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Problems whose solutions can be “ranked”

 Travel Investment Course 

selection 

Feasible 

solutions 

stay on highway, 

finish in x days 

don’t spend more 

than one has 

finish in 4 

years 

Optimal 

solutions 

shortest distance, 

minimum time 

maximum 

returns, minimum 

risks 

best 

combination 

of depth and 

breadth 

Decisions which highways 

to take  

invest or not in a 

portfolio 

take a course 

or not 
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 Decisions can be made

 one at a time, without backtracking

Greedy method

Which decisions to make next?

How to guarantee optimality?

 Try many (all) possible combinations and 

choose one which is the best

Dynamic programming

How to test multiple solutions efficiently?
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The Greedy Method

 Input n elements stored in an array A(1:n)

 Procedure Greedy

 Solution = NULL

 for i=1 to n do 

x = SELECT(A)

 if FEASIBLE(Solution, x)

 then Solution = UNION(Solution, x)

endif

 enddo

 return (Solution)
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 A sequence of n decisions w.r.t n inputs

 SELECT: select one of the remaining 

decisions to make according to some 

optimization measure 

 once a decision is made, it will not become 

invalid at a later time

 optimization should be based on the partial 

solutions built so far 

 FEASIBLE: whether the partial solution 

satisfies some preset constraints



Data Structures and Algorithms II

 Strategy: construct feasible solutions one 

step at a time which optimize (minimize or 

maximize) a certain objective function

 Make the obvious decisions first!

 Then try to show it is indeed optimal!
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Knapsack problem

 Input: 

 a set of n objects 

 a knapsack of capacity M

 Output: fill the knapsack to maximize the 

total profit earned

 Feasibility constraint: 

 Objective function:
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 For all three algorithms

 decisions are made one object at a time

 the ordering is determined by some 

optimization measure

 Largest increase in profit  

 Include the remaining object of the largest profit

 Smallest increase in weight

 Include the remaining object of the smallest weight

 Largest increase in profit/weight

 Include the remaining object of the largest profit/weight

 never backtrack

 all greedy algorithms

 not all guarantee optimal
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 Proposition: Greedy selection based on 

maximizing profit to weight ratio gives the 

optimal result

 General proof strategy:

Assume that the greedy solution is

Assume that the optimal solution is

Then they better be different

 Transform Y into X without decreasing the 

profit of Y

X X X Xn ( , ,..., )1 2

Y Y Y Yn ( , ,..., )1 2
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 Proof:

Assume 
P
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New optimal (Z)

Optimal (Y)
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 Z is also an optimal solution

Either Z=X (Done)

Or not (Repeat the above procedure until Z=X)
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 Time complexity

 Sort the n objects according to profit to weight 

ratio O(nlogn)

 Scan down the sorted list

if  remaing capaity then

remaining capacity - =

else

remaining capacity

remaing capacity 0

endif
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Optimal Storage on Tape

 Input: 

A set of n programs of different length

A computer tape of length L

 Output:

A storage pattern which minimizes the total 

retrieval time (TRT)

 before each retrieval, head is repositioned at the front

TRT l I i i ii
k jj n

nk
  

   11
1 2, ,...
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 Objective function: minimize TRT

 Feasibility constraint: 

 Example
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 SELECT: Select the program to store next 

which minimizes the increase in TRT

TRT l

TRT l TRT l

TRT TRT l l l

old i
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new i old i
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 Proof strategy

 follow the same principle as in knapsack 

problem

 there is a greedy solution

 there is an optimal solution

 they are different

 line them up and they better differ in some storage 

locations

 then make them the same (by swapping)

 prove that the swapping does not reduce the 

optimality 
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Front

Optimal

Greedy

i1 i2 ir

si
ir

sr ii 

si

 Swap ir and is in the optimal solution
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 Intuitively

a b

Front

• For programs stored in 

– retrieval does not scan through either a or b

– ordering of a and b not important

• For programs stored in 

– retrieval scans through both a and b

– ordering of a and b not important

• For programs stored in 

– retrieval scans through a but not b

– ordering of a and b is important
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 Proposition: The storage pattern with 

nondecreasing length order produces the 

smallest TRT
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 If prog. a and prog. b are out of order, then 

swap them should reduce the TRT

TRT n k l n a l n b l

TRT n k l n a l n b l

TRT TRT n a l l n b l l

b a l l
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• Time complexity: O(nlogn) for sorting
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Optimal Merge Pattern

 Input: a set of files of different lengths

 Output: an optimal sequence of two-way 

merges to obtain a sorted files

F i n q

F F O q q
i i

i j i j

, ,

( )

1 



 of length 

merge files  and  requires  time
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 Example
n q q q

ordering

 3 30 20 101 2 3,( , , ) ( , , )

cost

1,2,3 50 + 60 = 110

1,3,2 40 + 60 = 100

2,1,3 50 + 60 = 110

2,3,1 30 + 60 = 90

3,1,2 40 + 60 = 100

3,2,1 30 + 60 = 90

• Programs (files) stored on a tape (already merged together) 

may affect the access times (the merge times) of new 

programs (files) to be stored (merged)

• SELECT: At each step, merge two smallest files



 Binary merge tree

Distance from an external node to root = # of 
times a file is involved in merging

 Total # of record moves for file i

 external path length to reach node i

 Total # of record moves for all files

 total external path length

5 10

20 30 3015

35 60

95

internal

external

d qi i
i

n
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d qi i
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Huffman Code

 For data compression to save storage space 

and transmission bandwidth

 ASCII code uses fixed-length 8 

bits/character code words, O(8n) for storage 

and transmission

 Huffman codes uses variable-length code 

words depending on the frequency of 

occurrence



Data Structures and Algorithms II

 Example

 a b c d e f 

Frequency 

(thousands) 

45 13 12 16 9 5 

Fixed-length 000 001 010 011 100 101 

Variable-length 0 101 100 111 1101 1100 

 

 

bits000,2244000,54000,93000,16

3000,123000,131000,45length-variable

bits000,300300

0,100lengthfixed
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 Prefix codes

 no codeword is a prefix of some other 

codeword

1010

1010001

… 110 …. 1010 … 

codeword a

codeword b

codeword a?

or beginning of codeword b?
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a:45d:16 b:13c:12e:9f:5

a:45

e:9f:5

14
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a:45

e:9f:5
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d:16

b:13c:12

25

10
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 Huffman code

Distance from an external node to root = # of 
bits in the code word

 Total effort of sending i

 external path length to reach node i

 Total effort of sending all alphabets

 total external path length

d qi i
i
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An Important Fact

 Using Huffman-tree rules, nodes that are 

merged first must have a longer path to the 

root than nodes that are merged later

2,,21  jipppp ji

lmax

No node can be merged more than once

before p1+p2 is involved again



An Important Fact (cont.)

 An iteration:

Between two successive merges involve p1

 In an iteration

No node can be involved in more than one 

merge

No node can increase in path length more than 

p1

 Hence, p1 must have the longest path length
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 Proposition: Huffman construction 

minimizes the expected codeword length 
p l

p

l

i i
i

n

i

i




1

probability of occurance

codeword length

• Proof:

Optimal prefix-code tree Huffman prefix-code tree

transform without increasing

expected codeword length

Assume that p p pn1 2  ...



Optimal prefix-code tree
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 Recursion

 once p1 and p2 are moved to their right locations

merge them into a single node of p1+p2 

 now, greedy method will select from p1+p2, p3, 

…, pn the smallest two to merge

 if that is not the case for optimal, then ... 

pi

p j

p1 p2

pi

p j

21 pp  pi

p j

21 pp 



Data Structures and Algorithms II

 Time complexity

with n alphabets to code, exactly n-1 merges 

are needed

 for each merge

 find an least-frequently-used alphabet

 find the next least-frequently-used alphabet

 merge

 put merged subtrees back into the list of subtrees

 priority queue (heap) is ideal for this operation

O(n) steps of detelemin and insert (O(logn))

O(nlogn) 
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Minimum-Cost Spanning Tree

 Input: G=(V,E), an undirected, labeled 

graph

 Output: T=(V,E’), a subgraph of G

 includes all the vertices

 is a tree

 the sum of labels (costs) of all tree branches is 

minimum among all spanning trees

}(Spanning tree)
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 Objective function:

 Feasibility constraint: a tree containing all 

vertices

 Example
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 SELECT: At each step, choose an edge with 

minimum cost (optimality) such that 

(feasibility):

 the partial solution is always a tree (Prim)

 the partial solution has potential of becoming a 

tree (no cycles, but not necessarily connected) 

(Kruskal)
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Prim’s algorithm

 First step: select a minimum cost edge, 

include it in the solution

 Other steps: select an edge (u,v), u in U and

v in V-U, until all vertices are counted for 

U
V-U

Select one
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2
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A B C D E F G

A A A A A A

B B B A A
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D D A
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Nearest neighbor update



Data Structures and Algorithms II

 Proposition: Prim’s algorithm finds MCST

 Proof:

U V-U

e

e’

– Again, there are two solutions, PRIM and MCST

– They better differ, and MCST has a lower cost

– In the construction of PRIM, if an edge e is considered

– It is in MCST, ok, continue (cannot be forever)

– If it is not in MCST, then ….
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 Proposition: Prim’s algorithm finds MCST

 Proof: U V-U

e

e’

– Let U be the subgraph (tree) considered so far

– Let V-U be the remaining part, then 

– There must be at least one edge (e’) chosen between U 

and V-U in MCST

• Prim’s algorithm selects the minimum cost one (e)

• e’ can be replaced by e in the MCST
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 No cycle
 U has no cycle

 V-U has no cycle

 Between U and V-U cannot has cycle w. a single path e

 Still connected
 U is connected

 V-U is connected

 U and V-U connected through either e or e’

 The same number of edges => it is a spanning tree

 A tree of a smaller cost

U

e

e’

V-U
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 Time complexity

 Totally n vertices have to be connected

 Each time an edge is added, one additional vertex 

is accounted for

Loop through n-1 times

 Through each loop

 Select the edge of a minimum cost from U to V-U

 Update the nearest vertex and cost for vertices in V-U’

O(n-i)

O(n-i)

( ) ( )n i O n
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n
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Kruskal’s algorithm
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 Proposition: Kruskal’s algorithm find MCST

 Proof:

ee
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 Including         in MCST creates a cycle

Not all edges in the cycle belongs to T (Kruskal’s)

At least one of them must have a higher costs

Remove that high-cost edge breaks the cycle and 

maintain the tree structure

ei

ei

Ei1
Ei2

Eik

ei

Ei1
Ei2

Eik



 Time complexity
 Total e edges are considered in order of 

nondecreasing cost
 Use partially-ordered tree (heap) to represent edges

 Construction O(e log e)

 Deletemin O(e log e)

At each step, remove edge with a minimum 
cost and check to see whether it creates a cycle 
if included

 Use Union-and-Find tree

 Initially each vertex in a set by itself

 Inclusion of an edge, join the sets containing the 
edge’s two end points

 Edges are not included if the two end points are 
in the same set

O(e log e)



Single-Source Shortest Path

 Input: 

G=(V,E), an directed, labeled graph

A source vertex

 Output:

 The shortest path, from source to every other 

vertices in the graph, if one exists



Possible Greedy Strategies

 Exploring a maze where you cannot see 

beyond the first turn

 Extremely greedy: with no memory, go 

where the path leads you (good paths can 

turn bad at any instance)

 Cautiously greedy: with memory, go where 

the shortest path encountered so far 

(backtracking to the path necessary) 



Greedy Selection

1. Visited set = {s}

2. From visited set, find all 1-distance (direct 
edge) neighbors

3. Visit the one with the shortest distance: n

4. Enlarge visited set = visited set U {n}

5. Update distances to the remaining vertices

1. Go through original visited set

2. Go through n 

6. Go back to 2



If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

Complexity: O(n2)



Comparison

 Prim’s MCST

 Two groups

 Already in ST (U)

 Not yet in ST (V-U)

 Update

 Find the min edge from 

U to V-U

 Build table of partial 

solutions: O(n) steps, 

<O(n) updates O(n2)

 Dijkstra’s shortest path

 Two groups

 Already found path to 

 Not yet found path to

 Update

 Find the shortest path from 

U to V-U

 Build table of partial 

solutions: O(n) steps, 

<O(n) updates O(n2)

Cost Cost Cost new i

Closest Cost Cost new i new Closet

i i

i i i



 

min( , ( , ))

( ( , ))? :

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}



Initially 
 You cannot go to blue through dashed green and 

then circle back with a lower cost



Next Step 
 Dashed blue: reached by blue only

 Dashed green: reached by green only

 Dashed cyan: reached by both green 

and blue

 One of the dashed blue, green, or cyan will be visited next (i.e., the shortest 

path to the visited node is determined greedily)

 Is that possible to go through other dashed blue, green, or cyan and circle back 

to the visited node with a shorter path?



Case one: Dashed green is selected 

 Other dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter



Case two: Dashed blue is selected 

 Dashed green: cannot be shorter

 Other dashed blue: cannot be shorter

 Dashed cyan: cannot be shorter



Case three: Dashed cyan is selected 

 Dashed green: cannot be shorter

 Dashed blue: cannot be shorter

 Other dashed cyan: cannot be shorter



Induction 

 Assume that the (current) shortest path  
to neighbors right outside the wall 
(one distance away) has been found 

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}



Induction 

If (dist(w)>dist(n)+cost(n,w)) {

dist(w) = dist(n)+cost(n,w);

previous_neighbor = n;

}

 One more node is 

added



 Three things can happen for a node still outside 

the wall (the envelop) after a new node is added

Not reached by the new node 

 The current best path didn’t change

Reached by the new node but not any node in the 

previous envelop

 The current best path must be the one via the new node

Reached by the new node and also nodes in the 

previous envelop

 The update process should record the best between the two 

 Hence, when “the best of the best” is chosen to 

go out the wall, one cannot jump through other 

paths on the wall and circle back to get a better 

result
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Job Sequencing with Deadlines

 Input:

 a set of n jobs, each with a deadline and a profit 

if completed before deadline

 one machine to execute all the jobs

 each job takes one unit of time

 Output:

 a subset of jobs, each completed before 

deadline, with maximum profit
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 Objective function:

 Feasibility constraint:

 Example:

max Pi
i J



n P P P P

d d d d

 



4 100 10 15 27

2 1 2 1

1 2 3 4

1 2 3 4

,( , , , ) ( , , , )

( , , , ) ( , , ,

feasible schedule profit 

(1,2) 2,1 110

(1,3) 1,3 or 3,1 115

(1,4) 4,1 127

(2,3) 2,3 25

(3,4) 4,3 42

(1) 1 100

(2) 2 10

(3) 3 15

(4) 4 27
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 SELECT: select the job with maximum 

profit subject to the constraint that the 

resulting schedule is still feasible

J P

Initially

not feasible

not feasible

i
i J



 0

1 1 100

4 1 4 127

3 1 4 127 1 4 3

2 1 4 127 1 4 2

( )

( , )

( , ) ( , , )

( , ) ( , , )



Data Structures and Algorithms II

(Q1) How to determine if J is feasible?

(Q2) Is greedy algorithm optimal?

(Q1) If J={1,2,3,…,k}

 try all possible (k!) permutations (schedules) 

and see whether at least one of them allows all 

jobs to be finished before their deadlines

 intuitively, jobs with earlier deadline (more 

urgent) should be performed first

 check the permutation  * ( , ,..., )

...



  

i i i

d d d

k

i i ik

1 2

1 2
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 Proposition: J={1,2,…,k} is feasible if and 

only if      is feasible

 Proof: 

 If       is feasible, then J={1,2,…,k} is feasible 

(by definition)

 If J={1,2,…,k} is feasible, then 

 *

 *

 ' time
a b

backward moved becan  i

forward moved becan  j

order ofout 

deadline before completed job

bdd

abd

dd

bd

ad

ji

j

ji

j

i











i j
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 Proposition: The greedy method produces a 

schedule with the maximum profit

 Proof: 

 Two different solutions: optimal and greedy

 Jobs that are in both optimal and greedy

 make sure that they are scheduled at the same time

 Jobs that are in one but not the other

 change them into ones in greedy without decreasing 

profit

 The process continues until two solutions are 

equal



 For jobs that are in both

 the job is scheduled the same in both 

 the job is scheduled earlier in optimal

 the job is scheduled earlier in greedy

Again, change optimal to greedy

I(greedy)

J(optimal)

a

a b

time

I(greedy)

J(optimal)

a

ba time



 For jobs that are different

 I’ and J’ are such that jobs common to both are 

scheduled at the same slot

I’(greedy)

J’(optimal)
b

timea

P Pa b   if b has a larger profit

and is feasible,  it will appear in 

the greedy solution

time

– Replace b with a in the optimal solution will 

not decrease the profit



Finally

 Can it be that greedy solution still does 

more jobs than optimal? 

No, optimal will not be optimal then

 Can it be that optimal solution does more 

jobs than greedy? 

No, if such a job is feasible, how come greedy 

solution doesn’t include it? 
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 Time complexity

 Sort jobs according to nondecreasing profit 

O(nlogn)

Consider n jobs in turn

 for each job, insert the job into the partial solution 

using its deadline O(i)

 check whether the new solution is still feasible O(i)

O n( )2
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Greedy Method as Heuristics

 For problems whose solutions are found by 

“try-all-possibilities,” an optimal solution is 

difficult to compute for large problem size

 Greedy method can usually produce a “very 

good” solution at a fraction of the cost
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 Example: Traveling salesperson’s problem

 Input: a fully connected, labeled undirected 

graph

Output: a tour (a simple cycle including all 

vertices) whose edge weights are minimum.

Greedy method:

 A variant of Kruskal’s algorithm

 Consider edges in nondecreasing cost

 The edge under consideration, together with all 

edges already selected:

 do not cause a vertex to have a degree of three or more

 do not form a cycle, unless the number of edges equals to 

that of vertices
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(0,0)

(4,3)

(1,7) (15,7)

(15,4)

(18,0)

1
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3

4
5 6

7

8

9

10

 Greedy solution

 5,6 rejected: cycle

 7,8 rejected: vertex 

degree larger than 2

 cost = 49.73

 Optimal solution

 cost = 48.39


