HW4 Ray-Tracing

sikun@ucsb.edu

Requirements

® |Implement a simple ray tracer:

o Parse a scene description file and draw the scene using ray tracing
o Only one ray needs to be traversed per pixel
o One shadow ray is traced per light source
o One reflective ray is traced for each ray-object intersection
o No refractive ray

e Deadline: 11:59pm, December 8t (Friday)

e Source code & Makefile

o .[/raytracer scene_description_file output image

Scene Description File Format

e Consists of three sections:
o Camera
o Object

m sphere

m plane
o Light

e Only one camera but may have multiple objects and lights.

Sample scene file

camera 400

sphere
dimension 1
center 0 1 -5
reflectivity .7
color .3 .3 .3
plane
dimension 4 4
center 0 -1 -5
normal 0 1 0
headup 0 0 1
texture wood tex.ppm

light
location -1 2 =2
color 1 .7 .7

light
location 1 0 -6
color .3 .3 1

Camera

e perspective view

e Eye is located at the global origin.

e The camera axes line up with the global axes.

e The image plane is located at z = -1 and of a size 1x1 centered on the z-axis.

e The only parameter the camera has is its spatial resolution. Hence, a line like
camera 1000

e Aspect ratio is always 1:1

Object

e sphere & plane

e Common attributes

(@)

(@)

(@)

Center location
Dimension
Color
Reflectivity

Texture

Object - sphere

sphere
dimension 5
center 10 10 -10
color 1.000
reflectivity 0.5
texture wood.ppm

Obiject - plane

plane
dimension 5 10
center 10 -5 -10
color 1.00 1.0
normal 0 0 1
headup 110
reflectivity 0.7
texture wood.ppm

Light

e Point light sources
e Each light has two sets of parameters:
o location(x, y, z)

o color(r, g, b) 0<=r,g,b <=1

light
location 20 -5 -10
color1.01.0 1.0

Forward Ray Tracing

e Rays as paths of photons in world space
e Forward ray tracing: follow photon from light sources to viewer

e Problem: many rays will not contribute to image!

Backward Ray Tracing

e Ray-casting: one ray from center of projection through each pixel in image plane

e |llumination
1. Phong (local as before)

2. Shadow rays
3. Reflection

4. Refraction
e 3 and 4 are recursive

Construct a Ray

ep(t)=e+t(s-e)=ts
e e: eye (camera) position (known)
s: pixel position (known after knowing the resolution)

e Pixel position: usually pick the center of a pixel (half)

Ray-Sphere Intersection

® Problem: Intersect a line with a sphere

V' A sphere with center € = (Xc,Yc,Zc) and radius R can be
represented as:

2 2 2 2
(x-Xc) + ()’-)’c) +(z-Zc)-R =0

v For a point p on the sphere, we can write the above in
vector form:

(P-©)-(p-c) - K= 0 (note*. is a dot product)
v We can plug the point on the ray p(t) = e +td
2
(e+td-c).(e+td-c) - R =0 and yield
2 2 /
(d.d) t + 2d.(e-c)t + (e-c).(e-c) -R =0

Ray-Sphere Intersection
® When solving a quadratic equation
at’ + bt + ¢=0

We have

® Discriminant (J — \:"’bQ — 4dac

—b+d
2a

e and Solution ty =

Ray-Sphere Intersection

d = \,/”VbQ — 4dac

P? — 4ac > 0 = Two solutions (enter and exit)

¥ — 4ac < 0 = No intersection

0?* — 4ac = 0 = One solution (ray grazes sphere)

N >

N

Calculating Normal

® Needed for computing lighting
Q =P(t) - C ... and remember Q/||Q]|

//gw

normal

Ray-plane intersection

e Given plane normal (a,b,c) and one point on the plane (center):
plug in the point coordinate to get the plane equation
ax+by+cz+d=0

e Calculate the intersection point: plug in the ray equation

a(e,*td,) + b(e,+td,) + c(e,+td,) + d = 0 =» get t =» get point e+td

Casting shadows: hit-point to each light source

Ray tracing
9 O

Shadow rays

Reflection ray

\ret’ruclcd ray

Reflections

e Recursive (stop when hitting a non-reflective object, return its color)

e What if the lights go back and forth between two mirrors?

Reflective direction

v is normalized —u
n is normalized normal

p (ray origin) > 39

lllumination model

e Phong

- k,: const. e.g. k, = 0.1 =» contribute|k,*I_|(l, is outgoing radiance: color_obj)

- If not in shadow =» light source [, (incoming radiance) has a contribution:

Determined by the cosine law.
N, L are unit vectors

kq varies for different materials e Lambert's Law: I = kyIN - LI;
(you can simply choose that to be color_obj)

BRDF for Lambertian surface

p(0;i, @i, O, pe) = kqcosb;

L, N, V unit vectors
I, = outgoing radiance
[, =incoming radiance

Contribution of reflection

e += Final color * reflectivity
e You can try different things like ...

(Final color)*n * reflectivity (larger n, smaller range of reflection)

e lllumination model and parameters are not fixed, you can play with them and
choose what you like the best

Program Skeleton

for (each scan line) {
for (each pixel in scan line) {

compute ray direction from eye to pixel

for (each object in scene) {
if (intersection and closest so far) {

record object and intersection point

h
accumulate pixel colors
- shadow ray color
- reflected ray color (recursion)

Demo

Q&A

