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Problems whose solutions can be “ranked”
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 Decisions can be made

 one at a time, without backtracking

Greedy method

Which decisions to make next?

How to guarantee optimality?

 Try many (all) possible combinations and 

choose one which is the best

Dynamic programming

How to test multiple solutions efficiently?
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The Greedy Method

 Input n elements stored in an array A(1:n)

 Procedure Greedy

 Solution = NULL

 for i=1 to n do 

x = SELECT(A)

 if FEASIBLE(Solution, x)

 then Solution = UNION(Solution, x)

endif

 enddo

 return (Solution)
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 A sequence of n decisions w.r.t n inputs

 SELECT: select one of the remaining 

decisions to make according to some 

optimization measure 

 once a decision is made, it will not become 

invalid at a later time

 optimization should be based on the partial 

solutions built so far 

 FEASIBLE: whether the partial solution 

satisfies some preset constraints
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 Strategy: construct feasible solutions one 

step at a time which optimize (minimize or 

maximize) a certain objective function

 Make the obvious decisions first!

 Then try to show it is indeed optimal!
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Knapsack problem

 Input: 

 a set of n objects 

 a knapsack of capacity M

 Output: fill the knapsack to maximize the 

total profit earned

 Feasibility constraint: 

 Objective function:
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 Example
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 For all three algorithms

 decisions are made one object at a time

 the ordering is determined by some 

optimization measure

 Largest increase in profit  

 Include the remaining object of the largest profit

 Smallest increase in weight

 Include the remaining object of the smallest weight

 Largest increase in profit/weight

 Include the remaining object of the largest profit/weight

 never backtrack

 all greedy algorithms

 not all guarantee optimal
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 Proposition: Greedy selection based on 

maximizing profit to weight ratio gives the 

optimal result

 General proof strategy:

Assume that the greedy solution is

Assume that the optimal solution is

Then they better be different

 Transform Y into X without decreasing the 

profit of Y

X X X Xn ( , ,..., )1 2

Y Y Y Yn ( , ,..., )1 2
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 Proof:

Assume 
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 Z is also an optimal solution

Either Z=X (Done)

Or not (Repeat the above procedure until Z=X)
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 Time complexity

 Sort the n objects according to profit to weight 

ratio O(nlogn)

 Scan down the sorted list

if  remaing capaity then

remaining capacity - =

else

remaining capacity

remaing capacity 0

endif
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Optimal Storage on Tape

 Input: 

A set of n programs of different length

A computer tape of length L

 Output:

A storage pattern which minimizes the total 

retrieval time (TRT)

 before each retrieval, head is repositioned at the front

TRT l I i i ii
k jj n

nk
  

   11
1 2, ,...
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 Objective function: minimize TRT

 Feasibility constraint: 

 Example
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 SELECT: Select the program to store next 

which minimizes the increase in TRT
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 Proof strategy

 follow the same principle as in knapsack 

problem

 there is a greedy solution

 there is an optimal solution

 they are different

 line them up and they better differ in some storage 

locations

 then make them the same (by swapping)

 prove that the swapping does not reduce the 

optimality 
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Front

Optimal

Greedy

i1 i2 ir

si
ir

sr ii 

si

 Swap ir and is in the optimal solution
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 Intuitively

a b

Front

• For programs stored in 

– retrieval does not scan through either a or b

– ordering of a and b not important

• For programs stored in 

– retrieval scans through both a and b

– ordering of a and b not important

• For programs stored in 

– retrieval scans through a but not b

– ordering of a and b is important
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 Proposition: The storage pattern with 

nondecreasing length order produces the 

smallest TRT

l l

l l

l l l

l l l l

l n l n l l

n k l

i

k jj n

i

i i

i i i

i i i i

i i i i

i

k n

k

n

n

k

11

1

1

1 2

1 2 3

1 2 3

1 2 3
1 2

1

  

 







 

  

    

     

  

... ... ...

...

( ) ( ) ...

( )

= n



Data Structures and Algorithms II

 If prog. a and prog. b are out of order, then 

swap them should reduce the TRT
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• Time complexity: O(nlogn) for sorting
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Optimal Merge Pattern

 Input: a set of files of different lengths

 Output: an optimal sequence of two-way 

merges to obtain a sorted files

F i n q

F F O q q
i i

i j i j

, ,

( )

1 



 of length 

merge files  and  requires  time
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 Example
n q q q

ordering

 3 30 20 101 2 3,( , , ) ( , , )

cost

1,2,3 50 + 60 = 110

1,3,2 40 + 60 = 100

2,1,3 50 + 60 = 110

2,3,1 30 + 60 = 90

3,1,2 40 + 60 = 100

3,2,1 30 + 60 = 90

• Programs (files) stored on a tape (already merged together) 

may affect the access times (the merge times) of new 

programs (files) to be stored (merged)

• SELECT: At each step, merge two smallest files



 Binary merge tree

Distance from an external node to root = # of 
times a file is involved in merging

 Total # of record moves for file i

 external path length to reach node i

 Total # of record moves for all files

 total external path length

5 10

20 30 3015

35 60

95

internal

external

d qi i
i

n




1

d qi i
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Huffman Code

 For data compression to save storage space 

and transmission bandwidth

 ASCII code uses fixed-length 8 

bits/character code words, O(8n) for storage 

and transmission

 Huffman codes uses variable-length code 

words depending on the frequency of 

occurrence
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 Example

 a b c d e f 

Frequency 

(thousands) 

45 13 12 16 9 5 

Fixed-length 000 001 010 011 100 101 

Variable-length 0 101 100 111 1101 1100 

 

 

bits000,2244000,54000,93000,16

3000,123000,131000,45length-variable

bits000,300300

0,100lengthfixed








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 Prefix codes

 no codeword is a prefix of some other 

codeword

1010

1010001

… 110 …. 1010 … 

codeword a

codeword b

codeword a?

or beginning of codeword b?
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a:45d:16 b:13c:12e:9f:5

a:45

e:9f:5

14

10

a:45

e:9f:5

14

10

d:16 b:13c:12

d:16

b:13c:12

25

10
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a:45

e:9f:5

14
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d:16

b:13c:12

25

10

30
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a:45

e:9f:5

14

10

d:16

b:13c:12

25

10

30

10

0

1

55
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a:45

e:9f:5

14
1 0

d:16

b:13c:12

25
1

0

30
1

0

0

1

55

0

1

100



 Huffman code

Distance from an external node to root = # of 
bits in the code word

 Total effort of sending i

 external path length to reach node i

 Total effort of sending all alphabets

 total external path length

d qi i
i

n




1

d qi i

a:45

e:9f:5

14
1 0

d:16

b:13c:12

25
1

0
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1

0

0
1

55

0

1
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An Important Fact

 Using Huffman-tree rules, nodes that are 

merged first must have a longer path to the 

root than nodes that are merged later

2,,21  jipppp ji

lmax

No node can be merged more than once

before p1+p2 is involved again



An Important Fact (cont.)

 An iteration:

Between two successive merges involve p1

 In an iteration

No node can be involved in more than one 

merge

No node can increase in path length more than 

p1

 Hence, p1 must have the longest path length
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 Proposition: Huffman construction 

minimizes the expected codeword length 
p l

p

l

i i
i

n

i

i




1

probability of occurance

codeword length

• Proof:

Optimal prefix-code tree Huffman prefix-code tree

transform without increasing

expected codeword length

Assume that p p pn1 2  ...



Optimal prefix-code tree
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 Recursion

 once p1 and p2 are moved to their right locations

merge them into a single node of p1+p2 

 now, greedy method will select from p1+p2, p3, 

…, pn the smallest two to merge

 if that is not the case for optimal, then ... 

pi

p j

p1 p2

pi

p j

21 pp  pi

p j

21 pp 
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 Time complexity

with n alphabets to code, exactly n-1 merges 

are needed

 for each merge

 find an least-frequently-used alphabet

 find the next least-frequently-used alphabet

 merge

 put merged subtrees back into the list of subtrees

 priority queue (heap) is ideal for this operation

O(n) steps of detelemin and insert (O(logn))

O(nlogn) 
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Minimum-Cost Spanning Tree

 Input: G=(V,E), an undirected, labeled 

graph

 Output: T=(V,E’), a subgraph of G

 includes all the vertices

 is a tree

 the sum of labels (costs) of all tree branches is 

minimum among all spanning trees

}(Spanning tree)
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 Objective function:

 Feasibility constraint: a tree containing all 

vertices

 Example

cos ( )t ei
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
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 SELECT: At each step, choose an edge with 

minimum cost (optimality) such that 

(feasibility):

 the partial solution is always a tree (Prim)

 the partial solution has potential of becoming a 

tree (no cycles, but not necessarily connected) 

(Kruskal)
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Prim’s algorithm

 First step: select a minimum cost edge, 

include it in the solution

 Other steps: select an edge (u,v), u in U and

v in V-U, until all vertices are counted for 

U
V-U

Select one
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2
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A B C D E F G
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 Proposition: Prim’s algorithm finds MCST

 Proof:

U V-U

e

e’

– Again, there are two solutions, PRIM and MCST

– They better differ, and MCST has a lower cost

– In the construction of PRIM, if an edge e is considered

– It is in MCST, ok, continue (cannot be forever)

– If it is not in MCST, then ….



Data Structures and Algorithms II

 Proposition: Prim’s algorithm finds MCST

 Proof: U V-U

e

e’

– Let U be the subgraph (tree) considered so far

– Let V-U be the remaining part, then 

– There must be at least one edge (e’) chosen between U 

and V-U in MCST

• Prim’s algorithm selects the minimum cost one (e)

• e’ can be replaced by e in the MCST
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 No cycle
 U has no cycle

 V-U has no cycle

 Between U and V-U cannot has cycle w. a single path e

 Still connected
 U is connected

 V-U is connected

 U and V-U connected through either e or e’

 The same number of edges => it is a spanning tree

 A tree of a smaller cost

U

e

e’

V-U
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 Time complexity

 Totally n vertices have to be connected

 Each time an edge is added, one additional vertex 

is accounted for

Loop through n-1 times

 Through each loop

 Select the edge of a minimum cost from U to V-U

 Update the nearest vertex and cost for vertices in V-U’

O(n-i)

O(n-i)

( ) ( )n i O n
i

n

 





1

1

2
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Kruskal’s algorithm
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 Proposition: Kruskal’s algorithm find MCST

 Proof:

ee

ii

Ee

Ee

Ee

Ee

Ee

MST

T

sKruskal

T
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 Including         in MCST creates a cycle

Not all edges in the cycle belongs to T (Kruskal’s)

At least one of them must have a higher costs

Remove that high-cost edge breaks the cycle and 

maintain the tree structure

ei

ei

Ei1
Ei2

Eik

ei

Ei1
Ei2

Eik



 Time complexity
 Total e edges are considered in order of 

nondecreasing cost
 Use partially-ordered tree (heap) to represent edges

 Construction O(e log e)

 Deletemin O(e log e)

At each step, remove edge with a minimum 
cost and check to see whether it creates a cycle 
if included

 Use Union-and-Find tree

 Initially each vertex in a set by itself

 Inclusion of an edge, join the sets containing the 
edge’s two end points

 Edges are not included if the two end points are 
in the same set

O(e log e)



Single-Source Shortest Path

 Input: 

G=(V,E), an directed, labeled graph

A source vertex

 Output:

 The shortest path, from source to every other 

vertices in the graph, if one exists



Possible Greedy Strategies

 Exploring a maze where you cannot see 

beyond the first turn

 Extremely greedy: with no memory, go 

where the path leads you (good paths can 

turn bad at any instance)

 Cautiously greedy: with memory, go where 

the shortest path encountered so far 

(backtracking to the path necessary) 



Greedy Selection

1. Visited set = {s}

2. From visited set, find all 1-distance (direct 
edge) neighbors

3. Visit the one with the shortest distance: n

4. Enlarge visited set = visited set U {n}

5. Update distances to the remaining vertices

1. Go through original visited set

2. Go through n 

6. Go back to 2



If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Complexity: O(n2)



Comparison

 Prim’s MCST

 Two groups

 Already in ST (U)

 Not yet in ST (V-U)

 Update

 Find the min edge from 

U to V-U

 Build table of partial 

solutions: O(n) steps, 

<O(n) updates O(n2)

 Dijkstra’s shortest path

 Two groups

 Already found path to 

 Not yet found path to

 Update

 Find the shortest path from 

U to V-U

 Build table of partial 

solutions: O(n) steps, 

<O(n) updates O(n2)

Cost Cost Cost new i

Closest Cost Cost new i new Closet

i i

i i i



 

min( , ( , ))

( ( , ))? :

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}



Initially 
 You cannot go to blue through dashed green and 

then circle back with a lower cost



Next Step 
 Dashed blue: reached by blue only

 Dashed green: reached by green only

 Dashed cyan: reached by both green 

and blue

 One of the dashed blue, green, or cyan will be visited next (i.e., the shortest 

path to the visited node is determined greedily)

 Is that possible to go through other dashed blue, green, or cyan and circle back 

to the visited node with a shorter path?



Case one: Dashed green is selected 

 Other dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter



Case two: Dashed blue is selected 

 Dashed green: cannot be shorter

 Other dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter



Case three: Dashed cyan is selected 

 Dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Other dashed cyan: cannot be shorter



Induction 

 Assume that the (current) shortest path  
to neighbors right outside the wall 
(one distance away) has been found 

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}



Induction 

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

 One more node is 

added



 Three things can happen for a node still outside 

the wall (the envelop) after a new node is added

Not reached by the new node 

 The current best path didn’t change

Reached by the new node but not any node in the 

previous envelop

 The current best path must be the one via the new node

Reached by the new node and also nodes in the 

previous envelop

 The update process should record the best between the two 

 Hence, when “the best of the best” is chosen to 

go out the wall, one cannot jump through other 

paths on the wall and circle back to get a better 

result
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Job Sequencing with Deadlines

 Input:

 a set of n jobs, each with a deadline and a profit 

if completed before deadline

 one machine to execute all the jobs

 each job takes one unit of time

 Output:

 a subset of jobs, each completed before 

deadline, with maximum profit
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 Objective function:

 Feasibility constraint:

 Example:

max Pi
i J



n P P P P

d d d d

 



4 100 10 15 27

2 1 2 1

1 2 3 4

1 2 3 4

,( , , , ) ( , , , )

( , , , ) ( , , ,

feasible schedule profit 

(1,2) 2,1 110

(1,3) 1,3 or 3,1 115

(1,4) 4,1 127

(2,3) 2,3 25

(3,4) 4,3 42

(1) 1 100

(2) 2 10

(3) 3 15

(4) 4 27
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 SELECT: select the job with maximum 

profit subject to the constraint that the 

resulting schedule is still feasible

J P

Initially

not feasible

not feasible

i
i J



 0

1 1 100

4 1 4 127

3 1 4 127 1 4 3

2 1 4 127 1 4 2

( )

( , )

( , ) ( , , )

( , ) ( , , )
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(Q1) How to determine if J is feasible?

(Q2) Is greedy algorithm optimal?

(Q1) If J={1,2,3,…,k}

 try all possible (k!) permutations (schedules) 

and see whether at least one of them allows all 

jobs to be finished before their deadlines

 intuitively, jobs with earlier deadline (more 

urgent) should be performed first

 check the permutation  * ( , ,..., )

...



  

i i i

d d d

k

i i ik

1 2

1 2
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 Proposition: J={1,2,…,k} is feasible if and 

only if      is feasible

 Proof: 

 If       is feasible, then J={1,2,…,k} is feasible 

(by definition)

 If J={1,2,…,k} is feasible, then 

 *

 *

 ' time
a b

backward moved becan  i

forward moved becan  j

order ofout 

deadline before completed job

bdd

abd

dd

bd

ad

ji

j

ji

j

i











i j
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 Proposition: The greedy method produces a 

schedule with the maximum profit

 Proof: 

 Two different solutions: optimal and greedy

 Jobs that are in both optimal and greedy

 make sure that they are scheduled at the same time

 Jobs that are in one but not the other

 change them into ones in greedy without decreasing 

profit

 The process continues until two solutions are 

equal



 For jobs that are in both

 the job is scheduled the same in both 

 the job is scheduled earlier in optimal

 the job is scheduled earlier in greedy

Again, change optimal to greedy

I(greedy)

J(optimal)

a

a b

time

I(greedy)

J(optimal)

a

ba time



 For jobs that are different

 I’ and J’ are such that jobs common to both are 

scheduled at the same slot

I’(greedy)

J’(optimal)
b

timea

P Pa b   if b has a larger profit

and is feasible,  it will appear in 

the greedy solution

time

– Replace b with a in the optimal solution will 

not decrease the profit



Finally

 Can it be that greedy solution still does 

more jobs than optimal? 

No, optimal will not be optimal then

 Can it be that optimal solution does more 

jobs than greedy? 

No, if such a job is feasible, how come greedy 

solution doesn’t include it? 
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 Time complexity

 Sort jobs according to nondecreasing profit 

O(nlogn)

Consider n jobs in turn

 for each job, insert the job into the partial solution 

using its deadline O(i)

 check whether the new solution is still feasible O(i)

O n( )2
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Greedy Method as Heuristics

 For problems whose solutions are found by 

“try-all-possibilities,” an optimal solution is 

difficult to compute for large problem size

 Greedy method can usually produce a “very 

good” solution at a fraction of the cost
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 Example: Traveling salesperson’s problem

 Input: a fully connected, labeled undirected 

graph

Output: a tour (a simple cycle including all 

vertices) whose edge weights are minimum.

Greedy method:

 A variant of Kruskal’s algorithm

 Consider edges in nondecreasing cost

 The edge under consideration, together with all 

edges already selected:

 do not cause a vertex to have a degree of three or more

 do not form a cycle, unless the number of edges equals to 

that of vertices



Data Structures and Algorithms II

(0,0)

(4,3)

(1,7) (15,7)

(15,4)

(18,0)
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7

8

9

10

 Greedy solution

 5,6 rejected: cycle

 7,8 rejected: vertex 

degree larger than 2

 cost = 49.73

 Optimal solution

 cost = 48.39


