Discussion Session /

Sikun Lin

sikun@ucsb.edu

Last time we covered ...

* Rendering Pipeline
* Modeling matrices
* Viewing matrix
* Projection matrix (&transform into canonical view volume)
* Polygon clipping
* Depth test

Today’s Topic

* How to draw things onto pixels
* Line Drawing
* Scan conversion
(both with codes samples)

Line Drawing

* Bresenham’s Line Algorithm
* Bresenham’s Circle Algorithm

Bresenham DDA Algorithm

» Developed by Jack E.
Bresenham at IBM

» Ran on Calcomp plotter

(i) . '
» Based on the idea of o8 __ AN Idgal line
Digital Difference Analyzer ;r-.._.s
LY L] L]
o *eee_ (11
= .._.rt""')

A discrete approximation ee

A DDA Line Drawing Function

Line(int x1, int yl, int x2, int y2) {
int dx = x1 - x2, dy = y2 - yl;
int n = max(abs(dx) ,abs(dy)) ;
float dt = n, dxdt = dx/dt, dydt = dy/dt;
float x = x1, yv = yl;
while (n--)
{

DrawPoint (round(x), round(y))
x += dxdt;
y += dydt;

What's bad about this?

We can do better!

» Get rid of floating point operations

» The idea: chose the rights pixels from those next to the
current pixel
Assume: dx >dy >0

» Which of the green pixels is next?

Key Idea

» We only ever go: right one pixel, or up and right one
pixel (0 < slope < 1). Call these choices “E" and “NE”
» Imagine pixels as “lattice points” on a grid

» Given next X coordinate, we only need to chose
between y and y+1. (y is the Y coordinate of the last
pixel)

O 9
\|/

o
-~

&

g

o
T/

p

-

The Midpoint Test

» Look at the vertical grid the line intersects

» On which side of the midpoint (y+'/,) does the
intersection lie?

» If it above the midpoint go NE, otherwise go E

~
=

P

o

o
T/

@

-

Our Example

X x+1 X+2 xX+3 xX+4 x+5 X+6 xX+7

Implicit Functions

» Normally a line is definedas y =mx + b

» Instead, define F(x,y) = ax+by+c, and let the line be
everywhere F(x,y) =0

» Now if F(x,y)>0, we're “above” the line, and if F(x,y)
< 0, we're “below” the line

So what?

» We can evaluate the implicit line function at the
midpoint to determine what to draw next!

» Even better, we can use the last function evaluation
to find the next one cheaply!

» For any x,y:

Fx+1,y)-F(x,y)=a
F(x+Ly+1)-F(x,y)=a+b

Midpoint Algorithm

Line(int x1, int y1, int x2, int y2){) “e” is the implicit

int
int
int
int
int

dx = x2 - x1, dy = y2 - yl;
e = 2*dy - dx;

incrE = 2*dy;

incrNE = 2*(dy-dx);

X = X1, y =yl;

DrawPoint(X, y);
while (x < x2){

X++;
if (e <=0) { e += incrE; }
else { y++; e += 1incrNE; }
DrawPoint(x, y);

function
evaluation at each
X value (actually
multiplied by 2,
but we only need
sign)

Easily extended
for lines with
arbitrary slopes

Midpoint Algorithm for Circles

» Only consider the second octant (others are
symmetric)

» Midpoint test still works: do we go right, or right and
down?

E

/ i

More Midpoint Circle Drawing

» The circle’s implicit function (with radius r):

F (x, y)=
» Once we know the va
one midpoint we get t

same differencing tec

x>+’ —r’
ue of the implicit function at
ne value at the next with the

Nnique:

If we're going E: F(x+2,y)-F(x+1,y)=2x+3

If we're going SE: F(x+2,y-1)-F(x+1,y)=2(x-y)+5

Drawing the 2"d Ocatant

void Circle(int c¢cx, int cy, int radius){
int x = 0, y = radius, e = l-radius;

DrawPoint(X + CX, y + Ccy);
while (y > x){
if (e < 9) // Go “east”
{
}

else // Go “south-east”

{
e ++ 5;
y--s
}
X++;
DrawPoint(X + cX, y + Cy);

» Lots of “expensive”
multiplies! Can we
get rid of them?

» Perform finite

difference in the “e”

variable itself

o IfwegoE: €
o IfwegoSE:e

new

new

- eold = 2
—e,y =4

Final Circle Drawer

void Circle(int c¢cx, int cy, int radius){
int x = 0, y = radius, e = 1l-radius;
int incrE = 3, incrSE = -2*radius + 5
DrawPoint(X + CX, y + Ccy);
while (y > x){
if (e < @) // Go “east”

{

e += 1incrE; -

incrE += 2; incrSE += 2; ThIS IOOkS pretty
} else // Go “south-east” fast!
{

e += 1incrSE;
incrE += 2; incrSE += 4;
y--5

}

X++;

DrawPoint(X + CX, y + cy);

}

Scan Conversion

* Figuring out which pixels to turn on

Scan Conversion

» Render an image of a geometric primitive by setting
pixel colors

‘ void SetPixel (int x, int y, Color rgba) l

» Example: Filling the inside of a triangle

P,

Scan Conversion

» Render an image of a geometric primitive by setting
pixel colors

| void SetPixel (int x, int y, Color rgba) |

» Example: Filling the inside of a triangle

Triangle Scan Conversion

» Properties of a good algorithm
Symmetric
Straight edges
Antialiased edges

No cracks between adjacent primitives
MUST BE FAST!

P,

Simple Algorithm

» Color all pixels inside triangle

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P at (x,y){
if (Inside (T, P))
SetPixel (x, y, rgba);

Line defines 2 half spaces

* Implicit equation for a line
o Online: ax+by+c=0
o Onright: ax+by+c<0
o On left: ax+by+c>0

—C
b

Inside Triangle Test
A pointisinside a triangle If it is In the
positive halfspace of all three boundary lines

o Triangle vertices are ordered counter-clockwise
o Point must be on the left side of every boundary line

Inside Triangle Test

Boolean Inside(Triangle T, Point P)

{
for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}

return TRUE;
} @

Simple Algorithm

» What's bad about this algorithm?

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P at (x,y){
if (Inside(T, P))
SetPixel (x, y, rgba);

Triangle Sweep-Line Al

gorithm

» Take advantage of spatial co

nerence

Compute which pixels are inside using horizontal spans
Process horizontal spans in scaline order

» Take advantage of edge linearity
Use edges slopes to update coordinate incrementally

dx
dy

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
for each edge pair {
Initialize x, Xg;
compute dx,/dy, and dxg/dyg;
for each scanline aty
for (int x = X ; X <= Xg; X++)
SetPler(x VY, rgba)

X, +=dx /dy,;
Xg += dXg/dyg;

Polygon Scan Conversion

- Fill pixels inside a polygon
o Triangle
o Quadrilateral

o Convex
o Star-shaped A {\
o Concave -

o Self-intersecting

Y4 @

What problems do we encounter with arbitrary polygons?

Polygon Scan Conversion

* Need better test for points inside polygon
o Triangle method works only for convex polygons

Convex Polygon Concave Polygon

Inside Polygon Rule

» What's a good rule for which pixels are inside?

N\
o AR (8

Concave Self-Intersecting With Holes

Inside Polygon Rule
» Odd-parity rule

Any ray from P to infinity cross an odd number of edges

Concave Self-Intersecting With Holes

That’s what we discussed last time!

* Scanline algorithm

Polygon Sweep-Line Algorithm

* Incremental algorithm to find spans,
and determine insideness with odd parity rule
o Takes advantage of scanline coherence

Triangle Polygon

Polygon Sweep-Line Algorithm

void ScanPolygon (Triangle T, Color rgba) {
sort edges by maxy

make empty “active edge list”

for each scanline (top-to-bottom) {
insert/remove edges from “active edge list”
update x coordinate of every active edge
sort active edges by x coordinate

for each pair of active edges (left-to-right)
SetPixels(x,, X,,,, Y, rgba);
}

Hardware Scan Convert

» Turn everything into triangles!
Scan convert Triangles

Hardware Antialiasing

* Supersample pixels
o Multiple samples per pixel
o Average subpixel intensities (box filter)
o Trades intensity resolution for spatial resolution

o}

Pixel with sampling positions

(e]

Sampled colours

Average = displayed colour

&A

ref: http://comp575.web.unc.edu/files/2010/10/14 ScanConversion.pdf

