
Rendering Equation

 Linear equation

 Spatial homogeneous

 Both ray tracing and radiosity can be 

considered special case of this general eq. 

Computer Graphics



Radiosity

Reality (actual 
photograph)…

Minus Radiosity Rendering…

Equals the difference (or 
error) image

http://www.graphics.cornell.edu/online/box/compare.html
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http://www.maxon.net/pages/products/c4d/art7/highlights_art7/pics_hires/gi_table.jpg
http://www.maxon.net/pages/products/c4d/art7/highlights_art7/pics_hires/gi_table.jpg
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Comparison

Ray tracing Radiosity

View point

dependent

View point

independent

Specular Diffuse
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Radiosity

 Thermal heat transfer

Light transport: transfer of energy from 

thermally excited surface

 Radiosity: rate at which energe leaves a 

surface

 Emitted + reflected

Balance (equilibrium) determine the balance of 

incoming and outgoing flux
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Radiosity

 the amount of light (energy) that leaves a 
surface, including

 self-emitting energy (source)

 reflected and/or transmitted energy 

 radiosity = emission + bi-directional reflection

 bi-directional reflection counts both reflection 
and transmission transport of both specular and 
diffuse components

 bi-directional reflection is a function of 

 radiosities of all other objects in the environment

 how much received by the particular object
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Mathematically
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Implementation Details

 Reflectivity and emission may be functions 

of wavelength, hence, the equation may 

represent a family of equations (e.g., for 

red, green, and blue channels)

 the form factors depend only on geometry
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Implementation Details

 In general

 the matrix can be very big (e.g., with 1000 

patches the matrix is 1000x1000 or with one 

million entries)

 it is usually not sparse (nor tri-diagonal, nor 

banded limited, etc. etc.)

 iterative solution (e.g., Gauss-Seidal)
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 Initially, all B’s can be approximated by E’s

 Order patches with sources first

 Patches adjacent to sources lit up, then they light up other 

patches …

 Iterate until the numbers stablize
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Standard radiosity methods

 Compute the form factors

 Solve the radiosity matrix equation using 

Gauss-Seidal method

 Rendering

 select viewing direction

 determine visible surfaces

 interpolate radiosity values

1B 2B

3B
4B

44
7

2

44
3

4

4321
1

4321
21

4321

BBBB
BB

BB

BBBB
BBBBB

BBBB
B

a
ea

beb

e













a b

e



Computer Graphics

Form Factors

 Without being mathematically rigorous, form 

factors are affected by

 distance between two patches

 angles between two patches
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Graphical interpretation
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Further simplification

 As long as the same projection is produced, 

all these surfaces have the same form factor

i
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Simplification

 Instead of projecting onto a hemisphere, we 

can project onto a hemicube with planar 

surfaces (with traditional visible surface 

determination algorithm)

 The hemicube can be discretized and pixel 

radiosities tabulated in advance

 Then just count how many pixels a 

particular patch covers and add up 

individual radiosity values
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i

Simplification
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Example
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More Example
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Many Possible Generalizations

 Substructuring 

 Spatial refinement

 Progressive radiosity 

 Faster update

 Incremental radiosity 

 Temporal refinement
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Substructuring

 At places with large radiosity changes

 Need smaller patches for better 

approximation

 Break one patch into m sub patches

 introduce m more radiosity values

 the radiosity matrix becomes O((n+m)^2)
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 Instead

 compute sub-patch form factors

 update form factor of patch I

 compute radiosity using original nxn equations

 update radiosities of sub-patches

lli Ba ,
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Progressive Radiosity

 For traditional radiosity solution, each 

iteration is of O(n^2)

 “Gathering” radiosity 

 n updates, one for each path

 each update “gathers” the radiosity values of all 

n patches
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 0 bounce        1 bounce              2 bounces
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“Shooting” radiosity
 updates all n patches using the radiosity 

value of a single patch
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iil Ba ,

iik Ba ,

iij Ba ,

 One iteration involes n O(1) updates

 Form factors of one patch need be kept

 Only the part of radiosity that was not processed 
before need be “shot”
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Trade-off

 Most accurate for 

diffuse lighting

 Photorealistic image

 Soft shadow, color 

bleeding

 Large computational 

effort

 Form factor 

computation
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Combining Ray Tracing and 

Radiosity
 First compute view independent, global 

diffuse illumination with radiosity

 Then compute view dependent, global 

specular illumination using ray tracing 
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Example


