Greedy Methods




Problems whose solutions can be “ranked”

Travel Investment Course
selection
Feasible |stay on highway, |[don’t spend more |finish in 4
solutions |finish in X days |[than one has years
Optimal [shortest distance, [maximum best
solutions |minimum time |returns, minimum combination
risks of depth and
breadth
Decisions |which highways |invest or not in a |take a course

to take

portfolio

or not

Data Structures and Algorithms 11




< Declslons can be made
2 one at a time, without backtracking
0 Greedy method
2 Which decisions to make next?
2 How to guarantee optimality?

< Try many (all) possible combinations and
choose one which Is the best
2 Dynamic programming
0 How to test multiple solutions efficiently?

Data Structures and Algorithms 11



The Greedy Method

< Input n elements stored in an array A(1:n)

<« Procedure Greedy

a Solution = NULL

afori=1tondo
»>X =SELECT(A)
> 1f FEASIBLE(Solution, X)
»then Solution = UNION(Solution, x)
>endif

aenddo

2 return (Solution)

Data Structures and Algorithms 11



<+ A sequence of n decisions w.r.t n Inputs

«» SELECT: select one of the remaining
decisions to make according to some
optimization measure

o once a decision 1s made, 1t will not become
Invalid at a later time

2 optimization should be based on the partial
solutions built so far

«» FEASIBLE: whether the partial solution
satisfies some preset constraints

Data Structures and Algorithms 11




<« Strategy: construct feasible solutions one
step at a time which optimize (minimize or
maximize) a certain objective function

< Make the obvious decisions first!

<« Then try to show It is indeed optimal!

Data Structures and Algorithms 11




Knapsack problem

< Input:
oasetof nobjects (RP,W,) i=1..,n
0 a knapsack of capacity M

< Output: fill the knapsack to maximize the
total profit earned

+ Feasibility constraint: ZWX <

<« ODbjective function: maXZPixi 0< X, <1

Data Structures and Algorithms 11



«» Example

n=3 M =20
(R, R, RB) = (25,24,15)
(W,,W,,W,) =(18,15,10)

(X X0 %) SWX, D PX,

i-1 i-1
(1,%,0) 20 28.2  largest increase in profit
(0, 2 1) 20 31 smallest increase in weight
(01, 1 ) 20 315  largestincrease in profit to
weight ratlo
(i)~ (4302629)

Data Structures and Algorithms 11



<+ For all three algorithms
0 decisions are made one object at a time

2 the ordering is determined by some
optimization measure

> Largest increase in profit
= Include the remaining object of the largest profit

> Smallest increase in weight
= Include the remaining object of the smallest weight

> Largest increase in profit/weight
= Include the remaining object of the largest profit/weight

a never backtrack
2 all greedy algorithms
2 not all guarantee optimal

Data Structures and Algorithms 11




« Proposition: Greedy selection based on
maximizing profit to weight ratio gives the
optimal result

<+ GGeneral proof strategy:
0 Assume that the greedy solution is X = (X, X,,..., X))

0 Assume that the optimal solutionisY =(Y,,Y,,...,Y.)
a Then they better be different

a Transform Y into X without decreasing the
profit of Y

Data Structures and Algorithms 11



[ 1271 1 I 000....0 0| Greedy (X)

— Let k be the first index where X and Y differ
(1) k<] X, =1&Y =X, =Y, <X
(i) k=j if Y > X, then ) WY, >M =Y, <X,
(i) k>j X, =0&Y, %X, =Y, >0&Y WY, > M, not possible

Data Structures and Algorithms 11



Y, < X,
Optimal (Y)
B 1y 1l Il | Newoptimal (2)

ZZiPi ZYP +(Z, =Y )P —Z(Yi—zi)Pi
=1 I=k+1
proflt of Y Increase of profit  decrease of profit

:ZYiPi +(Zk—Yk)V%Wk —Z(Y Z)—

k i=k+1

= YiPi +{(Zk _Yk)Wk - Z (Y -Z, )W }_
=1 I=k+1
Increase in weight  decrease In Welght

> VR
=1

Data Structures and Algorithms 11




2 Z is also an optimal solution
0 Either Z=X (Done)
0 Or not (Repeat the above procedure until Z=X)

Data Structures and Algorithms 11



« Time complexity
2 Sort the n objects according to profit to weight
ratio O(nlogn)
0 Scan down the sorted list

IT W, = remaing capaity then
X, <—1
remaining capacity - = VWV,
else
remaining capacity
Wi
remaing capacity <— O
endif

X, <—

— Complexity O(nlogn)

Data Structures and Algorithms 11




Optimal Storage on Tape

« Input:
0 A set of n programs of different length
0 A computer tape of length L

« Qutput:

0 A storage pattern which minimizes the total
retrieval time (TRT)

> before each retrieval, head is repositioned at the front

TRT=3% 3 L =iy,

1< j<ni<k<j

Data Structures and Algorithms 11




<+ Objective function: minimize TRT
+ Feasibility constraint: 2 i <L

1<k<n

<« Example

n=3,(l,1,,1,) = (510,3), L = 20

ordering
(1 1515)
1,2,3
1,3,2
2,13
2,31
31,2
3,2,1

Data Structures and Algorithms 11

o+
o+
10 +
10 +
3+
3+

5+10+
5+ 3+
10+5+
10+ 3+
3+5+
3+10+

TRT

5+10+3
5+3+10
10+5+3
10+3+5
3+5+10
3+10+5




«» SELECT: Select the program to store next
which minimizes the increase in TRT

L I I, |11

Y e

TRTyg= 2 2k

l<j<|’ l<k<j

TRTew= = X L =TRTyq+ X |,

|
1<j<r+11<k<j l<k<r+1 ©
TRT o —TRTyy= X L= X I
1<ksr+1 1<k<r
fixed Currently shortest

program__ _

Data Structures and Algorithms 11



<« Proof strategy

2 follow the same principle as in knapsack
problem
> there Is a greedy solution
> there Is an optimal solution
> they are different

> line them up and they better differ in some storage
locations

> then make them the same (by swapping)

> prove that the swapping does not reduce the
optimality




Optimal

Front
Greedy

i i,

N\ 7
I I,
N\ %
| i

<« Swap I, and I In the optimal solution

Data Structures and Algorithms II




<+ Intuitively

Front N

2

a b
» For programs stored in

— retrieval does not scan through either a or b
— ordering of a and b not important

« For programs stored in I

— retrieval scans through both a and b
— ordering of a and b not important

 For programs stored In
— retrieval scans through a

out not b

— ordering of a and b is important

Data Structures and Algorithms 11




<« Proposition: The storage pattern with
nondecreasing length order produces the

smallest TRT
z Zlik :Iil
1< j<ni<k<j
e ==l
-I-IIl +Ii2 +I|3
+, +1, +1, W e il
=nl, +(n-Dl, +(-2) +.. +I
= > (n—k+D)l;
1<k<n

Data Structures and Algorithms 11




<« If prog. a and prog. b are out of order, then
swap them should reduce the TRT

TRT, 4 = kZ (n—k+DL +(n—-a+)l; +(n-b+1)l;

k=a
k=b

TRTneW = kz (n w2 k ‘I‘l)llk +(n _a_l_l)llb +(n Q b_l_l)lla

k=a
k=b

TRTg = TRy = (N—a+1)(l, = 1)+ (n-b+1)(}; -1,)
=(b—a)(l, —1,)>0

» Time complexity: O(nlogn) for sorting

Data Structures and Algorithms 11




Optimal Merge Pattern

<+ Input: a set of files of different lengths

<« Output: an optimal sequence of two-way
merges to obtain a sorted files

F.,1<1<n, of length g
merge files F; and F; requires O(q; +q;) time

Data Structures and Algorithms 11




<« Example
n =3,(0,9,,93) = (30,20,10)
ordering cost

1,2,3 50+ 60=110
1,3,2 40+ 60 =100
2,1,3 50+ 60=110
2,3,1 30+ 60=90
3,1,2 40+ 60 =100
3,2,1 30+ 60=90

« Programs (files) stored on a tape (already merged together)
may affect the access times (the merge times) of new
programs (files) to be stored (merged)

« SELECT: At each step, merge two smallest files

Data Structures and Algorithms 11



<« BInary merge tree

a Distance from an external node to root = # of
times a file Is involved in merging

0 Total # of record moves for filei  d;0;

> external path length to reach node |

0 Total # of record moves for all files Z d.q;
> total external path length

=1

external




Huffman Code

<« For data compression to save storage space
and transmission bandwidth

«» ASCII code uses fixed-length 8
bits/character code words, O(8n) for storage

and transmission

«» Huffman codes uses variable-length code
words depending on the frequency of
occurrence

Data Structures and Algorithms 11



< Example

a b |c |d |e f
Frequency |45 |13 |12 (16 |9 5
(thousands)
Fixed-length {000 |001 |010 |011 [100 |101
Variable-length |0 101 (100 111 (1101 |1100

fixed — length100,0

00 x 3 = 300,000bits
variable - length45,000 x1+13,000 x 3+12,000 x 3
+16,000 x 3+ 9,000 x 4 + 5,000 x 4 = 224 ,000bits

Data Structures and Algorithms 11




<+ Prefix codes
2 no codeword Is a prefix of some other

codeword
1010 codeword a
1010001 codeword b
.. 110 .... 1010 ...

codeword a?
or beginning of codeword b?

Data Structures and Algorithms 11



f:5 e:9 d:16 c:12 b:13 a:45
@ d:16 c:12 b:13 a:45
0 1
f:5 e:9
@ d:16 a:45
0 1 0 1
f:5 e:9 c:12 b:13

Data Structures and Algorithms 11




Data Structures and Algorithms 11

d:16

a:45
0 1
c:12 b:13
a:45
0 1
c:12 b:13




a:45

Data Structures and Algorithms 11

c:12

b:13




< Huffman code

0 Distance from an external node to root = # of
bits in the code word

a Total effort of sending i d;q;
> external path length to reach node |
A n
0 Total effort of sending all alphabets > d.q.

> total external path length i=

d:-16 a:45
0 1 0

f:5 e:9 c12 h:13




An Important Fact

<« Using Huffman-tree rules, nodes that are
merged first must have a longer path to the
root than nodes that are merged later

/{i\ m Pt PSP+ Py 1 j>2

No node can be merged more than once
before p1+p2 is involved again




An Important Fact (cont.)

< An Iteration:
0 Between two successive merges involve pl

< In an iteration

2 No node can be involved in more than one
merge

2 No node can increase In path length more than
pl
«» Hence, p1 must have the longest path length




<« Proposition: Huffman construction
minimizes the expected codeword length
__Zn:lpili

p; probability of occurance
I, codeword length

e Proof: Assumethat p, <p, <..<p,

transform without increasing
expected codeword length

Optimal prefix-code tree Huffman prefix-code tree

Data Structures and Algorithms 11




Optimal prefix-code tree

P1 P2

Z Pl = Z Pl
k=1

k+#1,2,1, |

o Pi + L Py H 1P+, P, F s Pyt L P2 + 1P +1, p

Z pklk _Z pklk'

k=1 k=1

= Imax b + Imax pj +ﬂ+ |2 P, — Imax Py — Imax P, _Ilﬁ_ﬂ
— (Imax _Il)(pi = p1)+(|max _IZ)(pj = pz) >0




< Recursion

aonce pl and p2 are moved to their right locations
2 merge them into a single node of pl1+p2

2 now, greedy method will select from pl+p2, p3,
..., pn the smallest two to merge

2 If that 1s not the case for optimal, then ...




<« Time complexity

2 with n alphabets to code, exactly n-1 merges
are needed

2 for each merge
> find an least-frequently-used alphabet
> find the next least-frequently-used alphabet
> merge
> put merged subtrees back into the list of subtrees

a priority queue (heap) Is ideal for this operation
0 O(n) steps of detelemin and insert (O(logn))
2 O(nlogn)

Data Structures and Algorithms 11




Minimum-Cost Spanning Tree

« Input: G=(V,E), an undirected, labeled
graph

< Output: 7=(V,E’), a subgraph of G
a Includes all the vertices
a1s atree

2 the sum of labels (costs) of all tree branches is
minimum among all spanning trees

}(Spanning tree)

Data Structures and Algorithms 11




+ Objective function: ~ 2_cost(e,)

1=SP

< Feasibility constraint: a tree containing all
vertices

16
» Example O—Q\s

> cost(e,) =56

<SP

> cost(e,) =98

i =SP

Data Structures and Algorithms 11



«» SELECT: At each step, choose an edge with
minimum cost (optimality) such that
(feasibility):

Q the partial solution Is always a tree (Prim)

a the partial solution has potential of becoming a
tree (no cycles, but not necessarily connected)
(Kruskal)

Data Structures and Algorithms 11




Prim’s algorithm
<« FIrst step: select a minimum cost edge,
Include it in the solution

« Other steps: select an edge (u,v), u in U and
v in V-U, until all vertices are counted for

V-U

Data Structures and Algorithms II




Example







Data Structures and Algorithms 11



Step A B C D E F G

1 — (LA (0,A) (0,A) (0,A) (2,A) (6A)
2 = — (1L,B) (2,B) (4,B) (2,A) (6,A)
3e 7 — ~ — (2,B) (4,B) (2,A) (6,A)
i Al - £ = (2,D) _(1L.D) (6,A)
T = - (2,D) - (6A)
A - = = - (@LE)
Cost. = min(Cost,, Cost(new, 1)) Cost update

Closest. = (Cost, == Cost(new,i))?new:Closet. Nearest neighbor update

Data Structures and Algorithms 11



<« Proposition: Prim’s algorithm finds MCST
<« Proof:

— Again, there are two solutions, PRIM and MCST

— They better differ, and MCST has a lower cost

— In the construction of PRIM, if an edge e is considered
— It i1s in MCST, ok, continue (cannot be forever)

— If 1t 1s not in MCST, then ....

Data Structures and Algorithms II




<« Proposition: Prim’s algorithm finds MCST
+ Proof: |

— Let U be the subgraph (tree) considered so far
— Let V-U be the remaining part, then

— There must be at least one edge (e”) chosen between U
and V-U in MCST

e Prim’s algorithm selects the minimum cost one (€)
¢’ can be replaced by e in the MCST

Data Structures and Algorithms II




o No cycle

> U has no cycle

» V-U has no cycle

» Between U and V-U cannot has cycle w. a single path e
o Still connected

» U is connected

> V-U is connected

» U and V-U connected through either e or ¢’
0 The same number of edges => it is a spanning tree

o A tree of a smaller cost

Data Structures and Algorithms II



<« Time complexity
2 Totally n vertices have to be connected

0 Each time an edge Is added, one additional vertex
IS accounted for

> Loop through n-1 times

2 Through each loop
O(n-1) > Select the edge of a minimum cost from U to V-U

O(n-1) » Update the nearest vertex and cost for vertices in V-U’
n-1

Data Structures and Algorithms 11



Kruskal’s algorithm

Edge Cost
AB 1
BC 1
DF 1
EG 1
AF 2
BD 2(x)
DE 2
EF  2(x)
BE 4(x)
CE 4(x)
AG  6(x)

Data Structures and Algorithms 11



Edge Cost
AB 1
BC il
DF 1
EG 1
AF 2
BD 2(x)
DE 2
EF  2(x)
BE 4(x)
CE 4(x)

AG  6(x)



<+ Proposition: Kruskal’s algorithm find MCST

+ Proof:

T T

Kruskal's MST
el El
eZ EZ
eS E3
© e first index the two
’ E solutions differ
e

e €

Cost(g;) <Cost(E;) i<j<e

Data Structures and Algorithms 11



« Including € in MCST creates a cycle
a Not all edges 1n the cycle belongs to T (Kruskal’s)
2 At least one of them must have a higher costs

0 Remove that high-cost edge breaks the cycle and
maintain the tree structure

E E

}Q =9 /11\12 L
e.

7
N s

Data Structures and Algorithms 11



« Time complexity
0 Total e edges are considered in order of
nondecreasmg cost
> Use partially-ordered tree (heap) to represent edges
= Construction O(e log e)
= Deletemin O(e log e)

0 At each step, remove edge with a minimum
cost and check to see whether it creates a cycle
If included

> Use Union-and-Find tree
= |nitially each vertex in a set by itself

= Inclusion of an edge, join the sets containing the
edge’s two end points

= Edges are not included if the two end points are
In the same set

20(eloge)



Single-Source Shortest Path

< Input:
0 G=(V,E), an directed, labeled graph
a A source vertex

« Qutput:

2 The shortest path, from source to every other
vertices in the graph, If one exists

45
AL 50 42 - LI 3 Path Length
5 3 L mETA L A 1 1,8 -
10(|120 ~ 200 2) 1,4,5 25
14 e & 3) 1,4,5,2 45
A s %) ke .

(a) Graph (b) Shortest paths from 1




Possible Greedy Strategies

<« EXploring a maze where you cannot see
beyond the first turn

+» Extremely greedy: with no memory, go
where the path leads you (good paths can
turn bad at any Instance)

<« Cautiously greedy: with memory, go where
the shortest path encountered so far
(backtracking to the path necessary)




6.

Greedy Selection

Visited set = {s}

From visited set, find all 1-distance (direct
edge) neighbors

Visit the one with the shortest distance: n
Enlarge visited set = visited set U {n}

Update distances to the remaining vertices
1. Go through original visited set
2. Go through n

Go back to 2




San Francisco (6) New York

If (dist(w)>dist(n)+cost(n,w)) {
dist(w) = dist(n)+cost(n,w);
previous_neighbor = n;

Los Angeles New Orleans

Miami
(a) Digraph }
Distance
Iteration | S Vertex LA SF DEN CHI BOST NY MIA NO
selected [1] (2] [3] [4] [5] [6] [7] [8]
Initial | -- -e-- 400 400 ) 1500 0 250 ) +00
] {5} 6 400 400 400 1250 D :25 1150 1650
2 {5.6} g +00 +00 +00 1250 0 250 1150 1650
3 {5,6,7} 4 +00 +00 2450 1250 0 250 1150 1650
4 | (56,74} 8 3350 400 2450 1250 0 250 1150 1650
5 {5.6,74.8} 3 3350 3250 2450 1250 0 250 1150 1650
6 {5,6,7,4,8.3} 2 3350 3250 2450 1250 0 250 1150 1650
{5,6,7,4,8,3,2}

Complexity: O(n?)




Comparison

< Prim’s MCST « Dijkstra’s shortest path
< TwO0 groups < Two groups
a Already in ST (U) 0 Already found path to
0 Not yet in ST (V-U) 0 Not yet found path to
«» Update «» Update
0 Find the min edge from 0 Find the shortest path from
U to V-U U to V-U
Cost, = min(Cost,, Cost(new, i)) If (dist(w)=>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);
previous_neighbor = n;

. . i {
<« Build table of partial <« Build table of partial
solutions: O(n) steps, solutions: O(n) steps,
<0O(n) updates O(n?) <O(n) updates O(N?) |z

Closest;, = (Cost, == Cost(new, i))?new:Closet,




Initially

<« You cannot go to blue through dashed green and
then circle back with a lower cost




Next Step

«» Dashed blue: reached by blue only
« Dashed green: reached by green only

« Dashed cyan: reached by both green
and blue

« One of the dashed blue, green, or cyan will be visited next (i.e., the shortest
path to the visited node is determined greedily)

« |Is that possible to go through other dashed blue, green, or cyan and circle backss

to the visited node with a shorter path?




Case one: Dashed green Is selected

- Other dashed green: cannot be shorter
» Dashed blue: cannot be shorter
- Dashed cyan: cannot be shorter _.........

--------
..........
* Ny

I *
L 4 *,
.lzt




Case two: Dashed blue iIs selected

- Dashed green: cannot be shorter
» Other dashed blue: cannot be shorter
- Dashed cyan: cannot be shorter




Case three: Dashed cyan Is selected

- Dashed green: cannot be shorter
» Dashed blue: cannot be shorter
- Other dashed cyan: cannot be shorter




Induction

If (dist(w)>dist(n)+cost(n,w)) {
dist(w) = dist(n)+cost(n,w);
previous_neighbor = n;

« Assume that the (current) shortest path
to neighbors right outside the wall
(one distance away) has been found




Induction

If (dist(w)>dist(n)+cost(n,w)) {
dist(w) = dist(n)+cost(n,w);
previous_neighbor = n;

SO
N
N
\\
|
,l

< One more node Is
added




<+ Three things can happen for a node still outside
the wall (the envelop) after a new node Is added

2 Not reached by the new node
» The current best path didn’t change

0 Reached by the new node but not any node in the
previous envelop

> The current best path must be the one via the new node

0 Reached by the new node and also nodes in the
previous envelop

> The update process should record the best between the two

% Hence, when “the best of the best” 1s chosen to
go out the wall, one cannot jump through other
paths on the wall and circle back to get a better

result




Job Sequencing with Deadlines

« Input:

0 a set of n jobs, each with a deadline and a profit
If completed before deadline

2 one machine to execute all the jobs
0 each job takes one unit of time
« Qutput:

0 a subset of jobs, each completed before
deadline, with maximum profit

Data Structures and Algorithms 11



+ Objective function; ~ max iZJPi
<+ Feasibility constraint:

«» Example:
n=4,(R.~R,.R,P,)=a00,10,15,27)
(d,,d,,d;,d,) =(2,1,2,1

feasible schedule profit
(1,2) 2,1 110
(1.3) 1,3 or 3,1 115
(1.4 4,1 127
(2,3) 2,3 25
3.9) 4,3 42
(1) 1 100
(2) 2 10
(3) 3 15
a) 4 27

Data Structures and Algorithms 11



«» SELECT: select the job with maximum
profit subject to the constraint that the
resulting schedule is still feasible

0= 3P
nitially ® 0

1 (1) 100

4 (1,4) 127

3 (1,4) 127 (1,4,3) not feasible
2

(L4) 127 (1,4,2) not feasible

Data Structures and Algorithms 11



(Q1) How to determine if .

IS feasible?
ntimal?

(Q2) Is greedy algorithm o
(Q1) If J={1,2,3,....k}

2 try all possible (k!) permutations (schedules)
and see whether at least one of them allows all

jobs to be finished before

their deadlines

Q intuitively, jobs with earlier deadline (more
urgent) should be performed first

0 check the permutation & = (i, i, ..., Iy )

d

Data Structures and Algorithms 11

<d. <.<d.
1 I I




«» Proposition: J={1,2,...,k} is feasible if and
only if o is feasible

<+ Proof:
alf o isfeasible, then J={1,2,....k} is feasible
(by definition)
alfJ={1,2,....k} is feasible, then
, b &
o il A 5

job completed before deadline

> aj can be moved forward

QQ.D.QQ.

a
b
d; out of order
b >
d,

> bi can be moved backward

— T eV S v

Data Structures and Algorithms |




<« Proposition: The greedy method produces a
schedule with the maximum profit

<+ Proof:
0 Two different solutions: optimal and greedy

0 Jobs that are in both optimal and greedy
> make sure that they are scheduled at the same time

2 Jobs that are In one but not the other

» change them into ones in greedy without decreasing
profit

0 The process continues until two solutions are
equal

Data Structures and Algorithms 11




<+ For Jobs that are in both
uled the same in both
uled earlier in optimal

at
at

ne Jo
ne jo

at

|(greedy)

ne Jo

D IS SC
D IS SC

D IS SC

€0
€0

NeC

uled earlier in greedy
2 Again, change optimal to greedy

d

- time

7

d

J(optimal) % N

b

b

> time

N\

%

a



<+ For jobs that are different

2/’ and J’ are such that jobs common to both are
scheduled at the same slot

a > time
[’(greedy) N

b > time
J’(optimal) Y%

P, > B, .- If b has a larger profit
and is feasible, it will appear Iin
the greedy solution

— Replace b with a in the optimal solution will
not decrease the profit



Finally

<+ Can It be that greedy solution still does
more jobs than optimal?

2 No, optimal will not be optimal then
« Can It be that optimal solution does more
jobs than greedy?

2 No, if such a job is feasible, how come greedy
solution doesn’t include 1t?




<« Time complexity
0 Sort jobs according to nondecreasing profit
O(nlogn)
2 Consider n jobs in turn

> for each job, insert the job into the partial solution
using its deadline O(i)
> check whether the new solution is still feasible O()

O(n?)

Data Structures and Algorithms 11



Greedy Method as Heuristics

< For problems whose solutions are found by
“try-all-possibilities,” an optimal solution is
difficult to compute for large problem size

« Greedy method can usually produce a “very
g00d” solution at a fraction of the cost

Data Structures and Algorithms 11




« Example: Traveling salesperson’s problem

a Input: a fully connected, labeled undirected
graph

0 Output: a tour (a simple cycle including all
vertices) whose edge weights are minimum.

0 Greedy method:
> A variant of Kruskal’s algorithm
> Consider edges in nondecreasing cost

> The edge under consideration, together with all
edges already selected:
= do not cause a vertex to have a degree of three or more

= do not form a cycle, unless the number of edges equals to
that of vertices

Data Structures and Algorithms 11




o (17) o (15,7)
e (15,4)

' e (18,0)

SRR

Data Structures and Algorithms 11

<« Greedy solution
0 5,6 rejected: cycle

0 7,8 rejected: vertex
degree larger than 2

acost =49.73
<« Optimal solution
0 cost =48.39




