Randomized Algorithms




Essence

<+ Probabilistic algorithms or sampling

<+ A degree of randomness Is part of the logic
(using a random number generator)

<« Results can be different for different runs
« Algorithms may

2 Produce incorrect results (Las Vegas)

2 Fail to produce a result (Monte Carlo)




Example

+ An array of n elements, half are ‘a’ and half are ‘b’

+ Find an ‘a’ in the array

«» findA_LV » findA_MC
0 Repeat acount=0
> Randomly select one 0 Repeat

t
out of n elements > Randomly select one

2 Until ‘a’ 1s found out of n elements
End > count ++

\/
0’0

2 Until ‘a’ 1s found or
count > k

< End




Example (cont)

+ An array of n elements, half are ‘a’ and half are ‘b’

+ Find an ‘a’ in the array

» findA_LV » findA_MC
0 Always succeeds 0 Succeed with P=1-
a Random run time (1/2)"k

(average is O(1)) 0 Max run time is O(Kk)




More Example

« Quick sort
2 The selection of pivot Is random

0 Always produce the correct results, but runtime
IS random

0 Average runtime is O(nlogn)




General Curve Fitting
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General Least Square Regression

min E
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Homework #4

min E,where E =" (y; — ¥;)’
i=1

min E = min Zm:(yi —(ax, +b))?
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Caveats

0 Democracy, everybody gets an equal say
0 Perform badly with “outliers”

Y °




Noisy Data vs.
Outliers

= noisy data
o outliers




Outliers

- Outliers (y) « Qutliers (x, leverage points)




Randomized Algorithm

<+ Choose p points at random from the set of n
data points

<« Compute the fit of model to the p points

< Compute the median of the fitting error for
the remaining n-p points

<« The fitting procedure Is repeated until a fit
IS found with sufficiently small median of
squared residuals or up to some
predetermined number of fitting steps
(Monte Carlo Sampling)

Computer Vision and Image Analysis




How Many Trials?

« Well, theoretically it is C(n,p) to find all

possible p-tuples
« Very expensive

L, 3 ¥ F (1 — ) H"

¢ . fraction of bad data

(1 — &) : fraction of good data

(1 -¢)" :all p samples are good

1-(1- &) :at least one sample is bad
(1-(1-¢)P)™ :got bad data in all m tries
1-(1-(1-¢)P)" :got at least one good p set

in m tries




How Many Trials (cont.)

< Make sure the probability is high (e.g. >95%)
< glven p and epsilon, calculate m
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Best Practice

<+ Randomized selection < LS i1s most fair,

can completely everyone get an equal
remove outliers say

« “plutocratic” + “democratic”

« Results are based ona <« But can be seriously
small set of features Influenced by bad data

«» Use randomized algorithm to remove outliers

« Use LS for final “polishing” of results (using all
“o00d” data)

< Allow up to 50% outliers theoretically




Navigation

< Autonomous Land Vehicle (ALV),
Google’s Self-Driving Car, etc.

< One Important requirement: track the
position of the vehicle

«» Kalman Filter, loop of
2 (Re)initialization
0 Prediction
0 Observation
2 Correction







Navigation

<+ Hypothesis and verification

0 Classic Approach like Kalman Filter maintains
a single hypothesis

0 Newer approach like particle filter maintains
multiple hypotheses (Monte Carlo sampling of
the state space)




(%)

Single Hypothesis

< If the “distraction” — noise — is white and
Gaussian

<« State-space probability profile remains
Gaussian (a single dominant mode)

<« Evolving and tracking the mean, not a
whole distribution

Probability density function
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Multi-Hypotheses

<« The distribution can have multiple modes

«» Sample the probability distribution with
“1mportance” rating

< Evolve the whole distribution, instead of
just the mean




Key — Baeys Rule

P(Si |O) it p(O,Si) — p(olsi)P(Si) me p(0|3i)P(Si)
p(0) p(0)

S : state
0 : observation

2 In the day time, some animal runs in front of
you on the bike path, you know exactly what it
IS (p(o|si) Is sufficient)

2 In the night time, some animal runs in front of
you on the bike path, you can hardly distinguish
the shape (p(olsi) is low for all cases, but you
know It Is probably a squirrel, not a lion
because of p(si))




Initialization: before observation and measurement

Observation: after seeing a door

P(s): probability of state
P(ols): probably of observation given current state




Prediction : internal mechanism saying that robot moves right

Correction : prediction is weighed by confirmation with observation







Particles + weights
controls

measurements

new particle
+ weights




Why Be Stochastic?

< More Choices — remove bad data

«» More Alternatives — sample the problem
states based on likelihood




