



n

a a a a do if read while

p p p p

Q Q Q Q Q









4

3 311

2 3111

1 2 3 4

1 2 3 4

0 1 2 3 4

( , , , ) ( , , , )

( , , , ) ( , , , )

( , , , , ) ( , , , , )

i

j

j-i=0

j-i=1

2

3

1

1

1

8

7

3

3

12

9

5

14

1116

0      1      2      3      4

4

3

2

1

0

W i j p j Q j W i j( , ) ( ) ( ) ( , )   1

8=p(1)+Q(1)+2
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i

j

j-i=0

j-i=1

0

0

0

0

0

8

7

3

3

19

12

8

25

1932

0      1      2      3      4

4

3

2

1

0

C i j C i k C k j W i j
i k j

( , ) min{ ( , ) ( , ) ( , )}   
 

1

C C k C k W

C C W

k
( , ) min{ ( , ) ( , ) ( , )}

( , ) ( , ) ( , )

0 1 0 1 1 0 1

0 0 11 0 1 0 0 8

0 1
   

     

 

C C k C k W

C C W

k
( , ) min{ ( , ) ( , ) ( , )}

( , ) ( , ) ( , )

1 2 1 1 2 1 2
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1 2
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 Time Complexity - C(i,j)

 j-i=m, there are n-m+1 of them 

 Each one takes minimum of m quantities

i

j

j-i=0

j-i=1

C(0,0)

0      1      2      …   n

n

...

2

1

0

C(1,1)

C(2,2)

C(.,.)

C(n,n)

C(0,1)

C(n-1,n)

C(1,2)

C(2,3)

C(0,n)

( ) ( )n m m O n
m n

  
 

1
0

3



Data Structures &Algorithms II

DP-based Graph Algorithms

 Graph = (vertices, edges)

 Edges

 Build a long path with many edges with short 

paths with fewer edges

 Stop when the path is longer than min(e,n)

 Vertices

 Build a subgraph with with many vertices with 

smaller subgraphs with fewer vertices

 Stop when all vertices are considered
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All Pairs of Shortest Paths

 Input: a labeled graph G=(V,E)

 Output: the shortest path from very vertex 

to very other vertices
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 Solution 1: Iteration on the number of edges

 a direct path (length=1)

 paths of length=2

 …

 paths of length=min(e,n)

 Solution 2: Iteration on the number of 

vertices

 a direct path (no intervening vertices)

 paths with one intervening vertex

 …

 paths with (n-2) intervening vertices
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 Both solutions have this recurrence relation:

)}},(),({min),,(min{),( 11

,

1 jkCkiCjiCjiC t

jik

tt 



 

6

4

2
11

3

V1

V3

V2

A1 1 2 3

1 0 4 11

2 6 0 2

3 3 inf 0

A2 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

A1’ 1 2 3

1 0+0

4+6(0)

11+3

0+4

4+0(4)

11+inf

0+11

4+2(6)

11+0

2 6+0

0+6(5)

2+3

6+4

0+0(0)

2+inf

6+11

0+3(2)

2+0

3 3+0

inf+6(3)

0+3

3+4

inf+0(7)

0+inf

3+11

inf+2(0)

0+0
min

Going through one vertex

Going through no other vertex
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 Time Complexity

 How many tables? O(min(e,n))

 How many entries per table? 

 How much effort to generate each entry? O(n)

 OK solutions, but not great

 Try Floyd algorithm “iterating on vertex’s 

cardinal number”

O n( )2

O n O e n O n( (min( , )) ( )3 4 
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Traveling Salesperson 

 Input: a directed labeled graph G=(V,E)

 Output: a tour of the minimum cost

 a tour visits all vertices

 a tour visit any vertex exactly once
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 Multi-stage graph  Traveling salesman

source sink source sink

difficult
difficult

source sink source sink

candidate: n-1 vertices

candidate: n-2 vertices

Cost i j c j l Cost i l
l V

j l E
i

( , ) min { ( , ) ( , )}

,

  

 

1

1 })}{,(),({min),( jSjgjicSig
Sj






 Difference

 For travelling salesman source = sink

 Every vertex can possibly be at every stage

 O((n-1)!) complexity

source sink

n-1 vertices!!



 Does the principle of optimality apply?

 Small problems with reuse? 

source

source

Only one need 

be kept!
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 g(i,S): the length of the shortest path 

starting at vertex i, going through all 

vertices in S, then back to the source

})}{,(),({min),( jSjgjicSig
Sj




})},1{,(),1({min})1{,1(
2

kVkgkcVg
nk


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 Time Complexity

 i: there are n-1 vertices to visit at each level

 S:  there are choices

g(1,V-{1})

g(2,V-{1,2}) g(3,V-{1,3}) g(n,V-{1,n})

C12 
C13 

C n1 

g(2,V-{1,2,3}) g(4,V-{1,3,4}) g(n,V-{1,3,n})

C32  C34  C n3 

g(i,S)

( ) ( )n
n

k
O n
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n
n


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




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



1
2

2
0

2
2

n

k











2

C23 
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World Series Odds
 DP may be used to solve problems where 

principle of optimality is not applicable

 Input: 

 two teams A and B

 play a maximum of 7 games

 whichever team first wins 4 wins the series

 Output:

 P(i,j): conditional probability(A wins the series| 

A needs i more games and B need j more 

games)
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 Even though principle of optimality does 

not apply here, but

 the problem does possess recursive nature

 solutions can be constructed by reuse

P i j
i j

i j

P i j p i j p i j i j

( , )
,

,

( , ) ( ( , ) ( , )) / , ,


 

 





     

1 0 0

0 0 0

1 1 2 0 0

P(i,j): conditional probability(A wins the series| A needs i more games and B need j more games)
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 Brute force method 

p(4,4)

p(4,3) p(3,4)

p(4,2)p(3,3) p(3,3)p(2,4)

p(2,3) p(3,2) p(3,2) p(4,1) p(1,4) p(2,3) p(2,3) p(3,2)

A wins

O O nn( ) ( )2 2 for brute force vs.  for DP

i+j=7

i+j=8

i+j=6

A wins

B wins

B wins A wins B wins

A wins B wins



Lessons Learned

 Basic principles (Multi-stage graphs, 0/1-knapsack, 
Reliable design)

 Brute force

 Reuse, Feasibility, Optimality

 Table building (recursion)

 Being Smart (Matrix multiplication, polygon 
triangulation)

 There are different tables and different recursions

 Being flexible (World series odds)

 Reuse regardless of optimality constraint (more later)

 Nothing really matter much (Traveling Salesperson)

 There are hard problems in the universe


