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Today’s Topic

* Rendering Pipeline
* Modeling transformation
* Viewing transformation
* Projection transformation

* Library hierarchy



Rendering Pipeline
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e Object space: coordinate space where each object is defined

e World space: all objects put together into the same 3D scene via
affine transformations. (camera, lighting defined in this space)

e Eye space: camera at the origin, view direction coincides with the z
axis. Near and far planes perpendicular to the z axis

e Clipping space: apply perspective transformation, but before division.
All points are in homogeneous coordinate, i.e., each point is represented
by (X,y,z,w)

e Canonical view volume (3D image space): A parallelpiped shape.
Obtained after perspective division. Objects in this space are distorted
(farther are smaller)

e Screen space: x and y coordinates are pixel coordinates, z coordinate
used for screen-space hidden surface removal



Rendering Pipeline (cont.)

What are the transformations for each step?
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Rendering Pipeline (cont.)
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Modeling transformations:
Function choices

* Use OpenGL
 glTranslate[f,d](x,y,z)
» glRotate[f,d](angle,x,y,z)
 glScale[f,d](x,y,z)

* Write yourown M: T, R, S
» glLoadMatrix[f,d](M)
e glMultiMatrix[f,d](M)



Use OpenGL functions

e Where?

e How?




Write your own S, T, R

* Scaling (S)
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Write your own S, T, R (cont.)

* Translation (T)
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Write your own S, T, R (cont.)

* Rotation (R) Rotation now has more possibilities in 3D:
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Write your own S, T, R (cont.)

* Rotation (R) Rotation now has more possibilities in 3D:
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Other affine transformations

e Reflection
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The cases for the other two coordinate frames are similar.

e Shearing
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Other affine transformations

e Reflection —10 00
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The cases for the other two coordinate frames are similar.
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Matrix stack: load, push, and pop

e glLoadMatrix(M) replaces the current matrix with the one whose elements
are specified by M. The current matrix is the projection matrix, modelview
matrix, or texture matrix, depending on the current matrix mode
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Whenever you draw (e.g., using glRectf()), points are
automatically transformed using the top matrix in
Modelview matrix stack.



Matrix stack: load, push, and pop

e glLoadMatrix(M) replaces the current matrix with the one whose elements
are specified by M. The current matrix is the projection matrix, modelview
matrix, or texture matrix, depending on the current matrix mode
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Whenever you draw (e.g., using glRectf()), points are
automatically transformed using the top matrix in
Modelview matrix stack.



Viewing Transformation: gluLookAt()

o gluLookAt(eye.x, eye.y, eye.z, center.x, center.y, center.z,
up.X, up.y, up.z)
— Viewing direction: center — eye up WK
- , : DN
— Up vector specifies orientation of camera é

e These parameters define the eye coordinate system
— Origin is at eye location
— Z axis is opposite direction of viewing vector (e2 = normalize(eye — center))

— Xaxis is normal to the plane spanned by view vector and up vector,
pointing to the right of viewer ( e0 = normalize(Up X €2))

— Y axis is orthonormal to x axis and z axis (el = e2 x e0)

Camera ,up Y p Point p in world is
@) 4—/’/(1\/IgluLookAt * p)
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It no gluLookAt is specified ...

* The viewing transformation matrix is identity matrix
(i.e. eye coordinate system == world coordinate system)
e Eyeisat Origin of world space

* Looking down the _negative z axis of world space




Summary of Modelview Transtormation

(GL_MODELVIEW);
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Projection Transformation

 Specified by the OpenGL commands such as gluOrtho2D, glOrtho,
glFrustum, and gluPerspective.

* Perspective projection: glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble zNear, GLdouble zFar)

(GL_PROJECTION);
OF

It's symmetric, so equivalently we can use ...?



Projection Transformation

 Specified by the OpenGL commands such as gluOrtho2D, glOrtho,
glFrustum, and gluPerspective.

* Perspective projection: glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble zNear, GLdouble zFar)

(GL_PROJECTION);
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Projection Transformation (cont.)

 Parallel Projection: glOrtho(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble zNear, GLdouble zFar)

ixMode (GL_PROJECTION);
oadIdentity();
tho(-5.09, 5.0, -5.0, 5.0, 1.5, 20.90);




OpenGL Hierarchy

o Several levels of abstraction are provided
e GL

— Lowest level: vertex, matrix manipulation
— e.g., glVertex3f(point.x, point.y, point.z)

e GLU

— Helper functions for shapes, transformations
— e.g., gluPerspective( fovy, aspect, near, far)

e GLUT

— Highest level: Window and interface management
— e.g., glutSwapBuffers()






