RayTracing

POV-Ray

<+ Full-featured raytracer

‘ , — : .

B
b]

http://hof.povray.org/pebbles.html
http://hof.povray.org/pebbles.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/office-13.html
http://hof.povray.org/office-13.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/glasses.html
http://hof.povray.org/glasses.html

Ray Tracing Basics

<« Shoot ray In the reverse direction (from
eyes to light instead of from light to eyes)

% MISsS
« Hit

0 Shadow ray (to the light)

2 Reflected ray (on the same side)

0 Refracted ray (on the opposite side)

_l-.-'-
——
i o light
e
u - BOUTCE
| |
''_...-'
M-
-.----._-._.'_- -
M=
.'_'-—-_
| —
e
I:-'"—|-_|_|_-_-_"_-'
—
-] -
I-._‘_‘_"__‘-
wirbual T

«» Shadow ray
a0 Blocked — In

shadow
o Not blocked

Shadow Ray

|
|

\

\

\

TN

Reflected Ray

< Pick up color
of objects on
the same side

Refracted Ray

- — -

< Pick up color
of objects on
the opposite
side

Multiple Levels of R/R

Visible Surface Ray Tracing

for (each scan line) {
for (each pixel in scan line) {
compute ray direction from COP (eye) to pixel
for (each object in scene) {
If (intersection and closest so far) {
record object and intersection point // a hit
h
accumulate pixel colors (one level)
- shadow ray color
- reflected ray color (recursion)
- refracted ray color (recursion)

} Computer Graphics

Detalls

> 1= IIocal T Kr*R +Kt*T
<« Build tree top-down
< Fill in values bottom-up

|ocal Color

« A single color [r, g, b] — no brainer

a{r,g,b} local ={r,g,b} light * {r,g,0} material
*cos(0) for each light not in shadow

2 Add one extra term {r,g,b} ambinent*
{r,g,b} material for background emission

0 This reflects a local diffuse model

<« A texture image — every pixel can
different color, more interesting

Texture Mapping

< Important to preserve aspect ratio so as not
to distort content

2 Not always possible with sphere

if xmax >= ymax,
width = xmax
height = ymax
else
width = ymax
height = xmax

Elevation [-90..90].

end

if width >= 2*height
wrange = 2*height
hrange = height

else
wrange = widith

Azimuth [0..360] hrange = width/2
end

Computing Reflected Ray
S=Ncos®+L=N(N.L)+L

R=NCcCos® +S
=N (N.L)+ N(N.L)+L
=2 N (N.L) +L

L S S R

Computing Refracted Ray

» N,SINO; = n,Sin®, (Snell’s law)

S;=L+Ncos®, =L+ N (N.L)
S, =NcosO, + R
S;/S,=sin®, /sin®,=n,/n,
=(L+Ncos®,) /(N cos®, +R)
R =1/n, (n,L + n;Ncos®, - n,Ncos,) N

N cos®,

n, : refractive index

Ray-ODbject Intersection

« Implicit definition (f(P)=0)
a f(x,y) = x"2+y"2-R"2
o f(x,y,z) = Ax+By+Cz+D
a f(X,y,z)=x"2+y"2+2"2-R"2
< Starting from a point P In space
<« GO In the direction of d
< Pointonray is P + td
« (P + td)=0
<« Quadratic equations to solve (circle, sphere)

Ray-ODbject Intersection

< \When and where?
0 Before normalization transform and projection

2 In the world coordinate system (in fact, often in
object’s own coordinate system)

0 Normalization transform won’t help to simplify
the math
> Lights can be anywhere
> Objects can be anywhere

> Normalization only help with clipping and
projection (a viewer centered operation)

« Hint: for HW, do it in the world coordinate\ N

2D ray-circle intersection example

Consider the eye-point P = (-3, 1), the direction vector d = (.8, -.6) and the unit
circle given by:

f(xy) =x*+y?-R?
A typical point of the ray is:
Q=P +1td=(-3,1) +(.8,-.6) = (-3 + .8t,1 - .61)
Plugging this into the equation of the circle:
f(Q) = f(-3 + .8t,1 - .6t) = (-3+.8t)> + (1-.6t)>- 1
Expanding, we get: P

P+ i‘ld
9_48t+.6412+1—1.2t+ .36t2-1 d

Setting this to zero, we get: P+ tod

t2-6t+9=0

2D ray-circle intersection example
(cont.)

Using the quadratic formula:

—b++/b?—4ac

2a

by ISt _6+4/36-36
3 2

Because we have a root of multiplicity 2, ray intersects circle at one
point (i.e., it's tangent to the circle)

We can use discriminant D = b2 - 4ac to quickly determine if a ray
intersects a curve or not
- if D < 0, imaginary roots; no intersection
- if D = 0, double root; ray is tangent
- if D > 0, two real roots; ray intersects circle at two points

Smallest non-negative real t represents intersection nearest to eye-point

roots =

N i

Implicit objects-multiple conditions

For objects like cylinders, the equation
X*+72-1=0

in 3-space defines an infinite cylinder of unit radius, running
along the y-axis

Usually, it's more useful to work with finite objects, e.g. such a unit
cylinder truncated with the limits

But how do we do the “caps?”
The cap is the inside of the cylinder at the y extrema of the cylinder

X2 +722-1<0, y=+1

=1
/ /% X+z2-1<0
1 . . :

Multiple conditions (cont.)

=1
/ /% PX+z2-1<0
y=-1 /Lp ;
We want intersections satisfying the cylinder:

x2+2722-1=0
-1<y<1

or top cap:
X2+2722-1<0
y=1
or bottom cap:
x2+72-1<0
y=-1

Multiple conditions-cylinder
pseudocode

Solve in a case-by-case approach
Ray in@@™ &6nite @dnder (P, d)™
// Check for intersection with infinite cylinder
LI 2F= rayg nter @irtinite cydinder (2§ W
@ompWHET Rt 1 * d WP £t 2 3fel
// If intersection, is it between “end caps”?
if g P o5 v <BJ1 for pelsmor—t2 . togssfit

// Check for intersection with top end cap
Compulde ray 1ipter |plane(ed, ' planc, veg s
Compute P + t3*d

// I# it intemsects, is it withim caPp circle?
e <A+ z2 3F, ftoEs but s

// Check intersection with other end cap
Compute ray inter plane(t4, plane y = -1)
Compute P + t4*d

// If it intersects, is it within cap circle?
if x° £ 7% My AbossonTe b4

Among all the t’s that remain (1-4), select the smallest non-negative
one

sphere: (X —a)’+ (Y —=b)*+(Z-c)*-r*=0

(X = X, +tAX
ray:< Y =Y, +tAY
| L=L,+tAL

XbFaX +d°+Y%=2bY +b“¥Z%—2cZ +cc= =0

(X, +tAX)* —2a(X, +tAX) +a° +
(Y, +tAY)* —2b(Y, +tAY) +Db* +
(Z,+tAZ)* —2¢(Z, +tAZ)+c*—r° =0

(AX? + AY * + AZ5)t* +
2{AX (X, —a)+AY (Y, —b) + AZ(Z, —c)}t +
(X, —a)’+(Y,—b)*+(Z,-¢c)*-r’=0

Computer Graphics

(AX*+AY? + AZ)t° +
AAX (X, —a)+AY (Y, —b)+AZ(Z, —c)}t +
(X, -a)’+(Y, b))’ +(Z,—c)’-r* =0

At°+Bt+C=0 A=B*-4AC

(A>0 insersecting
tsA=0 grazing

A <0 non insersecting

Computer Graphics

plane:aX +bY +¢cZ+d =0

(X = X, +tAX

ray:< Y =Y, +tAY

| Z=7Z,+1tAZ

a(X, +tAX) +b(Y, +tAY) +c(Z,+tAZ)+d =0
aX,+bY,+cZ, +d

 aAX +bAY +CAZ

<+ There will be a reasonable t value, unless the denominator
IS zero (the line and the plane are parallel)

< But Is the intersection point actually inside the polygon?

Computer Graphics

One Final Detall

+ A cylinder x?+z2-1=0 is “simple” only in its
own coordinate system

< Modeling transform can destroy that
simplicity

«» How to Intersect with a general quadratic
equation ax?+bxy+cy?+dx+ey+f = 0?

Object-Space Intersection

\w
M P+td ﬂm i
E %
‘ f(x,y,2)=0 /~
0.0.0) f(x,y,2)=0
«» World system <« Object system
0 Complicated shape 0 Simple shape equation
equations 0 X2+72-1=0
0 ax?+bxy+cy?+dx+ey+f
=0

0 Ray equation is P+td
always

Shading — Normal Vector

< For illumination, you need the normal at the
point of intersection in world space

< TWO Sstep process:

a solving for point of intersection in the object's
own space and computing normal there;

2 then transform the object space normal to the
world space

Normal Vectors,

< Normal vectors need for shading

« A twO0-Step process:

a solving for point of intersection In the object's
own space and computing normal there;

2 then transform the object space normal to the
world space

o Surface: f(x,y,2)=0, interior f(X,y,z)<0, then
n=Vf(x,Y,z)

VE (X, y,2) = [%(x, y, z)%(x, y,2), Z—fz(x, y, z)j

Normal Vectors at
Intersectlon Points

Sphere normal vector example
For the sphere, the équ’atmn is

f(xy,2)=x2+y>+2722-1

The partial derivatives are

of

—(X, VY, 2) =2X
ax(Y, 2)

of
—(X,y,z)=2y
oy

of
—(X,V,2)=2z2
82(Y, 2)

So the gradient is
n=Vf(x,Yy,z)=(2x, 2y, 22)

Normalize n before using in dot products!

In some degenerate cases, the gradient
may be zero, and this method
fails...use nearby gradient as a cheap
hack

AN

Practical Issues - Realism

P

I
A
A |
A |
Frr]
]

/
0‘0

/
0‘0

Sampling

In the simplest case, choose our sample points at pixel centers
For better results, can supersample
- e.g., at corners and at center

Even better techniques do adaptive sampling: increase sample density
In areas of rapid change (in geometry or lighting)

» With stochastic sampling, samples are taken probabilistically;

converges faster than regularly spaced sampling
For fast results, can subsample: fewer samples than pixels
- take as many samples as time permits
- beam tracing: track a bundle of neighboring rays together

How to convert samples to pixels? Filter to get weighted average of
samples

Practical Issue - Speed

« Very expensive
<« Yet embarrassingly parallel
< Avold unnecessary intersection tests

<+ Ray triangle intersection

Space Partition

<« During raytracing, the number of outstanding rays are

usually over 100k.

<« Building the Octree

Create one cube represent the world and put all the
triangles inside
Recursively subdivide a cube into 2x2x2 cubes if the
number of triangles is over a threshold

(root)

If the cube has children
recursively intersects
all its children cube (1 level)

Intersect against all triangles

Spatial Partitioning

<« Ray can be advanced from cell to cell

< Only those objects in the cells lying on the path of
the ray need be considered

- < FIrst intersection terminates the search

(

4

n3e

Computer Graphics

Bounding Volume

Slab:aX +bY +¢cZ+d =0

X = X, +1AX A: per ray per slab set

AR B: per ray per slab set
Z=7,+1AZ =REDID
_aX,+bY, +cZ,+d A+D D: per slab

aAX +bAY +cAZ B

Computer Graphics

Bounding Volume (cont.)

« All the maximum (circle) intersections must be after all the minimum
(square) intersections

Computer Graphics

Hierarchical Bounding Volume

Computer Graphics

Batch vs.

< Batch

0 Build a whole tree (<=
certain depth)

0 At the leaf level

» Nothing (background
color)

> Object (its intrinsic
color)

> Proceed backward to
fill in the Info

Interactive

< Interactive

0 Build a tree to, say,
depth 1

a At leaf level

» Nothing (background
color)

> Object (color computed
from previous iteration)

> Proceed backward to
fill in the inof

Extend to the next depth,
and repeat

