Discussion Session 6

Sikun LIN
sikun@ucsb.edu

Today’s topic: things you need for hw3 (1)

e Matrices
e Polygon clipping

e HLHSR

HW3 Requirements

e Implement your own graphics library:
o Object drawing in black & white
o Animation
o Extra credit: viewpoint change
o No color/Lighting/shading/texture/shadow
o CAN’T use OpenGL or any other graphics libraries
o Save each frame as an image file (ex. JPG, PPM) (can use library for writing/saving image)

e \What you should turn in
o All your code
o Makefile, which can generate a series of image files for all frames
o A video sequence or gif showing the final display result
m You can use any software or free-use website to concatenate those frames

Rendering Pipeline

Matrix value (0/1)

Modeling
Transform

View
Transform

Projection
(Normalization)

Depth Test

Clipping

Rendering Pipeline

View
Transform

Projection
(Normalization)

Depth Test

Clipping

You need to implement

e Scaling
e Translation

e Rotation y

o

o oW

oWy o o

You need to implement

e Scaling

e Translation

|
‘N‘<_><_

|
O O O —

e Rotation

O O -~ O

o -~ O O

You need to implement

I 0 0 0
0 cos@ —sin@ 0]
R.(0)= . ')
’ 0 siné coséd 0

0 0 0 1]

e Rotation cosé 0 sing 0] }/ O X
0 | 0 0

R, (6)=) , _
‘ —smn# 0 cosé 0 —
0 0 0 | Use right hand rule

e Scaling

e Translation

cosd —sin€d 0 0]
sinéd coséd 0 0
0 0 1 0
0 0 0 1]

R.(6)=

R =R,(8,)R,(6,)R,(8,)

Rendering Pipeline

Modeling Projection
Transform (Normalization)
Clipping

View Space

You need ...

e Viewing matrix

e Knowns: eye position e, center ¢, up vector u

f=c—e
Pt
f] -
/ u " 7
“ _m M = Ut' Uy’
s = f'xu’ :% 7&
ull — ix !/
|s]

-0 o0

SO o=

O =O

S OO

Rendering Pipeline

(1.1,;1)

A [(-1,-1-1)

(2171;-1)

Clipping

You need ...

e Projection matrices (already transformed into canonical view volume)

e Perspective & orthographic (6 parameters for both: left right top bottom near far)

[2n r+1 | [2 r+1
0 0 —
r—1 0 r—1 0 r—1 r—1
2n t+b 2 t+b
Sy Sy 0 L Y
f+n 2fn -2 f+n
0 0 — — 0 0 —
f-n f-n (f —n) (f —n)
0 0 -1 0 0 0 0 1 |

Canonical view volume

It can be computationally expensive to check if a point is inside a
frustum

» Instead transform the frustum into a normalised canonical
view volume

» Uses the same ideas a perspective projection
» Makes clipping and hidden surface calculation much easier

Transforming the view frustum

The frustum is defined by a set of parameters, /,

| Left x coordinate of near plane

r Right x coordinate of near plane

b Bottom y coordinate of near plane
t Top y coordinate of near plane

n Minus z coordinate of near plane
f Minus z coordinate of far plane

With 0 < n< f.

‘ i
A1)

canonical view volume

r,b,t,n,f:

+1 f o (top)
2 la I/' | viEwer

. | +-1 = (bottom)
(far) (near)

Viewing frustum Canonical view volume

matrix.c

e Has all the matrix operations you need:

o Inverse

o Transpose

o Addition/subtraction/multiplication
o Inner/cross product

o Determinant

Rendering Pipeline

Modeling - View 5 Projection

Transform Transform (Normalization)

Depth Test

Clipping
e Perform clipping in the canonical view volume

e Polygons may intersect the canonical view volume, then we need to perform

clipping:
* !

e Sutherland-Hodgmai

Clip Hectangle

Sutherland-Hodgman algorithm

Traverse edges and divide into four types:

Inside |OQutside Inside |[||Outside Inside |Outside Inside [QOutside
- i /
First
Output Output Second S
Vertex Intersection Case 3 Output Output

Case 2. No OULQUL

@]
7
]
B

]
@
]

Sutherland-Hodgman algorithm

For each edge of the clipping rectangle:

» For each polygon edge between v; and vj1

Z
(="
(]
)
(=N
(¢]
3
a
(r]

Outside Inside |Outside

=)
2,
(=7
[

Outside

I CH

’_..4-'
Output utpu
Vertex Intersection Case 3

Second
Output

Case 1 I\]oo—mm

)
7]
]
N

Example

Top Clp Bouadary

Boam iy Bessdary

Sutherland Hodgman Polygon Clipping

e \What will happen here?

outside

/

............................

outside

/

........

outside =~

outside

Sutherland Hodgman Polygon Clipping

e Itis incorrect to consider a vertex as inside/outside of the
clipping area

e Instead, for each vertex, tell whether it is in the inner or
outer side of each edge of the clipping area

v4

Sutherland Hodgman Polygon Clipping

e Itis incorrect to consider a vertex as inside/outside of the
clipping area

e Instead, for each vertex, tell whether it is in the inner or
outer side of each edge of the clipping area

e It also works in 3D world, where the clipping area
consists of 6 surfaces, instead of 4 edges.

Rendering Pipeline

Modeling - View 5 Projection

Transform Transform (Normalization)

Clipping

HLHSR

e Target: generate the set of pixels that form the final image.
Algorithms (we’ll cover 2 this time)

e Scan-line Algorithm

e z-buffer Algorithm (neat, simple and fast!)

e Depth-Sort Algorithm

e Binary Space Partition (BSP) Trees

e Area-subdivision Algorithm

Scan-line Algorithm

e Intersect scanline with polygon edges
e Fill between pairs of intersections

e Basic algorithm:
For y = ymin to ymax

1) intersect scanline y with each edge

2) sort interesections by increasing x
[pO,p1,p2,p3]

3) fill pairwise (p0 —> p1, p2—> p3,)

ymin ——— p»

Scan-line Algorithm: Special handling

e Intersection is an edge end point ymax—————
el e

scanline
pO p1

e Intersection points: (p0, p1, p2) ?7?? ymin

-> (p0,p1,p1,p2) so we can still fill pairwise

—> |n fact, if we compute the intersection of the scanline with edge e1 and e2
separately, we will get the intersection point p1 twice. Keep both of the p1.

Scan-line Algorithm: Special handling (cont.)

e Intersection is an edge end point

"~ po p1 P2/ p3

e2

e However, in this case we don’t want to count p1 twice (p0,p1,p1,p2,p3),
otherwise we will fill pixels between p1 and p2, which is wrong

Scan-line Algorithm: Special handling (cont.)

e Rule: If the intersection is the ymin of the edge’s endpoint, count it. Otherwise,

don't.
ymax———J
W\
scanline Yes, count

b p1 p1 for both
el and e2
ymin

el
PO 1 P27 P3 No, don’t count

p
p1 for the edge e2
u

z-buffer (a.k.a. depth-buffer) algorithm

e |nitialization (2 buffers)
z buffer (set to a value > 1) z
color buffer (set to BG color) ¢
e For each polygon
Scan convert
For each pixel in the polygon
if(z_poly(x,y)<z(x,y))

z(x,y) = z_poly(x,y)
c(x,y) = polygon_color

Obtain the Plain Equation from Polygon Vertices

A

z-buffer combined with scanline

e Calculating z_poly:

e Plane equation:0=Ax+By+Cz+D
Solveforz: z=(-Ax—-By-D)/C

e Moving along a scanline, so want z at next value of x
Z=(-Ax+1)-by-D)/C

/Z’=z—-A/C

z-buffer combined with scanline

e For moving between scanlines , know x'=x+1/m

e The new left edge of the polygon is (x+1/m, y+1), givingz'=z- (A/m+ B)/C

’=2-A/m+B
-

Q&A

