
Shadows



Computer Graphics

One Slide Solution

 It is really very simple

 Can you see something from the eye 

position? Yes, then visible. No, then not 

visible (occluded)

 Can you see something from a light source 

position? Yes, then not in shadow. No, then 

in shadow

 If you know HLHSR, then do that from the 

light instead of the eye location



Computer Graphics

Multiple Slides Solution

 But there can be multiple light sources

 The light source might not be a single point 

or a single direction (e.g., extended sources)

 Want to determine both visibility and 

lighting without multiple transforms



Computer Graphics

Two-Pass Object Precision

 1st pass: transform to light position

 hidden surface determination (polygons which 

are not in shadow)

 2nd pass: transform to original world 

coordinate sys

 polygons not in shadow are merged to become 

surface detail polygons (which algorithm?)

 Postprocessing: transform to eye coordinate

 visible surface determination + surface details



Computer Graphics



Computer Graphics



Computer Graphics

Two-pass Image Precision

 Z buffer from eye (e): what the viewer can see

 Z buffer from light (l): what the light source 

can see

 for each (xe,ye,ze) 

 transform to (xl,yl,zl)

 is zl more distant than z(xl,yl)

 yes, (xe,ye) is in shadow

 no, (xe,ye) is not in shadow



Computer Graphics



Computer Graphics



Computer Graphics

Shadow Volume



Computer Graphics

Shadow Volume

 Enclosed by 

 (side) shadow polygons

 scene polygon

 back shadow polygon (scaled version of the 
original scene polygon)

 Shadow polygons are invisible and not 
rendered (used to determine whether an 
object is in shadow)

 SV polygons = scene polygon + all shadow 
polygons



Computer Graphics

Shadow Volume

 From the viewer

 each front-facing (normal pointing to the 

viewer) SV polygon causes object to be in 

shadow

 each back-facing (normal pointing away from 

the viewer) SV polygon causes object to be out 

of shadow

 #FF intersections >= #BF intersections to be in 

shadow



Computer Graphics

Shadow Volume

 How do you do this?

 A modified depth-sort type algorithm

 include SV polygons in the depth-sort list but 

process them front-to-back (instead of back-to-

front)

 determine whether the eye is in any SV

 then count how many times the projection ray 

intersects FF and BF SV polygons

 easier said than done



Computer Graphics

Soft Shadow



Computer Graphics

Soft Shadow



Computer Graphics

Using BSP Tree

 Stationary light source

 Stationary scene

 Moving camera

 Basic BSP tree algorithm

 Construct a tree based on scene polygons

 Determine rendering order

 Enhancement

 Polygons need surface details for right order and 
appearance

 Order is taken care of by basic BSP

 How about surface details? 



Computer Graphics

Intuition
 Surface details (in shadow or not) are stationary

regardless of camera position 

 Find once

 if a polygon is in shadow or not, and

 Which part is in shadow (surface detail polygons)

 Which polygon is NOT in shadow

 The one that is closet to the light source

 The polygon 2nd closest to the light source can 
only have shadow from the closet polygons

 The polygon 3rd closest to the light source can 
only have shadow from the 1st and 2nd closet 
polygons, etc.



Computer Graphics

SVBSP Tree

 A binary tree

 Each node is a SV polygon (instead of a 

scene polygon)

 Space is divided into IN/OUT by a node (a 

SV polygon, normal pointing out)

 Leaf nodes are labeled IN/OUT



Computer Graphics

a

b
c

d
a

b

c

d

OUT

OUT

OUT

OUT IN



Computer Graphics

a

b
c

d
a

b

c

d

OUT

OUT

OUT

OUT INQ1

Q

Q2
Q3

Q

Q1
Q2+Q3

Q3 Q2

Q2



Computer Graphics

a

b
c

d
a

b

c

d

OUT

OUT

OUT INQ1

Q2
Q3

Q1

e
f

e

OUT f

OUT IN



Computer Graphics

a

b
c

d

a

b

c

d

OUT

OUT IN

Q1

Q2
Q3

Q1

e
f

e

OUT f

OUT IN

Q3

g

h

i
g

OUT h

OUT i

OUT IN



Computer Graphics

SVBSP Tree Construction

 Ordering is important
 the polygon which is closest to the light source must 

be used first

 the polygon which is 2nd closest to the light source 
then filtered down the SVBSP tree to generate surface 
details polygons

 add the 2nd closest polygons to SVBSP tree

 the polygon which is 3rd closest to the light source 
then filtered down the SVBSP tree to generate surface 
details polygons

 add the 3rd closest polygons to SVBSP tree

 ...



Computer Graphics

 How to know which polygon is closest 
(2nd, 3rd closest ….) to the light source?

 Use the regular BSP Tree
 traverse according to the light source position

 first the half containing light

 then the partition plane

 then the half not containing light

 First pass (SVBSP): surface details

 Second pass (BSP): eye locations for 

rendering



Computer Graphics

Other Possibilities

 Ray Tracing

with shadow rays to the sources

 Radiosity

with form factor computation

 Later



Computer Graphics

Fake Shadow

 Shadow generation is not trivial

OpenGL does not do it

 Reason

 Shading calculation can be based entirely on 
“local” information, while shadow calculation 
cannot (need to know the relative position of 
many objects)

 In reality

 Shadow does not to be entirely correct, it just 
has to be realistic



Computer Graphics

Fake Shadow (cont.)

 Usually, in an indoor environment

Light is on the ceiling

Walls and floor enclose the scene (and they are 

planar)

Cast shadows on those enclosing surfaces by 

projecting objects onto them



Computer Graphics

Example

 Figure out the projection 

transform From (x,y,z,1) to 

(i,j,1)

 Apply this transform to all 

scene polygons

 Draw projected polygons in 

dark (shadow) colors

(x,y,z,1)

(i,j,1)



Computer Graphics

Math 


























































































1
100

00

00

1

)(
,

)(

)(

0)(

0

)(

)(

)(

z

y

x

z

yz

xz

zz

zyyz

zz

zxxz

zz

z

zzz

zzz

yyy

xxx

p

p

p

l

ll

ll

y

x

lp

plpl
y

lp

plpl
x

lp

l
t

lptl

zplane

lptlz

lptly

lptlx

line


