
Greedy Methods

Data Structures and Algorithms II

Problems whose solutions can be “ranked”

 Travel Investment Course

selection

Feasible

solutions

stay on highway,

finish in x days

don’t spend more

than one has

finish in 4

years

Optimal

solutions

shortest distance,

minimum time

maximum

returns, minimum

risks

best

combination

of depth and

breadth

Decisions which highways

to take

invest or not in a

portfolio

take a course

or not

Data Structures and Algorithms II

 Decisions can be made

 one at a time, without backtracking

Greedy method

Which decisions to make next?

How to guarantee optimality?

 Try many (all) possible combinations and

choose one which is the best

Dynamic programming

How to test multiple solutions efficiently?

Data Structures and Algorithms II

The Greedy Method

 Input n elements stored in an array A(1:n)

 Procedure Greedy

 Solution = NULL

 for i=1 to n do

x = SELECT(A)

 if FEASIBLE(Solution, x)

 then Solution = UNION(Solution, x)

endif

 enddo

 return (Solution)

Data Structures and Algorithms II

 A sequence of n decisions w.r.t n inputs

 SELECT: select one of the remaining

decisions to make according to some

optimization measure

 once a decision is made, it will not become

invalid at a later time

 optimization should be based on the partial

solutions built so far

 FEASIBLE: whether the partial solution

satisfies some preset constraints

Data Structures and Algorithms II

 Strategy: construct feasible solutions one

step at a time which optimize (minimize or

maximize) a certain objective function

 Make the obvious decisions first!

 Then try to show it is indeed optimal!

Data Structures and Algorithms II

Knapsack problem

 Input:

 a set of n objects

 a knapsack of capacity M

 Output: fill the knapsack to maximize the

total profit earned

 Feasibility constraint:

 Objective function:

(,) ,...,P W i ni i 1

W X Mi i
i

n





1

max P X Xi i
i

n

i


  
1

0 1

Data Structures and Algorithms II

 Example

n M

P P P

W W W

X X X W X P Xi i

i

n

i i

i

n

 





 

 

3 20

25 24 15

18 1510

1
2

15
0 20 28 2

0
2

3
1 20 31

0 1
1

2
20 315

1 2 3

1 2 3

1 2 3

1 1

,

(, ,) (, ,)

(, ,) (, ,)

(, ,)

(, ,) .

(, ,)

(, ,) .

largest increase in profit

smallest increase in weight

largest increase in profit to

weight ratio

(, ,) (. , . , .
P

W

P

W

P

W

1

1

2

2

3

3

139 16 15)

Data Structures and Algorithms II

 For all three algorithms

 decisions are made one object at a time

 the ordering is determined by some

optimization measure

 Largest increase in profit

 Include the remaining object of the largest profit

 Smallest increase in weight

 Include the remaining object of the smallest weight

 Largest increase in profit/weight

 Include the remaining object of the largest profit/weight

 never backtrack

 all greedy algorithms

 not all guarantee optimal

Data Structures and Algorithms II

 Proposition: Greedy selection based on

maximizing profit to weight ratio gives the

optimal result

 General proof strategy:

Assume that the greedy solution is

Assume that the optimal solution is

Then they better be different

 Transform Y into X without decreasing the

profit of Y

X X X Xn (, ,...,)1 2

Y Y Y Yn (, ,...,)1 2

Data Structures and Algorithms II

 Proof:

Assume
P

W

P

W

P

W

n

n

1

1

2

2

  ...

1 1 …. 1 0 0 0 …. 0 01 Greedy (X)

Optimal (Y)

0 1 X j

– Let k be the first index where X and Y differ

() &

()

() & & ,

i k j X Y X Y X

ii k j if Y X then WY M Y X

iii k j X Y X Y WY M not possible

k k k k k

k k i i k k

k k k k i i

    

    

     




1

0 0

Data Structures and Algorithms II

New optimal (Z)

Optimal (Y)

Y Xk k

























n

i

ii

n

ki k

k
iiikkk

n

i

ii

n

ki

i

i

i
iik

k

k
kk

n

i

ii

n

ki

iiikkk

n

i

ii

n

i

ii

PY

W

P
WZYWYZPY

W
W

P
ZYW

W

P
YZPY

PZYPYZPYPZ

1

11

11

111

in weight decreasein weight increase

})(){(

)()(

profit of decreaseprofit of increaseY ofprofit

)()(

Data Structures and Algorithms II

 Z is also an optimal solution

Either Z=X (Done)

Or not (Repeat the above procedure until Z=X)

Data Structures and Algorithms II

 Time complexity

 Sort the n objects according to profit to weight

ratio O(nlogn)

 Scan down the sorted list

if remaing capaity then

remaining capacity - =

else

remaining capacity

remaing capacity 0

endif

W

X

W

X
W

i

i

i

i

i









1

– Complexity O(nlogn)

Data Structures and Algorithms II

Optimal Storage on Tape

 Input:

A set of n programs of different length

A computer tape of length L

 Output:

A storage pattern which minimizes the total

retrieval time (TRT)

 before each retrieval, head is repositioned at the front

TRT l I i i ii
k jj n

nk
  

   11
1 2, ,...

Data Structures and Algorithms II

 Objective function: minimize TRT

 Feasibility constraint:

 Example

l Li
k n

k
1 

 

n l l l L

ordering

i i i
TRT

  

     

     

     

     

     

     

3 510 3 20

1 2 3 5 5 10 5 10 3 38

1 3 2 5 5 3 5 3 10 31

2 1 3 10 10 5 10 5 3 43

2 31 10 10 3 10 3 5 41

31 2 3 3 5 3 5 10 29

3 2 1 3 3 10 3 10 5 34

1 2 3

1 2 3

,(, ,) (, ,),

()

, ,

, ,

, ,

, ,

, ,

, ,

, ,

Data Structures and Algorithms II

 SELECT: Select the program to store next

which minimizes the increase in TRT

TRT l

TRT l TRT l

TRT TRT l l l

old i
k jj r

new i old i
k rk jj r

new old i
k r

i
k r

r

k

k k

k k

 

   

     

  

     

    


11

1 111 1

1 1 1
1

i1 i2 ir ir1

fixed Currently shortest

program

 Proof strategy

 follow the same principle as in knapsack

problem

 there is a greedy solution

 there is an optimal solution

 they are different

 line them up and they better differ in some storage

locations

 then make them the same (by swapping)

 prove that the swapping does not reduce the

optimality

Data Structures and Algorithms II

Front

Optimal

Greedy

i1 i2 ir

si
ir

sr ii 

si

 Swap ir and is in the optimal solution

Data Structures and Algorithms II

 Intuitively

a b

Front

• For programs stored in

– retrieval does not scan through either a or b

– ordering of a and b not important

• For programs stored in

– retrieval scans through both a and b

– ordering of a and b not important

• For programs stored in

– retrieval scans through a but not b

– ordering of a and b is important

Data Structures and Algorithms II

 Proposition: The storage pattern with

nondecreasing length order produces the

smallest TRT

l l

l l

l l l

l l l l

l n l n l l

n k l

i

k jj n

i

i i

i i i

i i i i

i i i i

i

k n

k

n

n

k

11

1

1

1 2

1 2 3

1 2 3

1 2 3
1 2

1

  

 







 

  

    

     

  

...

...

() () ...

()

= n

Data Structures and Algorithms II

 If prog. a and prog. b are out of order, then

swap them should reduce the TRT

TRT n k l n a l n b l

TRT n k l n a l n b l

TRT TRT n a l l n b l l

b a l l

old i i
k
k a
k b

i

new i i
k
k a
k b

i

old new i i i i

i i

k a b

k b a

a b b a

a b

        

        

        

   







() () ()

() () ()

()() ()()

()()

1 1 1

1 1 1

1 1

0

• Time complexity: O(nlogn) for sorting

Data Structures and Algorithms II

Optimal Merge Pattern

 Input: a set of files of different lengths

 Output: an optimal sequence of two-way

merges to obtain a sorted files

F i n q

F F O q q
i i

i j i j

, ,

()

1 



 of length

merge files and requires time

Data Structures and Algorithms II

 Example
n q q q

ordering

 3 30 20 101 2 3,(, ,) (, ,)

cost

1,2,3 50 + 60 = 110

1,3,2 40 + 60 = 100

2,1,3 50 + 60 = 110

2,3,1 30 + 60 = 90

3,1,2 40 + 60 = 100

3,2,1 30 + 60 = 90

• Programs (files) stored on a tape (already merged together)

may affect the access times (the merge times) of new

programs (files) to be stored (merged)

• SELECT: At each step, merge two smallest files

 Binary merge tree

Distance from an external node to root = # of
times a file is involved in merging

 Total # of record moves for file i

 external path length to reach node i

 Total # of record moves for all files

 total external path length

5 10

20 30 3015

35 60

95

internal

external

d qi i
i

n




1

d qi i

Data Structures and Algorithms II

Huffman Code

 For data compression to save storage space

and transmission bandwidth

 ASCII code uses fixed-length 8

bits/character code words, O(8n) for storage

and transmission

 Huffman codes uses variable-length code

words depending on the frequency of

occurrence

Data Structures and Algorithms II

 Example

 a b c d e f

Frequency

(thousands)

45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

bits000,2244000,54000,93000,16

3000,123000,131000,45length-variable

bits000,300300

0,100lengthfixed









Data Structures and Algorithms II

 Prefix codes

 no codeword is a prefix of some other

codeword

1010

1010001

… 110 …. 1010 …

codeword a

codeword b

codeword a?

or beginning of codeword b?

Data Structures and Algorithms II

a:45d:16 b:13c:12e:9f:5

a:45

e:9f:5

14

10

a:45

e:9f:5

14

10

d:16 b:13c:12

d:16

b:13c:12

25

10

Data Structures and Algorithms II

a:45

e:9f:5

14

10

d:16

b:13c:12

25

10

30

10

a:45

e:9f:5

14

10

d:16

b:13c:12

25

10

30

10

0

1

55

Data Structures and Algorithms II

a:45

e:9f:5

14
1 0

d:16

b:13c:12

25
1

0

30
1

0

0

1

55

0

1

100

 Huffman code

Distance from an external node to root = # of
bits in the code word

 Total effort of sending i

 external path length to reach node i

 Total effort of sending all alphabets

 total external path length

d qi i
i

n




1

d qi i

a:45

e:9f:5

14
1 0

d:16

b:13c:12

25
1

0

30
1

0

0
1

55

0

1

100

An Important Fact

 Using Huffman-tree rules, nodes that are

merged first must have a longer path to the

root than nodes that are merged later

2,,21  jipppp ji

lmax

No node can be merged more than once

before p1+p2 is involved again

An Important Fact (cont.)

 An iteration:

Between two successive merges involve p1

 In an iteration

No node can be involved in more than one

merge

No node can increase in path length more than

p1

 Hence, p1 must have the longest path length

Data Structures and Algorithms II

 Proposition: Huffman construction

minimizes the expected codeword length
p l

p

l

i i
i

n

i

i




1

probability of occurance

codeword length

• Proof:

Optimal prefix-code tree Huffman prefix-code tree

transform without increasing

expected codeword length

Assume that p p pn1 2  ...

Optimal prefix-code tree

pi
p j

p1

p2

pi

p j

p1 p2

l1

l2

lmax

2211maxmax

,,2,11

plplplpl

lplp

ji

jik

kk

n

k

kk



 


ji

jik

kk

n

k

kk

plplplpl

lplp

212max1max

,,2,11

'



 


0))(())((

'

22max11max

212max1max2211maxmax

11








ppllppll

plplplplplplplpl

lplp

ji

jiji

n

k

kk

n

k

kk

 Recursion

 once p1 and p2 are moved to their right locations

merge them into a single node of p1+p2

 now, greedy method will select from p1+p2, p3,

…, pn the smallest two to merge

 if that is not the case for optimal, then ...

pi

p j

p1 p2

pi

p j

21 pp  pi

p j

21 pp 

Data Structures and Algorithms II

 Time complexity

with n alphabets to code, exactly n-1 merges

are needed

 for each merge

 find an least-frequently-used alphabet

 find the next least-frequently-used alphabet

 merge

 put merged subtrees back into the list of subtrees

 priority queue (heap) is ideal for this operation

O(n) steps of detelemin and insert (O(logn))

O(nlogn)

Data Structures and Algorithms II

Minimum-Cost Spanning Tree

 Input: G=(V,E), an undirected, labeled

graph

 Output: T=(V,E’), a subgraph of G

 includes all the vertices

 is a tree

 the sum of labels (costs) of all tree branches is

minimum among all spanning trees

}(Spanning tree)

Data Structures and Algorithms II

 Objective function:

 Feasibility constraint: a tree containing all

vertices

 Example

cos ()t ei
i SP



16

5

6

10

18

19
11

21

33 14

16

5

6

18

11

16

10

18

21

33

cos ()t ei
i SP




 56

cos ()t ei
i SP




 98

Data Structures and Algorithms II

 SELECT: At each step, choose an edge with

minimum cost (optimality) such that

(feasibility):

 the partial solution is always a tree (Prim)

 the partial solution has potential of becoming a

tree (no cycles, but not necessarily connected)

(Kruskal)

Data Structures and Algorithms II

Prim’s algorithm

 First step: select a minimum cost edge,

include it in the solution

 Other steps: select an edge (u,v), u in U and

v in V-U, until all vertices are counted for

U
V-U

Select one

Example

A

B C

D E

F

G

61
1

1
4

2

2

1

2
2

4

A

B C

D E

F

G

1
1

2

1

2 1

2

A

B C

D E

F

G

61

2

A

B C

D E

F

G

61
1

2 2

A

B C

D E

F

G

61
1

4
2

A

B C

D E

F

G

61
1

4
2 2

1

2

4

4 4

: set U

Data Structures and Algorithms II

2

A

B C

D E

F

G

61
1

42

1

4

2

A

B C

D E

F

G

61
1

2

1

2 1

A

B C

D E

F

G

1
1

2

1

2 1

: set U

Data Structures and Algorithms II

A B C D E F G

A A A A A A

B B B A A

B B A A

D D A

D A

E

   

 

  

   

    

     

(,) (,) (,) (,) (,) (,)

(,) (,) (,) (,) (,)

(,) (,) (,) (,)

(,) (,) (,)

(,) (,)

(,)

1 2 6

1 2 4 2 6

2 4 2 6

2 1 6

2 6

1

Cost Cost Cost new i

Closest Cost Cost new i new Closet

i i

i i i



 

min(, (,))

((,))? :

Step

1

2

3

4

5

6

Cost update

Nearest neighbor update

Data Structures and Algorithms II

 Proposition: Prim’s algorithm finds MCST

 Proof:

U V-U

e

e’

– Again, there are two solutions, PRIM and MCST

– They better differ, and MCST has a lower cost

– In the construction of PRIM, if an edge e is considered

– It is in MCST, ok, continue (cannot be forever)

– If it is not in MCST, then ….

Data Structures and Algorithms II

 Proposition: Prim’s algorithm finds MCST

 Proof: U V-U

e

e’

– Let U be the subgraph (tree) considered so far

– Let V-U be the remaining part, then

– There must be at least one edge (e’) chosen between U

and V-U in MCST

• Prim’s algorithm selects the minimum cost one (e)

• e’ can be replaced by e in the MCST

Data Structures and Algorithms II

 No cycle
 U has no cycle

 V-U has no cycle

 Between U and V-U cannot has cycle w. a single path e

 Still connected
 U is connected

 V-U is connected

 U and V-U connected through either e or e’

 The same number of edges => it is a spanning tree

 A tree of a smaller cost

U

e

e’

V-U

Data Structures and Algorithms II

 Time complexity

 Totally n vertices have to be connected

 Each time an edge is added, one additional vertex

is accounted for

Loop through n-1 times

 Through each loop

 Select the edge of a minimum cost from U to V-U

 Update the nearest vertex and cost for vertices in V-U’

O(n-i)

O(n-i)

() ()n i O n
i

n

 





1

1

2

Data Structures and Algorithms II

Kruskal’s algorithm

B C

D E

F

G

61
1

1
4

2

2

1

2
2

4

A

B

1
A

B C

1
1

A

B C

1
1

A

D

F

1

Edge Cost

AB

BC

DF

EG

AF

BD

DE

EF

BE

CE

AG

1

1

1

1

2

2

2

2

4

4

6

()

()

()

()

()











B C

1
1

A

D

F

1

E

G

1

B C

1
1

A

D

F

1

E

G

12

B C

1
1

A

D

F

1

E

G

12 2

Edge Cost

AB

BC

DF

EG

AF

BD

DE

EF

BE

CE

AG

1

1

1

1

2

2

2

2

4

4

6

()

()

()

()

()











Data Structures and Algorithms II

 Proposition: Kruskal’s algorithm find MCST

 Proof:

ee

ii

Ee

Ee

Ee

Ee

Ee

MST

T

sKruskal

T




33

22

11

'

'

first index the two

solutions differ

ejiECosteCost ji )()(

Data Structures and Algorithms II

 Including in MCST creates a cycle

Not all edges in the cycle belongs to T (Kruskal’s)

At least one of them must have a higher costs

Remove that high-cost edge breaks the cycle and

maintain the tree structure

ei

ei

Ei1
Ei2

Eik

ei

Ei1
Ei2

Eik

 Time complexity
 Total e edges are considered in order of

nondecreasing cost
 Use partially-ordered tree (heap) to represent edges

 Construction O(e log e)

 Deletemin O(e log e)

At each step, remove edge with a minimum
cost and check to see whether it creates a cycle
if included

 Use Union-and-Find tree

 Initially each vertex in a set by itself

 Inclusion of an edge, join the sets containing the
edge’s two end points

 Edges are not included if the two end points are
in the same set

O(e log e)

Single-Source Shortest Path

 Input:

G=(V,E), an directed, labeled graph

A source vertex

 Output:

 The shortest path, from source to every other

vertices in the graph, if one exists

Possible Greedy Strategies

 Exploring a maze where you cannot see

beyond the first turn

 Extremely greedy: with no memory, go

where the path leads you (good paths can

turn bad at any instance)

 Cautiously greedy: with memory, go where

the shortest path encountered so far

(backtracking to the path necessary)

Greedy Selection

1. Visited set = {s}

2. From visited set, find all 1-distance (direct
edge) neighbors

3. Visit the one with the shortest distance: n

4. Enlarge visited set = visited set U {n}

5. Update distances to the remaining vertices

1. Go through original visited set

2. Go through n

6. Go back to 2

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Complexity: O(n2)

Comparison

 Prim’s MCST

 Two groups

 Already in ST (U)

 Not yet in ST (V-U)

 Update

 Find the min edge from

U to V-U

 Build table of partial

solutions: O(n) steps,

<O(n) updates O(n2)

 Dijkstra’s shortest path

 Two groups

 Already found path to

 Not yet found path to

 Update

 Find the shortest path from

U to V-U

 Build table of partial

solutions: O(n) steps,

<O(n) updates O(n2)

Cost Cost Cost new i

Closest Cost Cost new i new Closet

i i

i i i



 

min(, (,))

((,))? :

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Initially
 You cannot go to blue through dashed green and

then circle back with a lower cost

Next Step
 Dashed blue: reached by blue only

 Dashed green: reached by green only

 Dashed cyan: reached by both green

and blue

 One of the dashed blue, green, or cyan will be visited next (i.e., the shortest

path to the visited node is determined greedily)

 Is that possible to go through other dashed blue, green, or cyan and circle back

to the visited node with a shorter path?

Case one: Dashed green is selected

 Other dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter

Case two: Dashed blue is selected

 Dashed green: cannot be shorter

 Other dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter

Case three: Dashed cyan is selected

 Dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Other dashed cyan: cannot be shorter

Induction

 Assume that the (current) shortest path
to neighbors right outside the wall
(one distance away) has been found

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Induction

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

 One more node is

added

 Three things can happen for a node still outside

the wall (the envelop) after a new node is added

Not reached by the new node

 The current best path didn’t change

Reached by the new node but not any node in the

previous envelop

 The current best path must be the one via the new node

Reached by the new node and also nodes in the

previous envelop

 The update process should record the best between the two

 Hence, when “the best of the best” is chosen to

go out the wall, one cannot jump through other

paths on the wall and circle back to get a better

result

Data Structures and Algorithms II

Job Sequencing with Deadlines

 Input:

 a set of n jobs, each with a deadline and a profit

if completed before deadline

 one machine to execute all the jobs

 each job takes one unit of time

 Output:

 a subset of jobs, each completed before

deadline, with maximum profit

Data Structures and Algorithms II

 Objective function:

 Feasibility constraint:

 Example:

max Pi
i J



n P P P P

d d d d

 



4 100 10 15 27

2 1 2 1

1 2 3 4

1 2 3 4

,(, , ,) (, , ,)

(, , ,) (, , ,

feasible schedule profit

(1,2) 2,1 110

(1,3) 1,3 or 3,1 115

(1,4) 4,1 127

(2,3) 2,3 25

(3,4) 4,3 42

(1) 1 100

(2) 2 10

(3) 3 15

(4) 4 27

Data Structures and Algorithms II

 SELECT: select the job with maximum

profit subject to the constraint that the

resulting schedule is still feasible

J P

Initially

not feasible

not feasible

i
i J



 0

1 1 100

4 1 4 127

3 1 4 127 1 4 3

2 1 4 127 1 4 2

()

(,)

(,) (, ,)

(,) (, ,)

Data Structures and Algorithms II

(Q1) How to determine if J is feasible?

(Q2) Is greedy algorithm optimal?

(Q1) If J={1,2,3,…,k}

 try all possible (k!) permutations (schedules)

and see whether at least one of them allows all

jobs to be finished before their deadlines

 intuitively, jobs with earlier deadline (more

urgent) should be performed first

 check the permutation  * (, ,...,)

...



  

i i i

d d d

k

i i ik

1 2

1 2

Data Structures and Algorithms II

 Proposition: J={1,2,…,k} is feasible if and

only if is feasible

 Proof:

 If is feasible, then J={1,2,…,k} is feasible

(by definition)

 If J={1,2,…,k} is feasible, then

 *

 *

 ' time
a b

backward moved becan i

forward moved becan j

order ofout

deadline before completed job

bdd

abd

dd

bd

ad

ji

j

ji

j

i











i j

Data Structures and Algorithms II

 Proposition: The greedy method produces a

schedule with the maximum profit

 Proof:

 Two different solutions: optimal and greedy

 Jobs that are in both optimal and greedy

 make sure that they are scheduled at the same time

 Jobs that are in one but not the other

 change them into ones in greedy without decreasing

profit

 The process continues until two solutions are

equal

 For jobs that are in both

 the job is scheduled the same in both

 the job is scheduled earlier in optimal

 the job is scheduled earlier in greedy

Again, change optimal to greedy

I(greedy)

J(optimal)

a

a b

time

I(greedy)

J(optimal)

a

ba time

 For jobs that are different

 I’ and J’ are such that jobs common to both are

scheduled at the same slot

I’(greedy)

J’(optimal)
b

timea

P Pa b  if b has a larger profit

and is feasible, it will appear in

the greedy solution

time

– Replace b with a in the optimal solution will

not decrease the profit

Finally

 Can it be that greedy solution still does

more jobs than optimal?

No, optimal will not be optimal then

 Can it be that optimal solution does more

jobs than greedy?

No, if such a job is feasible, how come greedy

solution doesn’t include it?

Data Structures and Algorithms II

 Time complexity

 Sort jobs according to nondecreasing profit

O(nlogn)

Consider n jobs in turn

 for each job, insert the job into the partial solution

using its deadline O(i)

 check whether the new solution is still feasible O(i)

O n()2

Data Structures and Algorithms II

Greedy Method as Heuristics

 For problems whose solutions are found by

“try-all-possibilities,” an optimal solution is

difficult to compute for large problem size

 Greedy method can usually produce a “very

good” solution at a fraction of the cost

Data Structures and Algorithms II

 Example: Traveling salesperson’s problem

 Input: a fully connected, labeled undirected

graph

Output: a tour (a simple cycle including all

vertices) whose edge weights are minimum.

Greedy method:

 A variant of Kruskal’s algorithm

 Consider edges in nondecreasing cost

 The edge under consideration, together with all

edges already selected:

 do not cause a vertex to have a degree of three or more

 do not form a cycle, unless the number of edges equals to

that of vertices

Data Structures and Algorithms II

(0,0)

(4,3)

(1,7) (15,7)

(15,4)

(18,0)

1

2

3

4
5 6

7

8

9

10

 Greedy solution

 5,6 rejected: cycle

 7,8 rejected: vertex

degree larger than 2

 cost = 49.73

 Optimal solution

 cost = 48.39

