
RayTracing





POV-Ray

 Full-featured raytracer 

 Free

http://hof.povray.org/pebbles.html
http://hof.povray.org/pebbles.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/office-13.html
http://hof.povray.org/office-13.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/glasses.html
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Ray Tracing Basics

 Shoot ray in the reverse direction (from 

eyes to light instead of from light to eyes)

 Miss

 Hit

 Shadow ray (to the light)

Reflected ray (on the same side)

Refracted ray (on the opposite side)



Hit and Miss



Shadow Ray

 Shadow ray

Blocked – in 

shadow

Not blocked



Reflected Ray

 Pick up color 

of objects on 

the same side



Refracted Ray

 Pick up color 

of objects on 

the opposite 

side



Multiple Levels of R/R



Computer Graphics

Visible Surface Ray Tracing
for (each scan line) {

for (each pixel in scan line) {

compute ray direction from COP (eye) to pixel

for (each object in scene) {

if (intersection and closest so far) {

record object and intersection point // a hit

}

accumulate pixel colors (one level)

- shadow ray color 

- reflected ray color (recursion)

- refracted ray color (recursion)

}

}
} 



Details

 I = Ilocal + Kr*R +Kt*T

 Build tree top-down

 Fill in values bottom-up



Local Color

 A single color [r, g, b] – no brainer

 {r,g,b}_local = {r,g,b}_light * {r,g,b}_material 

*cos(q) for each light not in shadow

Add one extra term {r,g,b}_ambinent* 

{r,g,b}_material  for background emission

 This reflects a local diffuse model

 A texture image – every pixel can have a 

different color, more interesting



Texture Mapping

 Important to preserve aspect ratio so as not 

to distort content

Not always possible with sphere



Azimuth [0..360]

Elevation [-90..90]

if xmax >= ymax, 
width = xmax
height = ymax

else 
width = ymax
height = xmax

end
if width >= 2*height 

wrange = 2*height 
hrange = height

else
wrange = widith
hrange = width/2

end



Computing Reflected Ray

 S = N cosΘ +L = N (N.L) + L

 R = N cos Θ + S

 = N (N.L) + N (N.L) + L

 = 2 N (N.L) +L

 All vectors are UNIT length
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Computing Refracted Ray
 n1sinΘ1 = n2sinΘ2 (Snell’s law)

 S1 = L + N cosΘ1 = L + N (N.L)

 S2 = N cosΘ2 + R 

 S1 / S2 = sinΘ1 / sinΘ2 = n2 / n1

 = (L + N cosΘ1) / (N cosΘ2 + R) 

 R = 1/n2 (n1L + n1NcosΘ1 - n2NcosΘ2 )

L

N

R

n1 : refractive index

n2

Θ1

Θ2

S1

S2

N cosΘ1

N cosΘ2



Ray-Object Intersection

 Implicit definition (f(P)=0)

 f(x,y) = x^2+y^2-R^2

 f(x,y,z) = Ax+By+Cz+D

 f(x,y,z)=x^2+y^2+z^2-R^2

 Starting from a point P in space

 Go in the direction of d

 Point on ray is P + td

 f(P + td)=0

 Quadratic equations to solve (circle, sphere)



Ray-Object Intersection

 When and where? 

Before normalization transform and projection

 In the world coordinate system (in fact, often in 

object’s own coordinate system)

Normalization transform won’t help to simplify 

the math 

 Lights can be anywhere 

Objects can be anywhere

Normalization only help with clipping and 

projection (a viewer centered operation)

 Hint: for HW, do it in the world coordinate



Consider the eye-point P = (-3, 1), the direction vector d = (.8, -.6) and the unit 
circle given by:

f(x,y) = x2 + y2 – R2

A typical point of the ray is:

Q = P + td = (-3,1) + t(.8,-.6) = (-3 + .8t,1 - .6t)

Plugging this into the equation of the circle:

f(Q) = f(-3 + .8t,1 - .6t) = (-3+.8t)2 + (1-.6t)2 - 1

Expanding, we get:

9 – 4.8t + .64t2 + 1 – 1.2t + .36t2 - 1

Setting this to zero, we get:

t2 – 6t + 9 = 0

2D ray-circle intersection example



Using the quadratic formula:

We get:

Because we have a root of multiplicity 2, ray intersects circle at one 
point (i.e., it’s tangent to the circle)

We can use discriminant D = b2 - 4ac to quickly determine if a ray 
intersects a curve or not

- if D < 0, imaginary roots; no intersection

- if D = 0, double root; ray is tangent

- if D > 0, two real roots; ray intersects circle at two points

Smallest non-negative real t represents intersection nearest to eye-point
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2D ray-circle intersection example 

(cont.)



For objects like cylinders, the equation

x2 + z2 – 1 = 0

in 3-space defines an infinite cylinder of unit radius, running 
along the y-axis

Usually, it’s more useful to work with finite objects, e.g. such a unit 
cylinder truncated with the limits

y  1

y  -1

But how do we do the “caps?”

The cap is the inside of the cylinder at the y extrema of the cylinder

x2 + z2 – 1 < 0,  y = ±1 

Implicit objects-multiple conditions



We want intersections satisfying the cylinder:

x2 + z2 – 1 = 0

– 1  y  1

or top cap:

x2 + z2 – 1  0

y = 1 

or bottom cap:

x2 + z2 – 1  0

y = – 1

Multiple conditions (cont.)



Solve in a case-by-case approach
Ray_inter_finite_cylinder(P,d):

// Check for intersection with infinite cylinder

t1,t2 = ray_inter_infinite_cylinder(P,d)

compute P + t1*d, P + t2*d

// If intersection, is it between “end caps”?

if y > 1 or y < -1 for t1 or t2, toss it

// Check for intersection with top end cap

Compute ray_inter_plane(t3, plane y = 1)

Compute P + t3*d

// If it intersects, is it within cap circle?

if x2 + z2 > 1, toss out t3

// Check intersection with other end cap

Compute ray_inter_plane(t4, plane y = -1)

Compute P + t4*d

// If it intersects, is it within cap circle?

if x2 + z2 > 1, toss out t4

Among all the t’s that remain (1-4), select the smallest non-negative 

one

Multiple conditions-cylinder 

pseudocode



Computer Graphics
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Computer Graphics
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Computer Graphics
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 There will be a reasonable t value, unless the denominator 

is zero (the line and the plane are parallel)

 But is the intersection point actually inside the polygon?



One Final Detail

 A cylinder x2+z2-1=0 is “simple” only in its 

own coordinate system

 Modeling transform can destroy that 

simplicity

 How to intersect with a general quadratic 

equation ax2+bxy+cy2+dx+ey+f = 0?



Object-Space Intersection

 World system

 Complicated shape 

equations

 ax2+bxy+cy2+dx+ey+f 

= 0

 Ray equation is P+td 

always

 Object system

 Simple shape equation

 x2+z2-1=0

(0,0,0)
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Shading – Normal Vector

 For illumination, you need the normal at the 
point of intersection in world space

 Two step process:

 solving for point of intersection in the object's 
own space and computing normal there; 

 then transform the object space normal to the 
world space
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Normal Vectors)

 Normal vectors need for shading

 A two-step process: 

 solving for point of intersection in the object's 

own space and computing normal there; 

 then transform the object space normal to the 

world space

 Surface: f(x,y,z)=0, interior f(x,y,z)<0, then 



Sphere normal vector example

For the sphere, the equation is

f (x,y,z) = x2 + y2 + z2 – 1

The partial derivatives are

So the gradient is

Normalize n before using in dot products!

In some degenerate cases, the gradient 
may be zero, and this method 
fails…use nearby gradient as a cheap 
hack
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Special Effects



Practical Issues - Realism



Sampling
 In the simplest case, choose our sample points at pixel centers

 For better results, can supersample

– e.g., at corners and at center

 Even better techniques do adaptive sampling: increase sample density 
in areas of rapid change (in geometry or lighting)

 With stochastic sampling, samples are taken probabilistically; 
converges faster than regularly spaced sampling

 For fast results, can subsample: fewer samples than pixels

– take as many samples as time permits

– beam tracing: track a bundle of neighboring rays together 

 How to convert samples to pixels?  Filter to get weighted average of 
samples



Practical Issue - Speed

 Very expensive

 Yet embarrassingly parallel

 Avoid unnecessary intersection tests



Space Partition
 During raytracing, the number of outstanding rays are 

usually over 100k. 

 Building the Octree

 Create one cube represent the world and put all the 
triangles inside

 Recursively subdivide a cube into 2x2x2 cubes if the 
number of triangles is over a threshold

 Ray triangle intersection

 If the cube has children

 recursively intersects 

 all its children cube

 intersect against all triangles



Computer Graphics

Spatial Partitioning

 Ray can be advanced from cell to cell

 Only those objects in the cells lying on the path of 

the ray need be considered

 First intersection terminates the search



Computer Graphics
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Bounding Volume



Computer Graphics

Bounding Volume (cont.)
 All the maximum (circle) intersections must be after all the minimum 

(square) intersections



Computer Graphics

Hierarchical Bounding Volume



Batch vs. Interactive

 Batch

 Build a whole tree (<= 

certain depth)

 At the leaf level

 Nothing (background 

color)

 Object (its intrinsic 

color)

 Proceed backward to 

fill in the info 

 Interactive

 Build a tree to, say, 

depth 1

 At leaf level

 Nothing (background 

color)

 Object (color computed 

from previous iteration)

 Proceed backward to 

fill in the inof

Extend to the next depth, 

and repeat


