
Overview

3D Production Pipeline

 Story  Character Design  Art Direction 

Storyboarding  Vocal Tracks  3D Animatics 

Modeling Animation Rendering Effects

 Compositing

 Basics : OpenGL, transformation

 Modeling : curves and surfaces

 Animation : kinematics (FK/IK), shape

interpolation

 Rendering : shader, file texture, raytracing

 Effects : pariticle systems, soft boy, rigid body, hair

Story

 CG vs. non-CG

 2D vs. 3D

 Mixtures (Lord of the Ring, Harry Potter,

Who Frames Roger Rabbit, Avatar) vs.

complete (Mr. Incredibles)

 Style, proportion, different poses and emotions, clay models,

anatomical study, behavior, etc. (Add life)

Character Development

 Visual style (realism, cartoon, abstract), color palettes, overall

complexity

Art Direction

 Tell the story visually (beats, flow, tightness), planning shots,

camera, layout, etc.

Storyboarding & Vocal Tracks

 Planning shots, camera, layout, layering with billboards and

simple geometry, only animate the camera

3D Animatics

 Characters, props, and background elements, low & high

resolution, models, 3D scanners

Modeling

 (Character rigging) : to setup IK or FK joints, skinning, blend,

shape, deformer, skinning

Character Setup

Rigging

skeleton

control

IK&FK control

Facial control

 Low resolution model, blocking, timing, details such as

secondary motion

Animation

 Shading, Texturing, Lighting, Rendering : writing shaders,

assigning materials, testing global illumination approaches,

baby sit rendering farm

Visual Effects (FX)

Compositing : multi-pass

http://www.macworld.com/2005/05/images/content/shake_big.jpg
http://www.macworld.com/2005/05/images/content/shake_big.jpg

Modeling

Animation

Rendering

FX

Assets Management System (Maya)

Character Setup

Vocal Tracks

Character Development

3D Animatics

Compositing

Movie Pipeline (Non-realtime)

 Art vs Game Engine

 Art pipeline is very similar to film production pipeline

 Game Engine

 Put together the animation and stages into the virtual world

 Mimic tools in 3D package (memory and performance constraints)

 Taking advantage of the state-of-art graphics hardware

 Using 3rd party game engine components

 Physics are important (Angry Bird, Bowling, Flight simulator, etc.)

Game Pipeline

Image Quality

 Minimize the amount of data being passed around (separating

model & animation)

 Use multiple 3rd party tools and internal tools (File format)

 Performance (File referencing : save only the changes, work at

different resolutions)

 Controlled access

 Handling blind data

 Data protection (Versioning system)

Pipeline Requirements

 Complete tool sets

 Modeling, Animation, Rendering, Cloth, Dynamics, Fluids,
Hair, etc.

 Graph architecture with node as black box

 Pull model and dirty propagation

 Refresh and getting an attribute to trigger graph evaluation

 Undoable commands

 Scripting language

 Run in interactive, prompt, and batch modes

 API (application programming interface)

 Powerful UI paradigm

 Interpreted via scripting, marking menu, hot key

 Alias/Wavefront (Maya), Autodesk (3D Studio Max)

3D Software

 CG Film Industry

 Pixar – Toy Story I & II, Monster Inc., Bug’s Life,
Incredible, Cars

 Pacific Data Image – Ants, Shrek, Madagascar

 DreamWorks – Shark Tale, Over the Hedge

 Disney – Chicken Little, Toy Story III

 Blue Sky – Ice Age, Robots

 FX House

 ILM (leader in FX) – Star Wars

 Weta – Lord of the Rings, King Kong

 SONY Image Works (animal, fur, motion capture) – Stuart
Little, Polar Express

 Game Industry $$

 Learning from film production, shorter time frame

 Electronic Arts (EA) sports games

 Activision, Microsoft, Nintendo, Sony, Lucas Arts

Who is Who

 Performance and memory issues with fluids (GPU?)

 Still way too much effort to make 3D animation

 Unified solver

 Build in intelligence so that the secondary animation is

handled automatically

Future

Graphics Hardware Pipeline
(input) triangles  vertex transformation  (output) transformed vertices

(input) transformed vertices  rasterization  (output) pixel location stream

(input) pixel location stream  fragment process  (output) frame buffer

Vertex shading with constant vertex color

Programmable vertex shader (Nvidia’s Cg)

Pixel shader (NVIDIA’s Cg)

Read Cg Tutorial Chapter 1, p.13 – p.20, available at

http://download.nvidia.com/developer/cg/Cg_Tutorial/Chapter_1.pdf

 Hardware graphics is super fast. However, its single precision is not sufficient

to handle large scene or give enough depth precision for compositing.

 The trend is hardware accelerated software rendering and GPU programming.

http://download.nvidia.com/developer/cg/Cg_Tutorial/Chapter_1.pdf

Programmable GPU

V
er

te
x

P
ro

ce
ss

in
g

F
ra

g
m

en
t

P
ro

ce
ss

in
g

For This Course

 Programming heavy

 Not a course that teaches you artistic

skills!

 Expect nitty-gritty details instead

 CS130A is essential

 CS130B is helpful

 Math: review your matrix theory

Vectors and Matrices

 Matrix and vector

 (L2-)norm of a vector

 Orthogonal vectors

 Norm of a matrix

 Matrix-vector multiplication

 Matrix-matrix multiplication

 Transpose of a matrix

 Inverse of a matrix

Orthogonal Matrices

 Square matrix

 AAT=I, ATA=I

 A-1=AT

 Has orthogonal rows and columns

 Does not change the norm of a vector

 Represent a rotation (determinant=1), a

reflection (determinant = -1), or a

combination

