
RayTracing

POV-Ray

 Full-featured raytracer

 Free

http://hof.povray.org/pebbles.html
http://hof.povray.org/pebbles.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/office-13.html
http://hof.povray.org/office-13.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/glasses.html
http://hof.povray.org/glasses.html

Ray Tracing Basics

 Shoot ray in the reverse direction (from

eyes to light instead of from light to eyes)

 Miss

 Hit

 Shadow ray (to the light)

Reflected ray (on the same side)

Refracted ray (on the opposite side)

Hit and Miss

Shadow Ray

 Shadow ray

Blocked – in

shadow

Not blocked

Reflected Ray

 Pick up color

of objects on

the same side

Refracted Ray

 Pick up color

of objects on

the opposite

side

Multiple Levels of R/R

Computer Graphics

Visible Surface Ray Tracing
for (each scan line) {

for (each pixel in scan line) {

compute ray direction from COP (eye) to pixel

for (each object in scene) {

if (intersection and closest so far) {

record object and intersection point // a hit

}

accumulate pixel colors (one level)

- shadow ray color

- reflected ray color (recursion)

- refracted ray color (recursion)

}

}
}

Details

 I = Ilocal + Kr*R +Kt*T

 Build tree top-down

 Fill in values bottom-up

Local Color

 A single color [r, g, b] – no brainer

 {r,g,b}_local = {r,g,b}_light * {r,g,b}_material

*cos(q) for each light not in shadow

Add one extra term {r,g,b}_ambinent*

{r,g,b}_material for background emission

 This reflects a local diffuse model

 A texture image – every pixel can have a

different color, more interesting

Texture Mapping

 Important to preserve aspect ratio so as not

to distort content

Not always possible with sphere

Azimuth [0..360]

Elevation [-90..90]

if xmax >= ymax,
width = xmax
height = ymax

else
width = ymax
height = xmax

end
if width >= 2*height

wrange = 2*height
hrange = height

else
wrange = widith
hrange = width/2

end

Computing Reflected Ray

 S = N cosΘ +L = N (N.L) + L

 R = N cos Θ + S

 = N (N.L) + N (N.L) + L

 = 2 N (N.L) +L

 All vectors are UNIT length

L

N

RS S

Θ Θ

N cosΘ

Computing Refracted Ray
 n1sinΘ1 = n2sinΘ2 (Snell’s law)

 S1 = L + N cosΘ1 = L + N (N.L)

 S2 = N cosΘ2 + R

 S1 / S2 = sinΘ1 / sinΘ2 = n2 / n1

 = (L + N cosΘ1) / (N cosΘ2 + R)

 R = 1/n2 (n1L + n1NcosΘ1 - n2NcosΘ2)

L

N

R

n1 : refractive index

n2

Θ1

Θ2

S1

S2

N cosΘ1

N cosΘ2

Ray-Object Intersection

 Implicit definition (f(P)=0)

 f(x,y) = x^2+y^2-R^2

 f(x,y,z) = Ax+By+Cz+D

 f(x,y,z)=x^2+y^2+z^2-R^2

 Starting from a point P in space

 Go in the direction of d

 Point on ray is P + td

 f(P + td)=0

 Quadratic equations to solve (circle, sphere)

Ray-Object Intersection

 When and where?

Before normalization transform and projection

 In the world coordinate system (in fact, often in

object’s own coordinate system)

Normalization transform won’t help to simplify

the math

 Lights can be anywhere

Objects can be anywhere

Normalization only help with clipping and

projection (a viewer centered operation)

 Hint: for HW, do it in the world coordinate

Consider the eye-point P = (-3, 1), the direction vector d = (.8, -.6) and the unit
circle given by:

f(x,y) = x2 + y2 – R2

A typical point of the ray is:

Q = P + td = (-3,1) + t(.8,-.6) = (-3 + .8t,1 - .6t)

Plugging this into the equation of the circle:

f(Q) = f(-3 + .8t,1 - .6t) = (-3+.8t)2 + (1-.6t)2 - 1

Expanding, we get:

9 – 4.8t + .64t2 + 1 – 1.2t + .36t2 - 1

Setting this to zero, we get:

t2 – 6t + 9 = 0

2D ray-circle intersection example

Using the quadratic formula:

We get:

Because we have a root of multiplicity 2, ray intersects circle at one
point (i.e., it’s tangent to the circle)

We can use discriminant D = b2 - 4ac to quickly determine if a ray
intersects a curve or not

- if D < 0, imaginary roots; no intersection

- if D = 0, double root; ray is tangent

- if D > 0, two real roots; ray intersects circle at two points

Smallest non-negative real t represents intersection nearest to eye-point

a

acbb
roots

2

42 


3 ,3 ,
2

36366



 tt

2D ray-circle intersection example

(cont.)

For objects like cylinders, the equation

x2 + z2 – 1 = 0

in 3-space defines an infinite cylinder of unit radius, running
along the y-axis

Usually, it’s more useful to work with finite objects, e.g. such a unit
cylinder truncated with the limits

y  1

y  -1

But how do we do the “caps?”

The cap is the inside of the cylinder at the y extrema of the cylinder

x2 + z2 – 1 < 0, y = ±1

Implicit objects-multiple conditions

We want intersections satisfying the cylinder:

x2 + z2 – 1 = 0

– 1  y  1

or top cap:

x2 + z2 – 1  0

y = 1

or bottom cap:

x2 + z2 – 1  0

y = – 1

Multiple conditions (cont.)

Solve in a case-by-case approach
Ray_inter_finite_cylinder(P,d):

// Check for intersection with infinite cylinder

t1,t2 = ray_inter_infinite_cylinder(P,d)

compute P + t1*d, P + t2*d

// If intersection, is it between “end caps”?

if y > 1 or y < -1 for t1 or t2, toss it

// Check for intersection with top end cap

Compute ray_inter_plane(t3, plane y = 1)

Compute P + t3*d

// If it intersects, is it within cap circle?

if x2 + z2 > 1, toss out t3

// Check intersection with other end cap

Compute ray_inter_plane(t4, plane y = -1)

Compute P + t4*d

// If it intersects, is it within cap circle?

if x2 + z2 > 1, toss out t4

Among all the t’s that remain (1-4), select the smallest non-negative

one

Multiple conditions-cylinder

pseudocode

Computer Graphics

0)(2)(

)(2)(

)(2)(

0222

:

0)()()(:

222

22

22

2222222

2222

























rcZtZcZtZ

bYtYbYtY

aXtXaXtX

rccZZbbYYaaXX

ZtZZ

YtYY

XtXX

ray

rcZbYaXsphere

oo

oo

oo

o

o

o

0)()()(

)}()()({2

)(

2222

2222







rcZbYaX

tcZZbYYaXX

tZYX

ooo

ooo

Computer Graphics























nginsersectinon 0

grazing0

nginsersecti0

40

0)()()(

)}()()({2

)(

22

2222

2222

t

ACBCBtAt

rcZbYaX

tcZZbYYaXX

tZYX

ooo

ooo

Computer Graphics

ZcYbXa

dcZbYaX
t

dZtZcYtYbXtXa

ZtZZ

YtYY

XtXX

ray

dcZbYaXplane

ooo

ooo

o

o

o
























0)()()(

:

0:

 There will be a reasonable t value, unless the denominator

is zero (the line and the plane are parallel)

 But is the intersection point actually inside the polygon?

One Final Detail

 A cylinder x2+z2-1=0 is “simple” only in its

own coordinate system

 Modeling transform can destroy that

simplicity

 How to intersect with a general quadratic

equation ax2+bxy+cy2+dx+ey+f = 0?

Object-Space Intersection

 World system

 Complicated shape

equations

 ax2+bxy+cy2+dx+ey+f

= 0

 Ray equation is P+td

always

 Object system

 Simple shape equation

 x2+z2-1=0

(0,0,0)

MQ

dtP 

0),,(zyxf

dd
11~~   tMPMtP

Q

0),,(
~

zyxf

Shading – Normal Vector

 For illumination, you need the normal at the
point of intersection in world space

 Two step process:

 solving for point of intersection in the object's
own space and computing normal there;

 then transform the object space normal to the
world space

),,(zyxf n 





















) , ,(), , ,(), , ,() , ,(zyx

z

f
zyx

y

f
zyx

x

f
zyxf

Normal Vectors)

 Normal vectors need for shading

 A two-step process:

 solving for point of intersection in the object's

own space and computing normal there;

 then transform the object space normal to the

world space

 Surface: f(x,y,z)=0, interior f(x,y,z)<0, then

Sphere normal vector example

For the sphere, the equation is

f (x,y,z) = x2 + y2 + z2 – 1

The partial derivatives are

So the gradient is

Normalize n before using in dot products!

In some degenerate cases, the gradient
may be zero, and this method
fails…use nearby gradient as a cheap
hack

zzyx
z

f

yzyx
y

f

xzyx
x

f

2) , ,(

2) , ,(

2) , ,(
















)2,2,2(),,(zyxzyxf n 

Normal Vectors at

Intersection Points
(2/4)

Special Effects

Practical Issues - Realism

Sampling
 In the simplest case, choose our sample points at pixel centers

 For better results, can supersample

– e.g., at corners and at center

 Even better techniques do adaptive sampling: increase sample density
in areas of rapid change (in geometry or lighting)

 With stochastic sampling, samples are taken probabilistically;
converges faster than regularly spaced sampling

 For fast results, can subsample: fewer samples than pixels

– take as many samples as time permits

– beam tracing: track a bundle of neighboring rays together

 How to convert samples to pixels? Filter to get weighted average of
samples

Practical Issue - Speed

 Very expensive

 Yet embarrassingly parallel

 Avoid unnecessary intersection tests

Space Partition
 During raytracing, the number of outstanding rays are

usually over 100k.

 Building the Octree

 Create one cube represent the world and put all the
triangles inside

 Recursively subdivide a cube into 2x2x2 cubes if the
number of triangles is over a threshold

 Ray triangle intersection

 If the cube has children

 recursively intersects

 all its children cube

 intersect against all triangles

Computer Graphics

Spatial Partitioning

 Ray can be advanced from cell to cell

 Only those objects in the cells lying on the path of

the ray need be considered

 First intersection terminates the search

Computer Graphics

B

DA

ZcYbXa

dcZbYaX
t

ZtZZ

YtYY

XtXX

ray

dcZbYaXSlab

ooo

o

o

o

























:

0:

A: per ray per slab set

B: per ray per slab set

D: per slab

Bounding Volume

Computer Graphics

Bounding Volume (cont.)
 All the maximum (circle) intersections must be after all the minimum

(square) intersections

Computer Graphics

Hierarchical Bounding Volume

Batch vs. Interactive

 Batch

 Build a whole tree (<=

certain depth)

 At the leaf level

 Nothing (background

color)

 Object (its intrinsic

color)

 Proceed backward to

fill in the info

 Interactive

 Build a tree to, say,

depth 1

 At leaf level

 Nothing (background

color)

 Object (color computed

from previous iteration)

 Proceed backward to

fill in the inof

Extend to the next depth,

and repeat

