
Greedy Methods

Data Structures and Algorithms II

Problems whose solutions can be “ranked”

 Travel Investment Course

selection

Feasible

solutions

stay on highway,

finish in x days

don’t spend more

than one has

finish in 4

years

Optimal

solutions

shortest distance,

minimum time

maximum

returns, minimum

risks

best

combination

of depth and

breadth

Decisions which highways

to take

invest or not in a

portfolio

take a course

or not

Data Structures and Algorithms II

 Decisions can be made

 one at a time, without backtracking

Greedy method

Which decisions to make next?

How to guarantee optimality?

 Try many (all) possible combinations and

choose one which is the best

Dynamic programming

How to test multiple solutions efficiently?

Data Structures and Algorithms II

The Greedy Method

 Input n elements stored in an array A(1:n)

 Procedure Greedy

 Solution = NULL

 for i=1 to n do

x = SELECT(A)

 if FEASIBLE(Solution, x)

 then Solution = UNION(Solution, x)

endif

 enddo

 return (Solution)

Data Structures and Algorithms II

 A sequence of n decisions w.r.t n inputs

 SELECT: select one of the remaining

decisions to make according to some

optimization measure

 once a decision is made, it will not become

invalid at a later time

 optimization should be based on the partial

solutions built so far

 FEASIBLE: whether the partial solution

satisfies some preset constraints

Data Structures and Algorithms II

 Strategy: construct feasible solutions one

step at a time which optimize (minimize or

maximize) a certain objective function

 Make the obvious decisions first!

 Then try to show it is indeed optimal!

Data Structures and Algorithms II

Knapsack problem

 Input:

 a set of n objects

 a knapsack of capacity M

 Output: fill the knapsack to maximize the

total profit earned

 Feasibility constraint:

 Objective function:

(,) ,...,P W i ni i 1

W X Mi i
i

n

1

max P X Xi i
i

n

i

1

0 1

Data Structures and Algorithms II

 Example

n M

P P P

W W W

X X X W X P Xi i

i

n

i i

i

n

3 20

25 24 15

18 1510

1
2

15
0 20 28 2

0
2

3
1 20 31

0 1
1

2
20 315

1 2 3

1 2 3

1 2 3

1 1

,

(, ,) (, ,)

(, ,) (, ,)

(, ,)

(, ,) .

(, ,)

(, ,) .

largest increase in profit

smallest increase in weight

largest increase in profit to

weight ratio

(, ,) (. , . , .
P

W

P

W

P

W

1

1

2

2

3

3

139 16 15)

Data Structures and Algorithms II

 For all three algorithms

 decisions are made one object at a time

 the ordering is determined by some

optimization measure

 Largest increase in profit

 Include the remaining object of the largest profit

 Smallest increase in weight

 Include the remaining object of the smallest weight

 Largest increase in profit/weight

 Include the remaining object of the largest profit/weight

 never backtrack

 all greedy algorithms

 not all guarantee optimal

Data Structures and Algorithms II

 Proposition: Greedy selection based on

maximizing profit to weight ratio gives the

optimal result

 General proof strategy:

Assume that the greedy solution is

Assume that the optimal solution is

Then they better be different

 Transform Y into X without decreasing the

profit of Y

X X X Xn (, ,...,)1 2

Y Y Y Yn (, ,...,)1 2

Data Structures and Algorithms II

 Proof:

Assume
P

W

P

W

P

W

n

n

1

1

2

2

 ...

1 1 …. 1 0 0 0 …. 0 01 Greedy (X)

Optimal (Y)

0 1 X j

– Let k be the first index where X and Y differ

() &

()

() & & ,

i k j X Y X Y X

ii k j if Y X then WY M Y X

iii k j X Y X Y WY M not possible

k k k k k

k k i i k k

k k k k i i

1

0 0

Data Structures and Algorithms II

New optimal (Z)

Optimal (Y)

Y Xk k

n

i

ii

n

ki k

k
iiikkk

n

i

ii

n

ki

i

i

i
iik

k

k
kk

n

i

ii

n

ki

iiikkk

n

i

ii

n

i

ii

PY

W

P
WZYWYZPY

W
W

P
ZYW

W

P
YZPY

PZYPYZPYPZ

1

11

11

111

in weight decreasein weight increase

})(){(

)()(

profit of decreaseprofit of increaseY ofprofit

)()(

Data Structures and Algorithms II

 Z is also an optimal solution

Either Z=X (Done)

Or not (Repeat the above procedure until Z=X)

Data Structures and Algorithms II

 Time complexity

 Sort the n objects according to profit to weight

ratio O(nlogn)

 Scan down the sorted list

if remaing capaity then

remaining capacity - =

else

remaining capacity

remaing capacity 0

endif

W

X

W

X
W

i

i

i

i

i

1

– Complexity O(nlogn)

Data Structures and Algorithms II

Optimal Storage on Tape

 Input:

A set of n programs of different length

A computer tape of length L

 Output:

A storage pattern which minimizes the total

retrieval time (TRT)

 before each retrieval, head is repositioned at the front

TRT l I i i ii
k jj n

nk

 11
1 2, ,...

Data Structures and Algorithms II

 Objective function: minimize TRT

 Feasibility constraint:

 Example

l Li
k n

k
1

n l l l L

ordering

i i i
TRT

3 510 3 20

1 2 3 5 5 10 5 10 3 38

1 3 2 5 5 3 5 3 10 31

2 1 3 10 10 5 10 5 3 43

2 31 10 10 3 10 3 5 41

31 2 3 3 5 3 5 10 29

3 2 1 3 3 10 3 10 5 34

1 2 3

1 2 3

,(, ,) (, ,),

()

, ,

, ,

, ,

, ,

, ,

, ,

, ,

Data Structures and Algorithms II

 SELECT: Select the program to store next

which minimizes the increase in TRT

TRT l

TRT l TRT l

TRT TRT l l l

old i
k jj r

new i old i
k rk jj r

new old i
k r

i
k r

r

k

k k

k k

11

1 111 1

1 1 1
1

i1 i2 ir ir1

fixed Currently shortest

program

 Proof strategy

 follow the same principle as in knapsack

problem

 there is a greedy solution

 there is an optimal solution

 they are different

 line them up and they better differ in some storage

locations

 then make them the same (by swapping)

 prove that the swapping does not reduce the

optimality

Data Structures and Algorithms II

Front

Optimal

Greedy

i1 i2 ir

si
ir

sr ii

si

 Swap ir and is in the optimal solution

Data Structures and Algorithms II

 Intuitively

a b

Front

• For programs stored in

– retrieval does not scan through either a or b

– ordering of a and b not important

• For programs stored in

– retrieval scans through both a and b

– ordering of a and b not important

• For programs stored in

– retrieval scans through a but not b

– ordering of a and b is important

Data Structures and Algorithms II

 Proposition: The storage pattern with

nondecreasing length order produces the

smallest TRT

l l

l l

l l l

l l l l

l n l n l l

n k l

i

k jj n

i

i i

i i i

i i i i

i i i i

i

k n

k

n

n

k

11

1

1

1 2

1 2 3

1 2 3

1 2 3
1 2

1

...

...

() () ...

()

= n

Data Structures and Algorithms II

 If prog. a and prog. b are out of order, then

swap them should reduce the TRT

TRT n k l n a l n b l

TRT n k l n a l n b l

TRT TRT n a l l n b l l

b a l l

old i i
k
k a
k b

i

new i i
k
k a
k b

i

old new i i i i

i i

k a b

k b a

a b b a

a b

() () ()

() () ()

()() ()()

()()

1 1 1

1 1 1

1 1

0

• Time complexity: O(nlogn) for sorting

Data Structures and Algorithms II

Optimal Merge Pattern

 Input: a set of files of different lengths

 Output: an optimal sequence of two-way

merges to obtain a sorted files

F i n q

F F O q q
i i

i j i j

, ,

()

1

 of length

merge files and requires time

Data Structures and Algorithms II

 Example
n q q q

ordering

 3 30 20 101 2 3,(, ,) (, ,)

cost

1,2,3 50 + 60 = 110

1,3,2 40 + 60 = 100

2,1,3 50 + 60 = 110

2,3,1 30 + 60 = 90

3,1,2 40 + 60 = 100

3,2,1 30 + 60 = 90

• Programs (files) stored on a tape (already merged together)

may affect the access times (the merge times) of new

programs (files) to be stored (merged)

• SELECT: At each step, merge two smallest files

 Binary merge tree

Distance from an external node to root = # of
times a file is involved in merging

 Total # of record moves for file i

 external path length to reach node i

 Total # of record moves for all files

 total external path length

5 10

20 30 3015

35 60

95

internal

external

d qi i
i

n

1

d qi i

Data Structures and Algorithms II

Huffman Code

 For data compression to save storage space

and transmission bandwidth

 ASCII code uses fixed-length 8

bits/character code words, O(8n) for storage

and transmission

 Huffman codes uses variable-length code

words depending on the frequency of

occurrence

Data Structures and Algorithms II

 Example

 a b c d e f

Frequency

(thousands)

45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

bits000,2244000,54000,93000,16

3000,123000,131000,45length-variable

bits000,300300

0,100lengthfixed

Data Structures and Algorithms II

 Prefix codes

 no codeword is a prefix of some other

codeword

1010

1010001

… 110 …. 1010 …

codeword a

codeword b

codeword a?

or beginning of codeword b?

Data Structures and Algorithms II

a:45d:16 b:13c:12e:9f:5

a:45

e:9f:5

14

10

a:45

e:9f:5

14

10

d:16 b:13c:12

d:16

b:13c:12

25

10

Data Structures and Algorithms II

a:45

e:9f:5

14

10

d:16

b:13c:12

25

10

30

10

a:45

e:9f:5

14

10

d:16

b:13c:12

25

10

30

10

0

1

55

Data Structures and Algorithms II

a:45

e:9f:5

14
1 0

d:16

b:13c:12

25
1

0

30
1

0

0

1

55

0

1

100

 Huffman code

Distance from an external node to root = # of
bits in the code word

 Total effort of sending i

 external path length to reach node i

 Total effort of sending all alphabets

 total external path length

d qi i
i

n

1

d qi i

a:45

e:9f:5

14
1 0

d:16

b:13c:12

25
1

0

30
1

0

0
1

55

0

1

100

An Important Fact

 Using Huffman-tree rules, nodes that are

merged first must have a longer path to the

root than nodes that are merged later

2,,21 jipppp ji

lmax

No node can be merged more than once

before p1+p2 is involved again

An Important Fact (cont.)

 An iteration:

Between two successive merges involve p1

 In an iteration

No node can be involved in more than one

merge

No node can increase in path length more than

p1

 Hence, p1 must have the longest path length

Data Structures and Algorithms II

 Proposition: Huffman construction

minimizes the expected codeword length
p l

p

l

i i
i

n

i

i

1

probability of occurance

codeword length

• Proof:

Optimal prefix-code tree Huffman prefix-code tree

transform without increasing

expected codeword length

Assume that p p pn1 2 ...

Optimal prefix-code tree

pi
p j

p1

p2

pi

p j

p1 p2

l1

l2

lmax

2211maxmax

,,2,11

plplplpl

lplp

ji

jik

kk

n

k

kk

ji

jik

kk

n

k

kk

plplplpl

lplp

212max1max

,,2,11

'

0))(())((

'

22max11max

212max1max2211maxmax

11

ppllppll

plplplplplplplpl

lplp

ji

jiji

n

k

kk

n

k

kk

 Recursion

 once p1 and p2 are moved to their right locations

merge them into a single node of p1+p2

 now, greedy method will select from p1+p2, p3,

…, pn the smallest two to merge

 if that is not the case for optimal, then ...

pi

p j

p1 p2

pi

p j

21 pp pi

p j

21 pp

Data Structures and Algorithms II

 Time complexity

with n alphabets to code, exactly n-1 merges

are needed

 for each merge

 find an least-frequently-used alphabet

 find the next least-frequently-used alphabet

 merge

 put merged subtrees back into the list of subtrees

 priority queue (heap) is ideal for this operation

O(n) steps of detelemin and insert (O(logn))

O(nlogn)

Data Structures and Algorithms II

Minimum-Cost Spanning Tree

 Input: G=(V,E), an undirected, labeled

graph

 Output: T=(V,E’), a subgraph of G

 includes all the vertices

 is a tree

 the sum of labels (costs) of all tree branches is

minimum among all spanning trees

}(Spanning tree)

Data Structures and Algorithms II

 Objective function:

 Feasibility constraint: a tree containing all

vertices

 Example

cos ()t ei
i SP

16

5

6

10

18

19
11

21

33 14

16

5

6

18

11

16

10

18

21

33

cos ()t ei
i SP

 56

cos ()t ei
i SP

 98

Data Structures and Algorithms II

 SELECT: At each step, choose an edge with

minimum cost (optimality) such that

(feasibility):

 the partial solution is always a tree (Prim)

 the partial solution has potential of becoming a

tree (no cycles, but not necessarily connected)

(Kruskal)

Data Structures and Algorithms II

Prim’s algorithm

 First step: select a minimum cost edge,

include it in the solution

 Other steps: select an edge (u,v), u in U and

v in V-U, until all vertices are counted for

U
V-U

Select one

Example

A

B C

D E

F

G

61
1

1
4

2

2

1

2
2

4

A

B C

D E

F

G

1
1

2

1

2 1

2

A

B C

D E

F

G

61

2

A

B C

D E

F

G

61
1

2 2

A

B C

D E

F

G

61
1

4
2

A

B C

D E

F

G

61
1

4
2 2

1

2

4

4 4

: set U

Data Structures and Algorithms II

2

A

B C

D E

F

G

61
1

42

1

4

2

A

B C

D E

F

G

61
1

2

1

2 1

A

B C

D E

F

G

1
1

2

1

2 1

: set U

Data Structures and Algorithms II

A B C D E F G

A A A A A A

B B B A A

B B A A

D D A

D A

E

(,) (,) (,) (,) (,) (,)

(,) (,) (,) (,) (,)

(,) (,) (,) (,)

(,) (,) (,)

(,) (,)

(,)

1 2 6

1 2 4 2 6

2 4 2 6

2 1 6

2 6

1

Cost Cost Cost new i

Closest Cost Cost new i new Closet

i i

i i i

min(, (,))

((,))? :

Step

1

2

3

4

5

6

Cost update

Nearest neighbor update

Data Structures and Algorithms II

 Proposition: Prim’s algorithm finds MCST

 Proof:

U V-U

e

e’

– Again, there are two solutions, PRIM and MCST

– They better differ, and MCST has a lower cost

– In the construction of PRIM, if an edge e is considered

– It is in MCST, ok, continue (cannot be forever)

– If it is not in MCST, then ….

Data Structures and Algorithms II

 Proposition: Prim’s algorithm finds MCST

 Proof: U V-U

e

e’

– Let U be the subgraph (tree) considered so far

– Let V-U be the remaining part, then

– There must be at least one edge (e’) chosen between U

and V-U in MCST

• Prim’s algorithm selects the minimum cost one (e)

• e’ can be replaced by e in the MCST

Data Structures and Algorithms II

 No cycle
 U has no cycle

 V-U has no cycle

 Between U and V-U cannot has cycle w. a single path e

 Still connected
 U is connected

 V-U is connected

 U and V-U connected through either e or e’

 The same number of edges => it is a spanning tree

 A tree of a smaller cost

U

e

e’

V-U

Data Structures and Algorithms II

 Time complexity

 Totally n vertices have to be connected

 Each time an edge is added, one additional vertex

is accounted for

Loop through n-1 times

 Through each loop

 Select the edge of a minimum cost from U to V-U

 Update the nearest vertex and cost for vertices in V-U’

O(n-i)

O(n-i)

() ()n i O n
i

n

1

1

2

Data Structures and Algorithms II

Kruskal’s algorithm

B C

D E

F

G

61
1

1
4

2

2

1

2
2

4

A

B

1
A

B C

1
1

A

B C

1
1

A

D

F

1

Edge Cost

AB

BC

DF

EG

AF

BD

DE

EF

BE

CE

AG

1

1

1

1

2

2

2

2

4

4

6

()

()

()

()

()

B C

1
1

A

D

F

1

E

G

1

B C

1
1

A

D

F

1

E

G

12

B C

1
1

A

D

F

1

E

G

12 2

Edge Cost

AB

BC

DF

EG

AF

BD

DE

EF

BE

CE

AG

1

1

1

1

2

2

2

2

4

4

6

()

()

()

()

()

Data Structures and Algorithms II

 Proposition: Kruskal’s algorithm find MCST

 Proof:

ee

ii

Ee

Ee

Ee

Ee

Ee

MST

T

sKruskal

T

33

22

11

'

'

first index the two

solutions differ

ejiECosteCost ji)()(

Data Structures and Algorithms II

 Including in MCST creates a cycle

Not all edges in the cycle belongs to T (Kruskal’s)

At least one of them must have a higher costs

Remove that high-cost edge breaks the cycle and

maintain the tree structure

ei

ei

Ei1
Ei2

Eik

ei

Ei1
Ei2

Eik

 Time complexity
 Total e edges are considered in order of

nondecreasing cost
 Use partially-ordered tree (heap) to represent edges

 Construction O(e log e)

 Deletemin O(e log e)

At each step, remove edge with a minimum
cost and check to see whether it creates a cycle
if included

 Use Union-and-Find tree

 Initially each vertex in a set by itself

 Inclusion of an edge, join the sets containing the
edge’s two end points

 Edges are not included if the two end points are
in the same set

O(e log e)

Single-Source Shortest Path

 Input:

G=(V,E), an directed, labeled graph

A source vertex

 Output:

 The shortest path, from source to every other

vertices in the graph, if one exists

Possible Greedy Strategies

 Exploring a maze where you cannot see

beyond the first turn

 Extremely greedy: with no memory, go

where the path leads you (good paths can

turn bad at any instance)

 Cautiously greedy: with memory, go where

the shortest path encountered so far

(backtracking to the path necessary)

Greedy Selection

1. Visited set = {s}

2. From visited set, find all 1-distance (direct
edge) neighbors

3. Visit the one with the shortest distance: n

4. Enlarge visited set = visited set U {n}

5. Update distances to the remaining vertices

1. Go through original visited set

2. Go through n

6. Go back to 2

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Complexity: O(n2)

Comparison

 Prim’s MCST

 Two groups

 Already in ST (U)

 Not yet in ST (V-U)

 Update

 Find the min edge from

U to V-U

 Build table of partial

solutions: O(n) steps,

<O(n) updates O(n2)

 Dijkstra’s shortest path

 Two groups

 Already found path to

 Not yet found path to

 Update

 Find the shortest path from

U to V-U

 Build table of partial

solutions: O(n) steps,

<O(n) updates O(n2)

Cost Cost Cost new i

Closest Cost Cost new i new Closet

i i

i i i

min(, (,))

((,))? :

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Initially
 You cannot go to blue through dashed green and

then circle back with a lower cost

Next Step
 Dashed blue: reached by blue only

 Dashed green: reached by green only

 Dashed cyan: reached by both green

and blue

 One of the dashed blue, green, or cyan will be visited next (i.e., the shortest

path to the visited node is determined greedily)

 Is that possible to go through other dashed blue, green, or cyan and circle back

to the visited node with a shorter path?

Case one: Dashed green is selected

 Other dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter

Case two: Dashed blue is selected

 Dashed green: cannot be shorter

 Other dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter

Case three: Dashed cyan is selected

 Dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Other dashed cyan: cannot be shorter

Induction

 Assume that the (current) shortest path
to neighbors right outside the wall
(one distance away) has been found

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Induction

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

 One more node is

added

 Three things can happen for a node still outside

the wall (the envelop) after a new node is added

Not reached by the new node

 The current best path didn’t change

Reached by the new node but not any node in the

previous envelop

 The current best path must be the one via the new node

Reached by the new node and also nodes in the

previous envelop

 The update process should record the best between the two

 Hence, when “the best of the best” is chosen to

go out the wall, one cannot jump through other

paths on the wall and circle back to get a better

result

Data Structures and Algorithms II

Job Sequencing with Deadlines

 Input:

 a set of n jobs, each with a deadline and a profit

if completed before deadline

 one machine to execute all the jobs

 each job takes one unit of time

 Output:

 a subset of jobs, each completed before

deadline, with maximum profit

Data Structures and Algorithms II

 Objective function:

 Feasibility constraint:

 Example:

max Pi
i J

n P P P P

d d d d

4 100 10 15 27

2 1 2 1

1 2 3 4

1 2 3 4

,(, , ,) (, , ,)

(, , ,) (, , ,

feasible schedule profit

(1,2) 2,1 110

(1,3) 1,3 or 3,1 115

(1,4) 4,1 127

(2,3) 2,3 25

(3,4) 4,3 42

(1) 1 100

(2) 2 10

(3) 3 15

(4) 4 27

Data Structures and Algorithms II

 SELECT: select the job with maximum

profit subject to the constraint that the

resulting schedule is still feasible

J P

Initially

not feasible

not feasible

i
i J

 0

1 1 100

4 1 4 127

3 1 4 127 1 4 3

2 1 4 127 1 4 2

()

(,)

(,) (, ,)

(,) (, ,)

Data Structures and Algorithms II

(Q1) How to determine if J is feasible?

(Q2) Is greedy algorithm optimal?

(Q1) If J={1,2,3,…,k}

 try all possible (k!) permutations (schedules)

and see whether at least one of them allows all

jobs to be finished before their deadlines

 intuitively, jobs with earlier deadline (more

urgent) should be performed first

 check the permutation * (, ,...,)

...

i i i

d d d

k

i i ik

1 2

1 2

Data Structures and Algorithms II

 Proposition: J={1,2,…,k} is feasible if and

only if is feasible

 Proof:

 If is feasible, then J={1,2,…,k} is feasible

(by definition)

 If J={1,2,…,k} is feasible, then

 *

 *

 ' time
a b

backward moved becan i

forward moved becan j

order ofout

deadline before completed job

bdd

abd

dd

bd

ad

ji

j

ji

j

i

i j

Data Structures and Algorithms II

 Proposition: The greedy method produces a

schedule with the maximum profit

 Proof:

 Two different solutions: optimal and greedy

 Jobs that are in both optimal and greedy

 make sure that they are scheduled at the same time

 Jobs that are in one but not the other

 change them into ones in greedy without decreasing

profit

 The process continues until two solutions are

equal

 For jobs that are in both

 the job is scheduled the same in both

 the job is scheduled earlier in optimal

 the job is scheduled earlier in greedy

Again, change optimal to greedy

I(greedy)

J(optimal)

a

a b

time

I(greedy)

J(optimal)

a

ba time

 For jobs that are different

 I’ and J’ are such that jobs common to both are

scheduled at the same slot

I’(greedy)

J’(optimal)
b

timea

P Pa b if b has a larger profit

and is feasible, it will appear in

the greedy solution

time

– Replace b with a in the optimal solution will

not decrease the profit

Finally

 Can it be that greedy solution still does

more jobs than optimal?

No, optimal will not be optimal then

 Can it be that optimal solution does more

jobs than greedy?

No, if such a job is feasible, how come greedy

solution doesn’t include it?

Data Structures and Algorithms II

 Time complexity

 Sort jobs according to nondecreasing profit

O(nlogn)

Consider n jobs in turn

 for each job, insert the job into the partial solution

using its deadline O(i)

 check whether the new solution is still feasible O(i)

O n()2

Data Structures and Algorithms II

Greedy Method as Heuristics

 For problems whose solutions are found by

“try-all-possibilities,” an optimal solution is

difficult to compute for large problem size

 Greedy method can usually produce a “very

good” solution at a fraction of the cost

Data Structures and Algorithms II

 Example: Traveling salesperson’s problem

 Input: a fully connected, labeled undirected

graph

Output: a tour (a simple cycle including all

vertices) whose edge weights are minimum.

Greedy method:

 A variant of Kruskal’s algorithm

 Consider edges in nondecreasing cost

 The edge under consideration, together with all

edges already selected:

 do not cause a vertex to have a degree of three or more

 do not form a cycle, unless the number of edges equals to

that of vertices

Data Structures and Algorithms II

(0,0)

(4,3)

(1,7) (15,7)

(15,4)

(18,0)

1

2

3

4
5 6

7

8

9

10

 Greedy solution

 5,6 rejected: cycle

 7,8 rejected: vertex

degree larger than 2

 cost = 49.73

 Optimal solution

 cost = 48.39

