
Randomized Algorithms



Essence

 Probabilistic algorithms or sampling

 A degree of randomness is part of the logic 

(using a random number generator)

 Results can be different for different runs

 Algorithms may

 Produce incorrect results (Las Vegas)

 Fail to produce a result (Monte Carlo)



Example

 findA_LV

 Repeat

 Randomly select one 

out of n elements

 Until ‘a’ is found

 End

 findA_MC

 count = 0

 Repeat

 Randomly select one 

out of n elements

 count ++

 Until ‘a’ is found or 

count > k

 End 

 An array of n elements, half are ‘a’ and half are ‘b’

 Find an ‘a’ in the array



Example (cont)

 findA_LV

 Always succeeds

 Random run time 

(average is O(1))

 findA_MC

 Succeed with P=1-

(1/2)^k

 Max run time is O(k)

 An array of n elements, half are ‘a’ and half are ‘b’

 Find an ‘a’ in the array



More Example

 Quick sort

The selection of pivot is random 

Always produce the correct results, but runtime 

is random

Average runtime is O(nlogn)



General Curve Fitting
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General Least Square Regression
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General Least Square Regression
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Homework #4
















































































i

ii

i

ii

ii

m

i

ii

iiii

m

i

iii

m

i

ii
ba

m

i

ii

y

yx

b

a

x

xx

ybaxbaxy
b

E

yxbxaxbaxyx
a

E

b

E

a

E

baxyE

yyEE

1

)1()(0))((2

)()(0))((2

0

))((minmin

)ˆ( where,min

2

1

2

1

2

1
),(

1

2





Caveats
 LS 

Democracy, everybody gets an equal say

 Perform badly with “outliers”

X

Y



noisy data

outliers

Noisy Data vs. 

Outliers



Outliers

 Outliers (y)  Outliers (x, leverage points)



Computer Vision and Image Analysis

Randomized Algorithm

 Choose p points at random from the set of n 

data points

 Compute the fit of model to the p points

 Compute the median of the fitting error for 

the remaining n-p points

 The fitting procedure is repeated until a fit 

is found with sufficiently small median of 

squared residuals or up to some 

predetermined number of fitting steps 

(Monte Carlo Sampling)



How Many Trials?
 Well, theoretically it is C(n,p) to find all 

possible p-tuples

 Very expensive
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How Many Trials (cont.)

 Make sure the probability is high (e.g. >95%) 

 given p and epsilon, calculate m

p 5% 10

%

20

%

25

%

30

%

40

%

50

%

1 1 2 2 3 3 4 5

2 2 2 3 4 5 7 11

3 2 3 5 6 8 13 23

4 2 3 6 8 11 22 47

5 3 4 8 12 17 38 95



Best Practice

 Randomized selection 

can completely 

remove outliers

 “plutocratic” 

 Results are based on a 

small set of features

 LS is most fair, 

everyone get an equal 

say

 “democratic”

 But can be seriously 

influenced by bad data

 Use randomized algorithm to remove outliers

 Use LS for final “polishing” of results (using all 

“good” data) 

 Allow up to 50% outliers theoretically



Navigation

 Autonomous Land Vehicle (ALV), 

Google’s Self-Driving Car, etc.

 One important requirement: track the 

position of the vehicle

 Kalman Filter, loop of 

 (Re)initialization

 Prediction

Observation

Correction





Navigation

 Hypothesis and verification

Classic Approach like Kalman Filter maintains 

a single hypothesis

Newer approach like particle filter maintains 

multiple hypotheses (Monte Carlo sampling of 

the state space)



Single Hypothesis

 If the “distraction” – noise – is white and 

Gaussian

 State-space probability profile remains 

Gaussian (a single dominant mode)

 Evolving and tracking the mean, not a 

whole distribution



Multi-Hypotheses

 The distribution can have multiple modes

 Sample the probability distribution with 

“importance” rating

 Evolve the whole distribution, instead of 

just the mean



Key – Baeys Rule

 In the day time, some animal runs in front of 

you on the bike path, you know exactly what it 

is (p(o|si) is sufficient)

 In the night time, some animal runs in front of 

you on the bike path, you can hardly distinguish 

the shape (p(o|si) is low for all cases, but you 

know it is probably a squirrel, not a lion 

because of p(si))
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Initialization: before observation and measurement

Observation: after seeing a door

P(s): probability of state

P(o|s): probably of observation given current state



Prediction : internal mechanism saying that robot moves right 

Correction : prediction is weighed by confirmation with observation





new particles 

+ weights

controls
measurements

Particles + weights

Total weights



Why Be Stochastic?

 More Choices – remove bad data

 More Alternatives – sample the problem 

states based on likelihood


