
Structure-from-Motion Analysis

2D back to 3D



Structure from motion



Multiple-view geometry questions

• Scene geometry (structure): Given 2D point matches in 
two or more images, where are the corresponding points 
in 3D?

• Correspondence (stereo matching): Given a point in 
just one image, how does it constrain the position of the 
corresponding point in another image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more images, what are 
the camera matrices for these views?



Structure from motion
• Given: m images of n fixed 3D points 

 xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 

n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3



Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at the 

same time, scale the camera matrices by the factor of 1/k, 

the projections of the scene points in the image remain 

exactly the same:

It is impossible to recover the absolute scale of the scene!
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Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at the 

same time, scale the camera matrices by the factor of 1/k, 

the projections of the scene points in the image remain 

exactly the same 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse transformation to 

the camera matrices, then the images do not change
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Projective ambiguity
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Projective ambiguity



Affine ambiguity
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Affine ambiguity



Similarity ambiguity
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Similarity ambiguity



Hierarchy of 3D transformations
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Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the scene, 
we get a projective reconstruction

• Need additional information to upgrade the reconstruction to affine, 
similarity, or Euclidean



Sidebar: Matrix form of cross product

 The cross product of two vectors is a third vector, 

perpendicular to the others (right hand rule)
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Side Bar (Useful Duality Relationship)

 Points to line

 Two points determine a line

 Lines to point

 Intersection of two lines is a point 
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Sidebar: Eigen Decomposition

 Real symmetric Matrix 

 UDUT

 Eigen vectors are orthogonal

 Eigen values are real

 Real anti-symmetric (Skew-symmetric) Matrix

 UBUT

 Eigen vectors are orthogonal

 Eigen values are all imaginary and appear in pair

 Skew-symmetric matrices of odd dimension are singular (a row 

and a column of zero)



Harder Problem

What happens if we do not know the stereo configuration 

(baseline, camera orientation, etc.)?

 If the stereo configuration can be recovered and then rectified, we 

can again apply the standard stereo matching algorithms described 

above

 Recovering R and T (rigid camera motion) using

 2 views (fundamental matrix)

 3 views (trifocal tensors)

 N views (factorization)

 Epipolar geometry is again the key

 Correct R and T are not incidental, they match corresponding 

points and lines in different views



Epipolar geometry

• Epipolar Plane

• Epipoles

• Epipolar Lines

• Baseline

C1 C2



Epipolar constraint

• Potential matches for p have to lie on the corresponding 

epipolar line l’

• Potential matches for p’ have to lie on the corresponding 

epipolar line l



Epipolar lines example



p p

Case 1: Calibrated camera

O O

P

OP

Op

O P

O p

OO

Op · (OO  Op) = ?

Op · (OO  Op) = 0
[ R  t ] – rigid trans. from O to O
p · (t  Rp ) = 0

This can be written in matrix form as:
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Don’t believe it?
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Calibrated Camera: Essential Matrix

 Coplanar (3D, regular coordinates)

 Colinear (2D, homogeneous coordinates)

C1 C2
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3D Analysis

 What is O in unprimed frame? 

 [0,0,0]T

 What is p in unprimed frame? 

 [x,y,1] T

 What is O in primed frame (or 

what is the vector O’O)? 

 RO+T= T

 What is p in primed frame? 

 Rp+T

 What is p’ in primed frame? 

 [x’,y’,1] T
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Graphically in 3D 

 All quantities are expressed in the same coordinate system 

(O’)
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All quantities are now expressed in the same coordinate system (O’)



2D Analysis

 [x.y,z] can be treated 

 As a 3D regular coordinate (what we did in the previous slide)

 As a 2D homogeneous coordinate (or x/z and y/z are projections 

onto the image plane)

 Now O’O is T, if it is treated as a 2D homogeneous 

coordinate, then it is the epipole of the unprimed camera in 

the prime frame

 Now the image of Op in the primed frame is Rp+T

 Hence, TxRp is the line equation that passes through the 

two points (that is exactly the epipolar line!, next slide)

 Hnece, p’ is on TxRp and pTxRp=0 



Graphically in 2D 

 All quantities are expressed in the same coordinate system 

(O’)
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Fp: The line in the host formed by

epipole of the guest in the host

the point of the guest in the host 



Physical Meaning #1: Point View

 O’O, Op, O’p’ all lie in the same plane (Epipolar plane, spanned by OO’P)

 Hence (O’O x Op) . O’p’ = 0 

 There are two interpretations:
 Coplanar (3D, regular coordinates)

 Colinear (2D, homogeneous coordinates)
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The Essential Matrix

 E describes the transformation between camera coordinate 

frames

 E has five degrees of freedom

 Defined up to a scale factor, since

pT E p = 0

Why only five?

 A rigid transformation has six degrees of freedom

 3 rotation parameters, 2 translation direction parameters

Why only translation direction?





“Up to a scale factor”

 This is always the case with camera calibration and stereo

 Shrink everything 10x and it all looks the same!

 Typically there is something we know that we can use to 

specify the scale factor

 E.g., the baseline, the size of an object, the depth of a point/plane



Camera calibration from E

With five unknowns, theoretically we can recover the 

essential matrix E by writing  pT E p = 0 for five 

corresponding pairs of points

 5 equations and 5 unknowns

We don’t need to know anything about the points (e.g., their 

depth), only that they project to pi and pi

 There are, however, limitations…

 This is used for camera calibration (extrinsic parameters)
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Direct Solutions of E

 Step one:

 ATA is symmetric and semi-definite

 It has positive (or zero) eigenvalues

 The solution corresponds to the eigenvector of the smallest eigenvalue

 Step two:

 F = USVT, with (r, s, t) as the singular values in non-increasing order

 F’ = U S ‘VT, with (r, r, 0) as the singular values of S ‘

 Zero out the smallest singular value

 Make the first two eigenvalues the same

 You can also infer essential matrix from fundamental 

matrix (more later)

We will present the detailed procedure later with 

fundamental matrix



Decomposition of E

 There are four solutions 

 If t, R is one decomposition (E= t x R )

 -t will be ok too (E is defined up to a scale factor)

 UR will be ok too (U is an 180 rotation about t) 

 So there are four solutions

 t, R

 -t, R

 t, UR

 -t, UR 



Why? Algebraic Explanation

 Skew-symmetric matrix has a block diagonal eigenvalue 

decomposition, for 3x3 matrices, we have
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 Two ways to match Z with diag(1,1,0): W or WT

 E is determined up to a sign and a scale, so both are ok



Why? Algebraic Explanation

 Essential matrix has two identical singular values and a 

zero singular value (if and only if condition)

 If (->) essential matrix has two identical singular values 

and a zero singular value
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Why? Algebraic Explanation

 Essential matrix has two identical singular values and a 

zero singular value (if and only if condition)

 Only if (<-) a matrix has two identical singular values and 

a zero singular value is an essential matrix
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Why? Algebraic Explanation

 Given SVD of E as U diag(1,1,0)VT, there are two 

decompositions

 See previous page for proof

 Given SVD of E as U diag(1,1,0)VT, there are four camera 

matrices 

 P=[I|0]

 P’ = [UWVT|u3], [UWVT|-u3], [UWTVT|u3], [UWTVT|-u3]
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Why? Physical Interpretation

 A useful formula for rotation, a vector after rotation is made of three components
 Component in the direction of n (no change)

 Component perpendicular to the direction of n

 Cos(q in the projected direction

 Sin(q in the projected + 90^o direction

  qqq sincos)()( x
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Physical Interpretation

 Additional rotation of 180o about t (translational) axis

  ItttttIttRU t  T

x
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(only one solution where points is in front of both cameras)

Four possible reconstructions from E



Case 2: Uncalibrated camera

 Intrinsic parameters not known
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The Problem 

 Given projection matrices of two views to find 

fundamental matrix is unique

 Given fundamental matrix to find projection matrices of 

two views are not unique

 Theorem, F is the fundamental matrix of multiple two-view 

projection matrices if and only if the multiple interpretations are 

related by a projective transform

 The reconstruction is up to a projective transform 

 That is, not many property can be measured except 

incidence and collinearity

 Again, the importance of calibration cannot be overstated



Physical Meaning #2: Plane View
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mapping from 2-D to 1-D family (rank 2)



Physical Meaning #3: Line View 

 Take an arbitrary line k not passing through e (the epipole)
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 x=[k]xl is the intersection 

 x lie on l

 Fx is then the epipolar line 



Direct Derivation

 Given a point 

 Back project it into space

 Project 3D point into the second frame

 Form the line with epipole
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Confusion

 Q: There are so many ways that one can derive 

fundamental matrix, are all derivations give the same 

results?

 A: Yes and no

 Yes: They all serve the same purpose (defining a line from 

a point to epipole)

 No: There can be multiple matrices (line representation is 

not unique)



The Fundamental Matrix

 F has seven independent parameters

 A simple, linear technique to recover F from 

corresponding point locations is the “eight point 

algorithm”

 From F, we can recover the epipolar geometry of the 

cameras

 Not saying how…

 This is called weak calibration



The eight-point algorithm
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Detailed Algorithm

 First Important Observation: 

 A is rank deficient (its null space contains more than zero)

 In fact, A has rank of 8, hence there is a unique solution (up to a 

scale factor)

 Second Important Observation:

 The fundamental matrix is rank deficient (it is 3x3 of rank 2)



Solutions

 Step one:

 ATA is symmetric and semi-definite

 It has positive (or zero) eigen values

 The solution corresponds to the eigen vector of the smallest eigen 

value

 Hint: use Lagrange multiplier, similar procedure as shown in the 

camera calibration slides

 Step two:

 E = USVT, with (r, s, t) as the singular values in non-increasing 

order

 E’ = U S ‘VT, with (r, s, 0) as the singular values of S ‘

 Zero out the smallest singular value



Don’t Believe It? 
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F is the eigen vector of ATA

Error is 

F is the eigen vector of ATA

With the smallest eigen value



The eight-point algorithm

0pFpT

Invert and solve for F

0AX 



Least squares approach

Minimize:

under the constraint |F|2 = 1

If n > 8



Nonlinear least-squares approach

Minimize

with respect to the coefficients of  F

Point in image 1

Epipolar line in image 1 caused by p

Nonlinear – initialize it from the results of the eight-point algorithm



Least squares 8-point algorithm Hartley’s normalized 8-point alg.



Red/Green stereo display

From Mars Pathfinder





Three Camera Stereo

 A powerful way of eliminate spurious matches

 Hypothesize matches between A & B

 Matches between A & C on green epipolar line

 Matches between B & C on red epipolar line

 There better be something at the intersection (no search needed!)

A
B

C



Mathematically

 Given two corresponding points p1 and p2 in views 1 and 

2, the point p3 in the third view of the point P of 

intersection of the optical ray of p1 and p2 is 

Why? (Fguest,host)

 F13p1 is the epipole line of p from 1st frame in 3rd frame

 F23p2 is the epipole line of p from 2nd frame in 3rd frame

2231133 pFpFp 



Special Cases – Many 

 If p corresponds to epipole, then there is no epipolar line

 If the optical centers are colinear, epipolar lines will 

coincide and intersect everywhere

 If you mount the camera on a translational stage without rotation, 

the three optical centers will be aligned (colinear). More views do 

not help

 If the optical centers are not colinear and P is in the trifocal 

plane (the plane formed by O1, O2 and O3), the same as 

above

More problems

 Given point correspondences in three views, the above equation is 

no longer linear in terms of the two fundamental matrices



Multiple camera stereo

 Using multiple camera in stereo has advantages and 

disadvantages

 Some disadvantages

 Computationally more expensive

More correspondence matching issues

More hardware ($)

 Some advantages

 Extra view(s) reduces ambiguity in matching

Wider range of view, fewer “holes”

 Better noise properties

 Increased depth precision



Trifocal Geometry

112132321

331321213

223213132

teeeF

teeeF

teeeF









Mathematically 

Mathematically, trifocal geometry is formulated in terms 

of trifocal tensor expression

 Two popular formulations (among many) involve

 All lines: 

 From two views, back project the lines into planes

 Two planes intersect in space into a line

 Project that line into the third view, and it should be the same 

line as in the third view

 A point in one and lines in the other two:

 From two views with lines, back project the lines into planes

 Two planes intersect in space into a line

 Project that line into the third view, and the point should lie in 

that projected line



Geometrically

 A planar homography can be established by a line in image 

2 (or 1, 3) for features in images 1 and 3 (or 2 and 3, 1 and 

2) 

Point transfer Line transfer



Sidebar: 2D line & 3D plane 

 Given

 A line l=[a,b,c] T in image 

 A projection matrix P, with UT,VT,WT as its three rows, or 

PT=[U,V,W]

 Then the space plane whose image is l under P is 

aU+bV+cW or PTl

 Any point M that is on the plane satisfy the plane equation, 

and hence, the projection satisfies the line equation
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Sidebar: 3D Line Equation

 Plane equations

 N1 . p = d1

 N2 . p = d2

 Line equation

 l = c1 N1 + c2 N2 + t N1 * N2

 Solving for c1 and c2

 N1 . l = d1 = c1 N1 . N1 + c2 N1 . N2

 N1 . l = d2 = c1 N1 . N2 + c2 N2 . N2

 c1 = ( d1 N2 . N2 - d2 N1 . N2 ) / determinant 

 c2 = ( d2 N1 . N1 - d1 N1 . N2) / determinant 

 determinant = ( N1 . N1 ) ( N2 . N2 ) - ( N1 . N2 )2



Detail on Trifocal Tensor 

 For three lines

Warning: We are not using tensor notation here. Instead, we use 

matrix-vector notation that is more readily accessible to most 

people

 4" bBP 

 0IP   4' aAP 


’ ”



Detail on Trifocal Tensor (cont.)

M is 3x3, but has only one independent column



Important Observations

 Similar to fundamental matrix F

 The expressions are linear in T

 Expressed in term of image observables (line orientation)

 Given enough correspondences, we can solved for trifocal tensors

 Then we can compute fundamental matrices and projection 

matrices from trifocal tensors



Multiple Views (>3)

Math becomes really involved

 In fact, quadrifocal tensor does not provide new 

information beyond trifocal tensor (for 3 views) + 

fundamental matrix (for 2 views)

When the projection model is parallel, there is an elegant 

formulation based on factorization

When the projection model is perspective, factorization 

does not generalize well

 The common approach: 

 Local: 2 views (fundamental matrix) or 3 views (trifocal tensor)

 Global: bundle adjustment



Example: Four views

Input images

Texture input

Univ. of Penn



The Stanford Multi-Camera Array

128 CMOS cameras, 2” baseline



5x5 racks version: 125 CMOS cameras, 9” baseline

4 capture PCs, 4 electronics racks (1 board per camera)



CMU multi-camera stereo

51 video cameras mounted on a 5-meter diameter geodesic dome



Video 1

Video 2

Video 3

SOS_raw.mpeg
wan.mpeg
SOS_renderer.mpeg


Virtualized Reality: CMU 3D Room

49 cameras

30 Hz

512x512 color

17 PCs



System Overview

[PhD thesis Peter Rander, CMU, 1999]



Example: Basketball

a) Original scene

b) Range Image

c) Integrated 

range images

d) 3D model 

extraction



Example: Basketball (cont.)

e) Rendered view of model with texture

f) Rendered view of model from a virtual camera and combined with another 

digitized scene



Inputs (two separate events)

Reconstructed 3D shape

Virtual View of 

combined event

Video 1

Video 2

Video 3

Basketball/input.mpeg
Basketball/2players_mdl.mpeg
Basketball/flyin.mpeg


a) Original scene

b) Range Image

c) Integrated 

range images

d) 3D model 

extraction

Example: Baseball



Example: Baseball (cont.)

This example features a person swinging a baseball bat inside the recording 

studio. A director might select a single camera that provides a good view 

of the swing from the side (as in the above), but you might prefer to 

• circle around as the batter swings...

• or stop the batter 

• drop from above... 

• be the BALL!

Baseball/Circle+Time.mpeg
Baseball/Circle.mpeg
Baseball/Blimp-noball.mpeg
Baseball/BallEye.mpeg


Example: Dance

Video 1

Video 2

Video 3

http://www-2.cs.cmu.edu/~virtualized-reality/images/dance/final_with_audio.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/dance/final_with_audio.mpg
Dance/camera29.col.mpeg
Dance/dance_model.mpeg
Dance/final_with_audio.mpeg


Example: Chair

Video 1

Video 2

Video 3

http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
Chair/seq1_camera21.mpeg
Chair/seq1_mesh.mpeg
Chair/best_Seq1+2_only_bk.mpeg

