Discussion Session 2

Sikun LIN
sikun@ucsb.edu

Today’s Topic

* Rendering Pipeline
* Modeling transformation
* Viewing transformation
* Projection transformation

* Library hierarchy

Rendering Pipeline

Obj ect W()rld Eye Clippillg Canonical Screen
Space Space Space Space view volume Space

e Object space: coordinate space where each object is defined

e World space: all objects put together into the same 3D scene via
affine transformations. (camera, lighting defined in this space)

e Eye space: camera at the origin, view direction coincides with the z
axis. Near and far planes perpendicular to the z axis

e Clipping space: apply perspective transformation, but before division.
All points are in homogeneous coordinate, i.e., each point is represented
by (X,y,z,w)

e Canonical view volume (3D image space): A parallelpiped shape.
Obtained after perspective division. Objects in this space are distorted
(farther are smaller)

e Screen space: x and y coordinates are pixel coordinates, z coordinate
used for screen-space hidden surface removal

Rendering Pipeline (cont.)

What are the transformations for each step?

Perspective

Modeling

Viewing

Perspective

Normalization

Viewport

Transformations Transformations Transformation & Clipping

Transformation

camera space,
view space)

coordinates)

Obj ect World Eye Clippillg Canonical Screen
Space Space Space Space view volume Space
(also called (Normalized device (Window

coordinates)

Rendering Pipeline (cont.)

Modelview . Projection Viewport
ion Transform

Object W()rld Eye C]ipping CanOnical Screen

Space Space Space Space view volume Space
(also called (Normalized device (Window
camera space, coordinates) coordinates)

view space)

Modeling transformations:
Function choices

* Use OpenGL
 glTranslate[f,d](x,y,z)
» glRotate[f,d](angle,x,y,z)
 glScale[f,d](x,y,z)

* Write yourown M: T, R, S
» glLoadMatrix[f,d](M)
e glMultiMatrix[f,d](M)

Use OpenGL functions

e Where?

e How?

Write your own S, T, R

* Scaling (S)

= N < X

>

o o o v

o o o

oW o o

- O O O

- N < X

Write your own S, T, R (cont.)

* Translation (T)

|
- N < X

J
O O O —
O O -~ O
o -~ O O

- N < X

(RN |

.
e

»

Write your own S, T, R (cont.)

* Rotation (R) Rotation now has more possibilities in 3D:
1l 0 0 0
Ve yV
0 cosé —smmé 0 “A
R\.(\(—}): _) Ry
' 0 smé coséd 0 Qo
0 0 0 1! .
What are th_e cos# 0 sind 0 R i X
corresponding 0o 1 0 0o
OpenGL functions? Ry@=|_no 0 cosd 0 z
0 0 0 | | Use right hand rule
cosd —sinf 0 0
sind coséd 0 0
R.(0)=

0 0 1 0
0 0 0 1

Write your own S, T, R (cont.)

* Rotation (R) Rotation now has more possibilities in 3D:

l 0 0 0

Y e Vv

0 cos¢ —smmé& 0 A

/\)\. (€)=) Ry
' 0 sin@ cosd 0 o

0 0 0 1 .
What are the cosd 0 sind 0 R O X
corresponding O 1 0 0
OpenGl— functions? Ry ()= —sinéd 0 cosé 0 <

0 0 0 | | Use right hand rule
cosd —sin@ 0 0

glRotatef(0 - 180/m, 0, 0, 1)

0 0 0 1]

Other affine transformations

e Reflection

OO = O
O = O O
_0 O O

The cases for the other two coordinate frames are similar.

e Shearing
1 00 0 1 hy O
hy 1 0 0 0 1 0
Hys(hysha) = | 17 5 1 g Healhasha) = | o 5. 4
0 00 1 0 0 0

_— O O O

Hﬂ?y(hwa hy) —

o O O =

o o = O

o S
< 8

_—o O O

Other affine transformations

e Reflection —10 00
. 0100

T 0010

00 0 1

The cases for the other two coordinate frames are similar.

e Shearing
."
1 000
hy 1 0 0
0 00 1 T

o O O =

o o = O

o S
< 8

_—o O O

Matrix stack: load, push, and pop

e glLoadMatrix(M) replaces the current matrix with the one whose elements
are specified by M. The current matrix is the projection matrix, modelview
matrix, or texture matrix, depending on the current matrix mode

(’ v
B
A

initial load]')llh‘l_l mult pop
stack matrix(M) martrix matrix(7) matrix

Whenever you draw (e.g., using glRectf()), points are
automatically transformed using the top matrix in
Modelview matrix stack.

Matrix stack: load, push, and pop

e glLoadMatrix(M) replaces the current matrix with the one whose elements
are specified by M. The current matrix is the projection matrix, modelview
matrix, or texture matrix, depending on the current matrix mode

M] MT
C M M M M
B B B B B
A A A A A
initial load push mult pop
stack matrix(M) matrix matrix(7) matrix

Whenever you draw (e.g., using glRectf()), points are
automatically transformed using the top matrix in
Modelview matrix stack.

Viewing Transformation: gluLookAt()

o gluLookAt(eye.x, eye.y, eye.z, center.x, center.y, center.z,
up.X, up.y, up.z)
— Viewing direction: center — eye up WK
- , : DN
— Up vector specifies orientation of camera é

e These parameters define the eye coordinate system
— Origin is at eye location
— Z axis is opposite direction of viewing vector (e2 = normalize(eye — center))

— Xaxis is normal to the plane spanned by view vector and up vector,
pointing to the right of viewer (e0 = normalize(Up X €2))

— Y axis is orthonormal to x axis and z axis (el = e2 x e0)

Camera ,up Y p Point p in world is
@) 4—/’/(1\/IgluLookAt * p)
whok sar|o™F in camera coord-sys!

> has Mﬂm:,ve - yalme

center

7 World

It no gluLookAt is specified ...

* The viewing transformation matrix is identity matrix
(i.e. eye coordinate system == world coordinate system)
e Eyeisat Origin of world space

* Looking down the _negative z axis of world space

Summary of Modelview Transtormation

(GL_MODELVIEW);
OF

drawCube (

beal crord. Coalling oroler:

M world-»eye w’/ glalookAt L)
world coord. R
\/_\f] _T

epe coord. S

Projection Transformation

 Specified by the OpenGL commands such as gluOrtho2D, glOrtho,
glFrustum, and gluPerspective.

* Perspective projection: glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble zNear, GLdouble zFar)

(GL_PROJECTION);
OF

It's symmetric, so equivalently we can use ...?

Projection Transformation

 Specified by the OpenGL commands such as gluOrtho2D, glOrtho,
glFrustum, and gluPerspective.

* Perspective projection: glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble zNear, GLdouble zFar)

(GL_PROJECTION);
OF
(-2.0, 2.

I e Uy £

Projection Transformation (cont.)

 Parallel Projection: glOrtho(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble zNear, GLdouble zFar)

ixMode (GL_PROJECTION);
oadIdentity();
tho(-5.09, 5.0, -5.0, 5.0, 1.5, 20.90);

OpenGL Hierarchy

o Several levels of abstraction are provided
e GL

— Lowest level: vertex, matrix manipulation
— e.g., glVertex3f(point.x, point.y, point.z)

e GLU

— Helper functions for shapes, transformations
— e.g., gluPerspective(fovy, aspect, near, far)

e GLUT

— Highest level: Window and interface management
— e.g., glutSwapBuffers()

