

One Slide Solution

« It s really very simple
<+ Can you see something from the eye

position? Yes, then visible. No, then not
visible (occluded)

<« Can you see something from a light source
position? Yes, then not in shadow. No, then
In shadow

<« If you know HLHSR, then do that from the
light instead of the eye location

Computer Graphics

Multiple Slides Solution

<+ But there can be multiple light sources

<« The light source might not be a single point
or a single direction (e.g., extended sources)

< Want to determine both visibility and
lighting without multiple transforms

Computer Graphics

Two-Pass Object Precision

<+ 1st pass: transform to light position

2 hidden surface determination (polygons which
are not in shadow)

<« 2nd pass: transform to original world
coordinate sys

2 polygons not In shadow are merged to become
surface detail polygons (which algorithm?)

< Postprocessing: transform to eye coordinate
2 visible surface determination + surface details

Computer Graphics

< Ve
AN S

by,
<7 =
= =
=N =

3‘,(,'“[\

Vz

RN
e

\
N
I\

At

W
7

Computer Graphics

4
v 9
748~ J lllumination and Shading

Trans-
form

to
light's

view

A

Merge polygon
databases

~

s e ~ o
“* Transform to view 1 I Transform to view 2 '-.«‘-‘rf‘,-.

Visible-surface determination I

v

4

’

ﬂ

Two-pass Image Precision

« Z buffer from eye (e): what the viewer can see

« Z buffer from light (1): what the light source
can see

< for each (xe,ye,ze)
o transform to (xl,yl,zl)

2 1s zI more distant than z(xl,yl)
> yes, (xe,ye) Is in shadow
> No, (Xe,ye) is not in shadow

Computer Graphics

Computer Graphics

Computer

Shadow Volume

Shadewed
Scene

Shadew
Volume

Shadow Volume

<+ Enclosed by
2 (side) shadow polygons
2 scene polygon

0 back shadow polygon (scaled version of the
original scene polygon)

<« Shadow polygons are invisible and not
rendered (used to determine whether an
object is in shadow)

«» SV polygons = scene polygon + all shadow
polygons

Computer Graphics

Shadow Volume

< From the viewer

2 each front-facing (normal pointing to the
viewer) SV polygon causes object to be in
shadow

0 each back-facing (normal pointing away from
the viewer) SV polygon causes object to be out
of shadow

0 #FF intersections >= #BF intersections to be In
shadow

Computer Graphics

Shadow Volume

«» How do you do this?

< A modified depth-sort type algorithm

2 include SV polygons in the depth-sort list but
process them front-to-back (instead of back-to-
front)

2 determine whether the eye is in any SV

2 then count how many times the projection ray
Intersects FF and BF SV polygons

2 easler said than done

Computer Graphics

Soft Shadow

| Penumbra

Fig. 16.48 Umbra and penumbra.

Soft Shadow

Computer Graphics

Using BSP Tree

< Stationary light source
<« Statlonary scene
< Moving camera

<+ Basic BSP tree algorithm
0 Construct a tree based on scene polygons
0 Determine rendering order

< Enhancement

0 Polygons need surface details for right order and
appearance

0 Order is taken care of by basic BSP
0 How about surface details?

Computer Graphics

Intuition

<« Surface details (in shadow or not) are stationary
regardless of camera position

2 Find once
> if a polygon is in shadow or not, and
> Which part is in shadow (surface detail polygons)

< Which polygon is NOT in shadow
0 The one that is closet to the light source

+ The polygon 2" closest to the light source can
only have shadow from the closet polygons

+ The polygon 3" closest to the light source can
only have shadow from the 15t and 2" closet
polygons, etc.

Computer Graphics

< Leaf nodes are labeled IN/OU

SVBSP Tree

« A binary tree
<« Each node Is a SV polygon (instead of a
scene polygon)

<+ Space Is divided into IN/OUT by a node (a
SV polygon, normal pointing out)

Computer Graphics

y

\

*
*
“

IN

OouT

N

8
=
S
O
NG
2
g,
S
)

Computer Graphics

Computer Graphics

OuT

Computer Graphics

SVBSP Tree Construction

<+ Ordering Is important

2 the polygon which is closest to the light source must
be used first

at
t

ne polygon which is 2nd closest to the light source
nen filtered down the SVBSP tree to generate surface

details polygons

0 add the 2nd closest polygons to SVBSP tree

at
t

ne polygon which is 3rd closest to the light source
nen filtered down the SVBSP tree to generate surface

details polygons

0 add the 3rd closest polygons to SVBSP tree
Q...

Computer Graphics

«» How to know which polygon is closest
(2nd, 3rd closest) to the light source?

<+ Use the regular BSP Tree

0 traverse according to the light source position
> first the half containing light
> then the partition plane
> then the half not containing light

<+ FIrst pass (SVBSP): surface details

<« Second pass (BSP): eye locations for
rendering

Computer Graphics

Other Possibilities

«» Ray Tracing

2 with shadow rays to the sources
<« Radiosity

2 with form factor computation
< Later

Computer Graphics

Fake Shadow

<« Shadow generation is not trivial
2 OpenGL does not do It

< Reason

0 Shading calculation can be based entirely on
“local” information, while shadow calculation
cannot (need to know the relative position of
many objects)

<« In reality

0 Shadow does not to be entirely correct, It just
has to be realistic

Computer Graphics

Fake Shadow (cont.)

<« Usually, In an indoor environment
a Light is on the ceiling

0 Walls and floor enclose the scene (and they are
planar)

0 Cast shadows on those enclosing surfaces by
projecting objects onto them

Computer Graphics

Example

<« Figure out the projection
transform From (x,y,z,1) to

(1),1) %
« Apply this transform to all
scene polygons
< Draw projected polygons In
dark (shadow) colors

(x.y.2,1)

= = l
|
Vs,
y ol e
Wdrodia.

Computer Graphics

Math

(x=1,+t(p,—1,)
line Jy=1 +t(p, 1))

z=1,+t(p,-1,)
plane z=0

= | +t(p,-1)=0
I

~(p, 1)

£ l.p, —I
:lesz prz’y: zpy ypz
(p,—1,) (p,—1,)

X TN 20 a2

Py

y|=(0 I, -1, 0O
1 o o 1 -L|"
- T g -1

Computer Graphics

