
ShadowsShadows

IdeaIdea
If :object can be seen from light

position-lightened object
Else: object is in the shadow

Physical nature of Physical nature of
shadowsshadows
Umbra

◦Area of the shadowed object that is
not visible from any part of the light
source

Penumbra
◦Area of the shadowed object that

can receive some portion of light

Physical nature of Physical nature of
shadowsshadows
Umbra

◦Area of the shadowed object that is
not visible from any part of the light
source

Penumbra
◦Area of the shadowed object that

can receive some portion of light

Ways to Implement Ways to Implement
Projection Shadows

◦Shadow is projected into the plane of
the floor

Shadow Volumes
◦“Shadow” volume projected by

object
from the light source.

Shadow Maps
◦Shadow is created via testing

whether pixel is visible from the light
Creating Black Square Under

Object 

Ways to Implement Ways to Implement
Projection Shadows (Planar shadows)

◦ Shadow is projected into the plane of the
floor
 Object is projected into the plane of the floor
 then rendered as a separate primitive

◦ Applying this shadow is similar to decaling
a polygon with another coplanar one

Shadow Volumes
◦ “Shadow” volume projected by object

from the light source.
Shadow Maps

◦ Shadow is created via testing whether
pixel is visible from the light

Creating Black Square Under Object 

Projection ShadowsProjection Shadows

Shadow is projected into the plane of
the floor

Projection ShadowsProjection Shadows

+
◦ Easy to implement
◦ Cross-platform way

-
◦ Difficult to use shadow onto anything other

than flat surfaces
 carefully cast the shadow onto the plane of each

polygon face
 cliping the result to the polygon's boundaries
 Object splitting may be needed

◦ There are limits to how well you can
control the shadow's color

Complicated
calculations

Minuses are not important for HW 

Projection ShadowsProjection Shadows
 Uses projection transformations
 Shadowing object is projected to some surface,

related to shadowed object
◦ involves applying a orthographic or perspective

projection matrix to the modelview transform
 Visualized as separated primitive
 2-tier shadow calculations

◦ Matrix projection
 applying an orthographic or perspective projection matrix to the

modelview
◦ Visualization of the object with proper color

 rendering the projected object in the desired shadow color

 Ways:
◦ Construction is done via a sequence of transforms
◦ Construct a projection matrix directly

Projection ShadowsProjection Shadows
 Uses projection transformations
 Shadowing object is projected to some surface,

related to shadowed object
◦ involves applying a orthographic or perspective

projection matrix to the modelview transform
 Visualized as separated primitive
 2-tier shadow calculations

◦ Matrix projection
 applying an orthographic or perspective projection matrix to the

modelview
◦ Visualization of the object with proper color

 rendering the projected object in the desired shadow color

 Ways:
◦ Construction is done via a sequence of

transforms
◦ Construct a projection matrix directly

Render an object that has a shadow cast from Render an object that has a shadow cast from
a directional light on the a directional light on the zz axis down onto the axis down onto the
xx, , yy plane: plane:

Render the scene, including the shadowing
object in the usual way.

Set the modelview matrix to identity, then call
glScalef1.f, 0.f, 1.f(1.f, 0.f, 1.f)

Make the rest of the transformation calls
necessary to position and orient the shadowing
object

Set the OpenGL state necessary to create the
correct shadow color

Render the shadowing object
◦ Second render
◦ The transform flattens it into the object's shadow

More:
http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/n
ode192.html

Render the ShadowRender the Shadow
 /* Render 50% black shadow color on top
of whatever
 the floor appearance is. */
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,
 GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_LIGHTING); /* Force the 50%
black. */
glColor4f(0.0, 0.0, 0.0, 0.5);

glPushMatrix();
 /* Project the shadow. */
 glMultMatrixf((GLfloat *) floorShadow);
 drawDinosaur();
glPopMatrix();

Projection ShadowsProjection Shadows
 Uses projection transformations
 Shadowing object is projected to some surface,

related to shadowed object
◦ involves applying a orthographic or perspective

projection matrix to the modelview transform
 Visualized as separated primitive
 2-tier shadow calculations

◦ Matrix projection
 applying an orthographic or perspective projection matrix to the

modelview
◦ Visualization of the object with proper color

 rendering the projected object in the desired shadow color

 Ways:
◦ Construction is done via a sequence of transforms
◦ Construct a projection matrix directly

Render an object that has a shadow cast from Render an object that has a shadow cast from
a directional light on the a directional light on the zz axis down onto the axis down onto the
xx, , yy plane: plane:

Render the scene, including the
shadowing object in the usual way.

• Construct a projection matrix directly
Set the OpenGL state necessary to

create the correct shadow color
Render the shadowing object

◦Second render
◦The transform flattens it into the object's

shadow
More:

http://www.opengl.org/resources/code/samples/sig99/advance
d99/notes/node192.html

Projection MatrixProjection Matrix
Arguments

◦Arbitrary plane in Ax + By + Cz + D
= 0 form

◦Light position in homogeneous
coordinates
 GLfloat light_position[] = {1.0, 1.0, 1.0,

0.0};
 if light is directional - 0
 Perpective shadow

 1 othervise
 Ortho shadow

The function concatenates the
shadow matrix with the current
matrix

Projection ShadowsProjection Shadows

Shadow Ortho

 Projection

Shadow Ortho Projection

 Shadow

Perspective

Projection

void shadowMatrix(GLfloat shadowMat[4][4], GLfloat groundplane[4], GLfloat lightpos[4])

{ // Find dot product between light position vector and ground plane normal. */

float dot;

float shadowMat[4][4];

dot = ground[0] * light[0] + //distance between light and plane

 ground[1] * light[1] +

 ground[2] * light[2] +

 ground[3] * light[3];

shadowMat[0][0] = dot - light[0] * ground[0];

shadowMat[1][0] = 0.0 - light[0] * ground[1];

shadowMat[2][0] = 0.0 - light[0] * ground[2];

shadowMat[3][0] = 0.0 - light[0] * ground[3];

shadowMat[0][1] = 0.0 - light[1] * ground[0];

shadowMat[1][1] = dot - light[1] * ground[1];

shadowMat[2][1] = 0.0 - light[1] * ground[2];

shadowMat[3][1] = 0.0 - light[1] * ground[3];

shadowMat[0][2] = 0.0 - light[2] * ground[0];

shadowMat[1][2] = 0.0 - light[2] * ground[1];

shadowMat[2][2] = dot - light[2] * ground[2];

shadowMat[3][2] = 0.0 - light[2] * ground[3];

shadowMat[0][3] = 0.0 - light[3] * ground[0];

shadowMat[1][3] = 0.0 - light[3] * ground[1];

shadowMat[2][3] = 0.0 - light[3] * ground[2];

shadowMat[3][3] = dot - light[3] * ground[3];

glMultMatrixf((const GLfloat*)shadowMat); //Concatination
}

Some ProblemsSome Problems
Without stencil to avoid double blending
of the shadow pixels:

Notice darks spots
on the planar shadow.

Solution: Use S-buffer(In General)

S-BufferS-Buffer
• Per-pixel test, similar to depth buffering.
• Tests against value from stencil buffer;

rejects fragment if stencil test fails.
• Distinct stencil operations performed when

– Stencil test fails
– Depth test fails
– Depth test passes

• Provides fine grain control of pixel update
• glEnable/glDisable(GL_STENCIL_TEST);
• glClear(… | GL_STENCIL_BUFFER_BIT);
• ...
• glutInitDisplayMode(GLUT_DOUBLE |

GLUT_RGB | GLUT_DEPTH |
GLUT_STENCIL);

Some ProblemsSome Problems
Without stencil to avoid double blending
of the shadow pixels:

Notice darks spots
on the planar shadow.

Solution: Clear stencil to zero. Draw floor with stencil
of one. Draw shadow if stencil is one. If shadow’s
stencil test passes, set stencil to two. No double blending)

More information onMore information on
Planar shadows:

http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node192.html

Shadow volumes:
http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node194.html

S-Buffer
http://ezekiel.vancouver.wsu.edu/~cs442/lectures/shadow/stencil.ppt

http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node192.html
http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node192.html
http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node192.html

	Shadows
	Idea
	Physical nature of shadows
	Slide 4
	Ways to Implement
	Slide 6
	Projection Shadows
	Slide 8
	Slide 9
	Slide 10
	Render an object that has a shadow cast from a directional light on the z axis down onto the x, y plane:
	Render the Shadow
	Slide 13
	Slide 14
	Projection Matrix
	Slide 16
	Slide 17
	Some Problems
	S-Buffer
	Slide 20
	More information on

