

Essence

 Probabilistic algorithms or sampling * A degree of randomness is part of the logic (using a random number generator) Results can be different for different runs Algorithms may Produce incorrect results (Las Vegas) □ Fail to produce a result (Monte Carlo)

Example

An array of n elements, half are 'a' and half are 'b'
Find an 'a' in the array

- findA_LVRepeat
 - Randomly select one out of n elements
 - Until 'a' is found
- End

- findA_MC
 - \Box count = 0
 - Repeat
 - Randomly select one out of n elements
 - > count ++
 - Until 'a' is found or count > k
- End

Example (cont)

An array of n elements, half are 'a' and half are 'b'
Find an 'a' in the array

findA_LV
Always succeeds
Random run time (average is O(1)) findA_MC
Succeed with P=1-(1/2)^k
Max run time is O(k)

More Example

Quick sort

- □ The selection of pivot is random
- Always produce the correct results, but runtime is random
- □ Average runtime is O(nlogn)

General Curve Fitting $y = f(x, a_1, a_2, \dots, a_n)$ $y = ax^2 + bx + c$

n input points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 3 input points (1,1), (2,2), (3,1)

	2			
n equations	3 equations			
$y_{1} = f(x_{1}, a_{1}, a_{2}, \dots, a_{n})$ $y_{2} = f(x_{2}, a_{1}, a_{2}, \dots, a_{n})$ \dots $y_{n} = f(x_{n}, a_{1}, a_{2}, \dots, a_{n})$	a+b+c=1 4a+2b+c=2 9a+3b+c=1			
$\begin{bmatrix} f(x_1) \\ a_2 \end{bmatrix} \begin{bmatrix} y_1 \\ a_2 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 \\ & & \\ & & & \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$			
	$\begin{vmatrix} 4 & 2 & 1 \\ 0 & 2 & 1 \end{vmatrix} D = 2$			
$\begin{bmatrix} f(x_n) \end{bmatrix} \begin{bmatrix} a_n \end{bmatrix} \begin{bmatrix} y_n \end{bmatrix}$ solve for $a \cdots a$	$\begin{bmatrix} 9 & 3 & 1 \end{bmatrix} \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$			
solve for a_1, \cdots, a_n	u = -1, v = 4, c = -2			

General Least Square Regression

$$\min_{\theta = (a_0, a_1, \dots, a_{n-1})} E
where $E = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 =
\min_{\theta = (a_0, a_1, \dots, a_{n-1})} \sum_{i=1}^{m} (y_i - (a_{n-1}x_i^{n-1} + a_{n-2}x_i^{n-2} + \dots + a_1x_i^1 + a_0))^2
\frac{\partial E}{\partial a_j} = 0, j = 1, \dots, n
\sum_{i=1}^{m} x_i^{\ j} (y_i - (a_{n-1}x_i^{n-1} + a_{n-2}x_i^{n-2} + \dots + a_1x_i^1 + a_0)) = 0$$$

General Least Square Regression

 $\sum_{i=1}^{m} x_{i}^{j} (y_{i} - (a_{n-1}x_{i}^{n-1} + a_{n-2}x_{i}^{n-2} + \dots + a_{1}x_{i}^{1} + a_{0})) = 0$ $(\sum_{n=1}^{m} x_{i}^{j} x_{i}^{n-1})a_{n-1} + (\sum_{n=1}^{m} x_{i}^{j} x_{i}^{n-2})a_{n-2} + \dots + (\sum_{n=1}^{m} x_{i}^{j} x_{i}^{n-1})a_{1} + (\sum_{n=1}^{m} x_{i}^{j})a_{0} = \sum_{n=1}^{m} x_{i}^{j} y_{i}$ $\sum_{i=1}^{i=1} x_i^{n-1} x_i^{n-1} \sum_{i=1}^{m} x_i^{n-1} x_i^{n-2} \cdots \sum_{i=1}^{m} x_i^{n-1} \left[a_{n-1} \right] \left[\sum_{i=1}^{m} x_i^{n-1} y_i \right]$ $\sum_{i=1}^{m} x_i^{n-2} x_i^{n-1} \quad \sum_{i=1}^{m} x_i^{n-2} x_i^{n-2} \quad \cdots \quad \sum_{i=1}^{m} x_i^{n-2} \quad \left| \begin{array}{c} a_{n-2} \\ a_{n-2} \end{array} \right| \quad \left| \begin{array}{c} \sum_{i=1}^{m} x_i^{n-2} y_i \\ a_{n-2} \end{array} \right|$ $\cdots \sum_{m=1}^{m} 1$ $\sum_{i=1}^{m} x_i^{n-2}$ $\sum_{i=1}^{m} y_{i}$ $\sum x_i^{n-1}$ a_o

Homework #4

min E, where
$$E = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

min $E \Rightarrow \min_{\theta = (a,b)} \sum_{i=1}^{m} (y_i - (ax_i + b))^2$
 $\frac{\partial E}{\partial a} = \frac{\partial E}{\partial b} = 0$
 $\frac{\partial E}{\partial a} = 2\sum_{i=1}^{m} x_i (y_i - (ax_i + b)) = 0 \Rightarrow (\sum x_i^2)a + (\sum x_i)b = \sum x_i y_i$
 $\frac{\partial E}{\partial b} = 2\sum_{i=1}^{m} (y_i - (ax_i + b)) = 0 \Rightarrow (\sum x_i)a + (\sum 1)b = \sum y_i$
 $\left[\sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} x_i \right] \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum x_i y_i \\ \sum y_i \end{bmatrix}$

Caveats

LS Democracy, everybody gets an equal say Perform badly with "outliers"

Outliers

Outliers (y)

Outliers (x, leverage points)

Randomized Algorithm

- Choose p points at random from the set of n data points
- Compute the fit of model to the p points
- Compute the median of the fitting error for the remaining n-p points
- The fitting procedure is repeated until a fit is found with sufficiently small median of squared residuals or up to some predetermined number of fitting steps (Monte Carlo Sampling)

How Many Trials? Well, theoretically it is C(n,p) to find all possible p-tuples

Very expensive

 $1 - (1 - (1 - \varepsilon)^{p})^{m}$

 ε : fraction of bad data

 $(1 - \varepsilon)$: fraction of good data

 $(1 - \varepsilon)^p$: all p samples are good

 $1 - (1 - \varepsilon)^{p}$: at least one sample is bad

 $(1 - (1 - \varepsilon)^{p})^{m}$: got bad data in all *m* tries

 $1 - (1 - (1 - \varepsilon)^{p})^{m}$: got at least one good p set in m tries

How Many Trials (cont.)

Make sure the probability is high (e.g. >95%)
given p and epsilon, calculate m

p	5%	10	20	25	30	40	50
		%	%	%	%	%	%
1	1	2	2	3	3	4	5
2	2	2	3	4	5	7	11
3	2	3	5	6	8	13	23
4	2	3	6	8	11	22	47
5	3	4	8	12	17	38	95

Best Practice

- Randomized selection can completely remove outliers
- "plutocratic"
- Results are based on a small set of features

 LS is most fair, everyone get an equal say

- * "democratic"
- But can be seriously influenced by bad data

Use randomized algorithm to remove outliers
Use LS for final "polishing" of results (using all "good" data)

Allow up to 50% outliers theoretically

Navigation

Autonomous Land Vehicle (ALV), Google's Self-Driving Car, etc. One important requirement: track the position of the vehicle * Kalman Filter, loop of □ (Re)initialization Prediction Observation Correction

Navigation

 Hypothesis and verification
 Classic Approach like Kalman Filter maintains a single hypothesis
 Newer approach like particle filter maintains multiple hypotheses (Monte Carlo sampling of the state space)

Single Hypothesis

- If the "distraction" noise is white and Gaussian
- State-space probability profile remains Gaussian (a single dominant mode)
- Evolving and tracking the mean, not a whole distribution

Multi-Hypotheses

The distribution can have multiple modes
Sample the probability distribution with "importance" rating

Evolve the whole distribution, instead of just the mean

$$\frac{Key - Baeys Rule}{p(o_i) = \frac{p(o_i s_i)}{p(o)} = \frac{p(o_i s_i)P(s_i)}{p(o)} \approx p(o_i s_i)P(s_i)$$

s:state

o: observation

In the day time, some animal runs in front of you on the bike path, you know exactly what it is (p(o|si) is sufficient)

In the night time, some animal runs in front of you on the bike path, you can hardly distinguish the shape (p(o|si) is low for all cases, but you know it is probably a squirrel, not a lion because of p(si))

Initialization: before observation and measurement

Observation: after seeing a door

P(s): probability of state P(o|s): probably of observation given current state

Prediction : internal mechanism saying that robot moves right

Correction : prediction is weighed by confirmation with observation

PARTICLE FILTERS FOR LOCALIZATION MONTE CARLO LOCALIZATION $x' = x + v \cdot \Delta t \cdot \cos \theta$ $y' = y + v \cdot \Delta t \cdot \sin \theta$ $\theta' = \theta + \omega \cdot \Delta t$ velocity ~ turning velocity w At

Why Be Stochastic?

More Choices – remove bad data
More Alternatives – sample the problem states based on likelihood

