Structure-from-Motion Analysis

2D back to 3D
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Multiple-view geometry questions

Scene geometry (structure): Given 2D point matches in
two or more images, where are the corresponding points
in 3D?

Correspondence (stereo matching): Given a point in
just one image, how does it constrain the position of the
corresponding point in another image?

Camera geometry (motion): Given a set of
corresponding points in two or more images, what are
the camera matrices for these views?




Structure from motion

« Given: m images of n fixed 3D points

°I’Xij:Pin, =1 ....,m j=1 ..,n

 Problem: estimate m projection matrices P; and

n 3D points X; from the )n(m correspondences X;;




Structure from motion ambiguity

 |f we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,
the projections of the scene points in the image remain

exactly the same:

X =PX = G Pj(kX)

It is impossible to recover the absolute scale of the scene!




Structure from motion ambiguity

If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,
the projections of the scene points in the image remain
exactly the same

More generally: if we transform the scene using a
transformation Q and apply the inverse transformation to
the camera matrices, then the images do not change

x =PX = (PQ™*QX)




Projective ambiguity
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x =PX =(PQ; )(QP




Projective ambiguity




Affine ambiguity
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x =PX =(PQ )(QA




Affine amblguny




Similarity ambiguity

PR
Dz

x=PX = (PQZ Qs X)




Similarity ambiguity




Hierarchy of 3D transformations

Projective (At Preserves intersection and
tangenc

15dof _VT y gency

Affine At Preserves parallellism,

12dof o' 1 volume ratios

Similarity SRt Preserves angles, ratios of

7d0f OT 1 |ength

Preserves angles, lengths

Euclidean R t
6d0f OT 1

With no constraints on the camera calibration matrix or on the scene,
we get a projective reconstruction

Need additional information to upgrade the reconstruction tozékines
similarity, or Euclidean ©id




Sidebar: Matrix form of cross product

¢+ The cross product of two vectors is a third vector,
perpendicular to the others (right hand rule)

(ab,—ab, | [ 0 -a, a,
axb=| ap-ab, |-l a, 0 -a|b =[a]b
| ale o a2b1 1 L a, a 0

a-(axb)=0
b-(axb)=0




Side Bar (Useful Duality Relationship)

*» Points to line
J Two points determine a line

[X, Y, W] &[%,, Y, W, ]

Yi_Ye |
Wl 1 ﬁ_ﬁ CZ b2 a2 CZ
_WZ Wl‘ X = ’y:—
a Db a b
L—ﬁ X+ ﬁ—ﬁ y_ﬁ L_ﬁ _ﬁ ﬁ_ﬁ -0
o W Wo W Wi Wy Wo ) Wy \ W, W, a, bz d, b2
(WZyl_y2W1)X+(W1X2_W2X1)y+(X2y1_X1y2):O _X— _al_ _aZ_
a X X,
— o<l b |Ix|b
=|bloc|y [X]Y, y 1 2
C W, W, _W_ _Cl_ _C2_

“* Lines to point
O Intersection of two lines is a point
ax+by+c =0
a,Xx+b,y+c,=0




Sidebar: Eigen Decomposition

“* Real symmetric Matrix
dubDuUT
] Eigen vectors are orthogonal
J Eigen values are real

“* Real anti-symmetric (Skew-symmetric) Matrix
d uBUT
] Eigen vectors are orthogonal
] Eigen values are all imaginary and appear in pair

 Skew-symmetric matrices of odd dimension are singular (a row
and a column of zero)




Harder Problem

“» What happens if we do not know the stereo configuration
(baseline, camera orientation, etc.)?

1 If the stereo configuration can be recovered and then rectified, we
can again apply the standard stereo matching algorithms described
above

“* Recovering R and T (rigid camera motion) using
2 views (fundamental matrix)
3 views (trifocal tensors)
1 N views (factorization)
] Epipolar geometry is again the key

» Correct R and T are not incidental, they match corresponding
points and lines in different views




Epipolar geometry

P

Epipolar Plane * Epipolar Lines

* Epipoles - Baseline




Epipolar constraint

 Potential matches for p have to lie on the corresponding
epipolar line [

 Potential matches for p’ have to lie on the corresponding
epipolar line |




Epipolar lines example

| \i‘Sﬂ.

Y




Case 1: Calibrated camera

0 ' 00" J 0’
Op - (00 % Op) = ?

Op - (00’x Op) = 0 [R t]-rigid trans. from O to O

p-(txRp’)=0

0 -t t, This can be written in matrix form as:
E=[t]R=|t, 0 -t |R PTEp’ =0 7

-t, t. O




Don’t believe it?

P Rc1<—c2 P Tc1<—c2

Zl P, = ZZR01<—02 P, +Tcl<—02
1

P == (ZZR01<—02 P, +Tc1<—02)
Zl

Tc1<—02 X 2 (Tc1<—02 Rcl<—02 pz)
Zl

Z,

P (Tere e X P1) = Z_ P Tereco X Rege 2P, =0

P.EP, = 0
E — [Tcl<—02]Rcl<—02




Calibrated Camera: Essential Matrix

P

O"p}(0"0NOp) =0

s+ Coplanar (3D, regular coordinates)
%+ Colinear (2D, homogeneous coordinates)




3D Analysis

* What is O in unprimed frame? “* What is O in primed frame (or

4 [0,0,0]7 what is the vector O’0O)?
< What is p in unprimed frame? J RO+T=T
a [xy,1]7T < What is p in primed frame?
O Rp+T

“ What is p’ in primed frame?
d Xy, 117

0' p(0'0Ox0Op) =0
" (Tx(Rp+T))=0
p" (TxRp)=0

o (R =
Indamental matrix




Graphically in 3D

0'p-(0'0Ox0p) =0
0'p-(0'0x0'p)=0

All quantities are now expressed in the same coordinate system (O”)




2D Analysis

“* [X.y,z] can be treated
. As a 3D regular coordinate (what we did in the previous slide)

- As a 2D homogeneous coordinate (or x/z and y/z are projections
onto the image plane)

“* Now O’Ois T, if it is treated as a 2D homogeneous
coordinate, then it is the epipole of the unprimed camera in
the prime frame

<* Now the image of Op in the primed frame is Rp+T

“* Hence, TxRp is the line equation that passes through the
two points (that is exactly the epipolar line!, next slide)

“* Hnece, p’ 1s on TXRp and pTxRp=0




Graphically in 2D

guest P host

O'p-(O'0x0Op)=0 Fp: The line in the host formed by
't AL N _ epipole of the guest in the host
O P 0 the point of the guest in the host




Physical Meaning #1: Point View

P

<+ 0’0, Op, O’p’ all lie in the same plane (Epipolar plane, spanned by OO’P)
% Hence (O’OxOp).0’p =0
% There are two interpretations:

( Coplanar (3D, regular coordinates)
O Colinear (2D, homogeneous coordinates)




The Essential Matrix

¢+ E describes the transformation between camera coordinate
frames

“* E has five degrees of freedom
] Defined up to a scale factor, since

pTEp’=0

“* Why only five?
J A rigid transformation has six degrees of freedom

* 3 rotation parameters, 2 translation direction parameters
 Why only translation direction?







“Up to a scale factor”™

“* This i1s always the case with camera calibration and stereo
. Shrink everything 10x and it all looks the same!

< Typically there is something we know that we can use to
specify the scale factor
 E.g., the baseline, the size of an object, the depth of a point/plane




Camera calibration from E

“»» With five unknowns, theoretically we can recover the
essential matrix E by writing p' Ep” =0 for five
corresponding pairs of points

[ 5 equations and 5 unknowns

J We don’t need to know anything about the points (e.g., their
depth), only that they project to p; and p;”

(1 There are, however, limitations...

¢ This 1s used for camera calibration (extrinsic parameters)

< T




Direct Solutions of E

s+ Step one:
O ATA is symmetric and semi-definite
) It has positive (or zero) eigenvalues
J The solution corresponds to the eigenvector of the smallest eigenvalue

s Step two:
O F=UZVT, with (r, s, t) as the singular values in non-increasing order
d F°=UZX“VT, with (r, r, 0) as the singular values of X
» Zero out the smallest singular value
» Make the first two eigenvalues the same

*¢» You can also infer essential matrix from fundamental
matrix (more later)

“* We will present the detailed procedure later with
fundamental matrix




Decomposition of E

“* There are four solutions

“ If t, R 1s one decomposition (E=tx R))

“» -t will be ok too (E is defined up to a scale factor)
“* UR will be ok too (U is an 180 rotation about t)

¢ So there are four solutions
dt R
d-t,R
dt UR
d-t, UR




Why? Algebraic Explanation

“» Skew-symmetric matrix has a block diagonal eigenvalue
decomposition, for 3x3 matrices, we have

S = U(6Z2)U" = oUdiag(LL0)W'U" = —oUdiag(LL0)WU"

0 10
Z=/-1 0 0
0O 00

0 -1 0
W={1 0 O
0 0 1

0 0
-1 0|=-diag(l,1,0)W =
0 0

1 0 1000 1 0
Z-= 0|=diag1l1,0)W " =|0 1 0f-1 0 ©
1

0
0 0 0 0[O0 01

o - O
o O O
o O

1
0
0

l{

s+ Two ways to match Z with diag(1,1,0): W or W'
“* E 1s determined up to a sign and a scale, so both are ok

o O -




Why? Algebraic Explanation

*» Essential matrix has two identical singular values and a
zero singular value (if and only if condition)
“» If (->) essential matrix has two identical singular values

and a zero singular value

E=TR=U(cZ)U'R
=UZU'R )
= Udiag(1,1,0)(WU "R) = Udiag(1,1,0)(W'U'R)

Up to a scale factor
. Uptoasign

=uzVv'’
0 -1 0 0 10
W{l 0 0],2{1 0 o}
0 0 1 0 00
0 10 1 0 0f[0 -1 O 1 0 0[O0
2{1 0 oidiag(l,l,O)W{o 1 0]{1 0 Oldiag(l,l,O)WT{O 1 0]{1
0 00 0 0 0|0 0 1 0 0 0|0




Why? Algebraic Explanation

*» Essential matrix has two identical singular values and a

zero singular value (if and only if condition)
“* Only if (<-) a matrix has two identical singular values and

a zero singular value is an essential matrix

E = Udiag(1,1,0)V'
—UZW'V' =Uuz2wVv'' ‘ Up to a sign
=UzU'UW'V' =UzUTUWVv'

=(UZU")(UW'VT) =(UZU ") (UWV ") Up to a scale factor
=SR :




Why? Algebraic Explanation

% Given SVD of E as U diag(1,1,0)VT, there are two
decompositions
] See previous page for proof

% Given SVD of E as U diag(1,1,0)V', there are four camera
matrices

% P=[1[0]

2 P =QUWVTu,], (UWVTug], [OWTVTU,], [GWTVThu]
[t]X—UZUT{ul ul2 us}rl ; 8}{ 32 }
1 1) o o of- u -

- u; -

SR EE

[t,t=0=>t=u,

An additional rotation about t




Why? Physical Interpretation

—E

A useful formula for rotation, a vector after rotation is made of three components
L Component in the direction of n (no change)
0 Component perpendicular to the direction of n
» Cos(0) in the projected direction
> Sin(0) in the projected + 90”0 direction




Physical Interpretation

+» Additional rotation of 180° about t (translational) axis

U=R,(z)=tt" +(I ttT)c057z+[tX]sin7z

tx(2tt' —1)=-t




Four possible reconstructions from E

(a)

(d)

(only one solution where points is in front of both cameragf@=" |




Case 2: Uncalibrated camera

s |Intrinsic parameters not known Points in the normalized image plane
A / o —acotf u, |
p=K.p Vi
p A~ p K = 0 - VO
P =K, p sin @
0 0 1]
P'EpP =0

(K, "p)TE(K, p)=0
(p"K, E(K, "p)=0
p'Fp'=0

F = Kl_T E KZ_1 Fundamental Matrix




The Problem

“* Given projection matrices of two views to find
fundamental matrix is unique

“+ Given fundamental matrix to find projection matrices of
two views are not unique

 Theorem, F is the fundamental matrix of multiple two-view
projection matrices if and only if the multiple interpretations are
related by a projective transform

¢+ The reconstruction is up to a projective transform

“* That is, not many property can be measured except
Incidence and collinearity

< Again, the importance of calibration cannot be overstated




Physical Meaning #2: Plane View
¢ \\x !

X'=H_X

I'=exx' =[e'],H._x =Fx

mapping from 2-D to 1-D family (rank 2)




Physical Meaning #3: Line View

» Take an arbitrary line k not passing through e (the epipole)

Cl< .

1

e1

e

|2 — F[k]xll

< x=[k], I Is the intersection
P % X lieon|

L. “* Fx is then the epipolar line

FH2 | |




Direct Derivation

> Given a point

+ Back project it into space

* Project 3D point into the second frame
“* Form the line with epipole

X(1)=P"x+ AC

= X'(1) =P'(P"x+ AC)

= I'=[e'] P'(P"x+ AC) =[e'|, P'P*x = Fx
= F=[e'|,P'P"




Confusion

“» Q: There are so many ways that one can derive
fundamental matrix, are all derivations give the same
results?

<+ A:Yes and no

“* Yes: They all serve the same purpose (defining a line from
a point to epipole)

“* No: There can be multiple matrices (line representation is
not unique)




The Fundamental Matrix

“* F has seven independent parameters

< A simple, linear technique to recover F from
corresponding point locations 1s the “eight point
algorithm”

“* From F, we can recover the epipolar geometry of the
cameras
] Not saying how...

¢ This Is called weak calibration




p'Fp'=0
Fi

(u,v,1)| Fy
F3

The eight-point algorithm

Fs
Fyo
F39

Fis
Fs
Fs3

|

u!
v
1

AF

! ! ! ! ! !
0 ‘ (uu', uv', u,vu' v, v, u, v, 1)

0




Detailed Algorithm

¢ First Important Observation:
J A'is rank deficient (its null space contains more than zero)

 In fact, A has rank of 8, hence there is a unique solution (up to a
scale factor)

“+ Second Important Observation:
L The fundamental matrix is rank deficient (it is 3x3 of rank 2)




Solutions

s+ Step one:
O ATA is symmetric and semi-definite
1 It has positive (or zero) eigen values

] The solution corresponds to the eigen vector of the smallest eigen
value

J Hint: use Lagrange multiplier, similar procedure as shown in the
camera calibration slides

s Step two:

O E =UZVT, with (r, s, t) as the singular values in non-increasing
order

A E>=UZX VT, with (r, s, 0) as the singular values of X ¢
» Zero out the smallest singular value




Don’t Believe It?

e =[[AF[" +2@-|F]")

® _ ATAF-AF =0
oF
— AT AF = 1F F is the eigen vector of ATA

e =[[AF[" + 2@ [F[)
=F'ATAF+1-AF'F
=AF'F+A1-AF'F=1 Enorisa

F is the eigen vector of ATA
With the smallest eigen valie




p'Fp'=0
Fll
(u,v,1)| Fy
F3
! !
[Uuy U Uy
! !
Uglly  Uglh
! !
Uy UVy
! !
uguly  ugvy
! !
Usts  UsUg
! !
Uglg UGl
! !
urut  UTUy
! !
\ugtg  UgUg

The eight-point algorithm

( F11)
Fia
Fis
Flg F13 HI Fgl
Fyo Fog ||V | =0 ‘ (ue, uv', u, v, ov’ v U, v 1) | Fag | =0
F3g F33 1 Fa3
F5
F
uy vup o vey ovyoup v\ [ Fin (1)
Uy Uolly UVoUy Uy Uy Uy || Flo 1
us vsuy vsvy vy uy vy || Fls 1
uy vguly vgvy vy uy v || Fy 1
us vsul vl ws ub ol || Fa | |1 Invert and solve for F
Ug Uglly Vgly Vg Uy Vg || Fos 1
uy veuh vpvs vy ub vh || Fy 1
ug vgug vsvg vg ug Ug) \ Fi) \ 1)




Least squares approach
Ifn>8

Minimize:

> (p; Fpl)’

=1

under the constraint |F|> =1




Nonlinear least-squares approach

Point in image 1

Minimize / Epipolar line in image 1 caused by p”’
TL

. [d*(p;, Fpl) + &*(pl, F'p,)]

1=1

with respect to the coefficients of ‘F

Nonlinear — initialize it from the results of the eight-point algorithm




Least squares 8-point algorithm Hartleys normalized 8-point alg.

(a) (b)
Lincar Least Squares (Hartley. 1995) (Luong et al., 1993)
Av. Dist. 2.33 pixels (.92 pixels .86 pixels

Figure 10-4

Weak-calibration experiment using 37 point correspondences between two images of a toy house. The figure shows
the epipolar lines found by (a) the least-squares version of the eight-point algorithm, and (b) the normalized variant
of this method proposed by Hartley (1995). Note, for example, the much larger error in (a) for the feature point
close to the bottom of the mug. Quantitative comparisons arc given in the table, where the average distances
between the data points and corresponding epipolar lines are shown for both techniques as well as the nonlinear
algorithm of Luong ei al. (1993). Data courtesy of Boubakeur Boufama and Roger Mohr.



Red/Green stereo display

- A

From Mars Pathfinder







Three Camera Stereo

< A powerful way of eliminate spurious matches
(J Hypothesize matches between A & B
(J Matches between A & C on green epipolar line
(J Matches between B & C on red epipolar line
] There better be something at the intersection (no search needed!)

T




Mathematically

“* Given two corresponding points p1 and p2 in views 1 and
2, the point p3 In the third view of the point P of
Intersection of the optical ray of p1 and p2 is

P; = FP X Fy50,

o Why’) (Fguest,host)
[ F3p, is the epipole line of p from 1%t frame in 3" frame
O F,3p, is the epipole line of p from 2" frame in 3" frame




Special Cases — Many

* If p corresponds to epipole, then there is no epipolar line

» If the optical centers are colinear, epipolar lines will
coincide and intersect everywhere

O If you mount the camera on a translational stage without rotation,
the three optical centers will be aligned (colinear). More views do
not help

¢ If the optical centers are not colinear and P is in the trifocal
plane (the plane formed by O1, O2 and O3), the same as
above

“* More problems

] Given point correspondences in three views, the above equation is
no longer linear in terms of the two fundamental matrices




Multiple camera stereo

“* Using multiple camera in stereo has advantages and
disadvantages

“» Some disadvantages
 Computationally more expensive

1 More correspondence matching issues
1 More hardware ($)

“* Some advantages
J Extra view(s) reduces ambiguity in matching
J Wider range of view, fewer “holes”
] Better noise properties
 Increased depth precision




Trifocal Geometry

8.1 The geometry of three views from the vicwpoinf of two 417

3,64, €€, X€,5 o 1,
F.e,, c €y, xey, ot
F,8,5 €3 x€, oty

Figure 8.5: The three points my, my and ms belong to the three Trifocal lines
(€12, €13), (€23, €21), (€31, €32): They satisfy the equations (8.1) but are not the
images of a single 3D point.




Mathematically

< Mathematically, trifocal geometry is formulated in terms
of trifocal tensor expression

“* Two popular formulations (among many) involve
- All lines:
» From two views, back project the lines into planes
» Two planes intersect in space into a line

> Project that line into the third view, and it should be the same
line as in the third view

A point in one and lines in the other two:
> From two views with lines, back project the lines into planes
» Two planes intersect in space into a line

> Project that line into the third view, and the point should lie in
that projected line




Geometrically

“» A planar homography can be established by a line in image
2 (or 1, 3) for features in images 1 and 3 (or 2 and 3, 1 and
2)

o o

image 1 image 3

Point transfer




Sidebar: 2D line & 3D plane

% Given
 Aline I=[a,b,c] T in image
A projection matrix P, with UT,VT WT as its three rows, or
PT=[U,V,W]
“* Then the space plane whose image is | under P Is
aU+bV+cW or PTl

< Any point M that is on the plane satisfy the plane equation,
and hence, the projection satisfies the line equation

(auU' +bV' +cW' )M =0

[a,b,c]-[U M,V TM,W M]=0
T

[a,b,c]-| VI [M=0
WT

[a,b,c]-PM =0




Sidebar: 3D Line Equation

** Plane equations
dN,;.p=d
dN,.p=d,

* Line equation
dl=c;N;+c, N, +tN; * N,

«* Solving for ¢, and c,
ON;.l=d;=c;N;.N;+¢c,N;. N,
dN;.l=d,=c;N;.N,+¢c,N,. N,
dc,=(d;N,.N,-d,N;.N,)/determinant
dc2=(d,N;.N;-d;N;.N,)/determinant
O determinant=(N;.N;) (N,.N,)-(N;.N,)?




Detall on Trifocal Tensor

+%» For three lines

J Warning: We are not using tensor notation here. Instead, we use
matrix-vector notation that is more readily accessible to most
people




Detail on Trifocal Tensor (cont.)

“* M Is 3x3, but has only one independent column

1 ATV ETl”]

M= [1111. ms, 1113] — [ 0 EI.IF b:irl”

m; = amy + Fms o = k(bJ1")and 7 = —k(ajl’)
1= (bj1"ATY — (aj1')BTI" = (1I"Thy)ATY — (1'Tay)BT1"
i =1"T(ba I —I'T(ayb/ )" = 1T (a;b )" — 1T (agh])1”

I =1TT,1". T, = a;b] —asb/

1" = I'T[Ty. T, T3 1"




Important Observations

+ Similar to fundamental matrix F
L The expressions are linear in T
] Expressed in term of image observables (line orientation)
[ Given enough correspondences, we can solved for trifocal tensors

. Then we can compute fundamental matrices and projection
matrices from trifocal tensors




Multiple Views (>3)

“»» Math becomes really involved

¢ In fact, quadrifocal tensor does not provide new
Information beyond trifocal tensor (for 3 views) +
fundamental matrix (for 2 views)

“* When the projection model is parallel, there is an elegant
formulation based on factorization

“* When the projection model is perspective, factorization
does not generalize well

“+ The common approach:
[ Local: 2 views (fundamental matrix) or 3 views (trifocal tensor)
[ Global: bundle adjustment




Example: Four views  univ.of pemn

Input images - [

Texture input \




The Stanford Multi-Camera Array
128 CMOS cameras, 2 baseline




5x5 racks version: 125 CMOS cameras, 9” baselin<
4 capture PCs, 4 electronics racks (1 board per camer




CMU multi-camera stereo .
51 video cameras mounted on a 5-meter diameter geodesi




Video 1
Video 2
Video 3



SOS_raw.mpeg
wan.mpeg
SOS_renderer.mpeg

Virtualized Reality: CMU 3D Room

Q¢

asonthe ceiling

49 cameras

30 Hz
512x512 color
17 PCs




System Overview

Cameras Range Images 3D Model Appearance Model
»
»
B Appearance
Modeling

=]
ooo
ooc

w]




(c)

Example: Basketball

(d)

a) Original scene

b) Range Image

c) Integrated
range images

d) 3D model
extraction




Example: Basketball (cont.)

e) Rendered view of model with texture

f) Rendered view of model from a virtual camera and combined with another
digitized scene




Inputs (two separate events) Video 1

Reconstructed 3D shape §® .
Video 2

Virtual View of

combined event Video 3



Basketball/input.mpeg
Basketball/2players_mdl.mpeg
Basketball/flyin.mpeg

Example: Baseball

a) Original scene

b) Range Image

c) Integrated
range images

d) 3D model
extraction




Example: Baseball (cont.)

This example features a person swinging a baseball bat inside the recording
studio. A director might select a single camera that provides a good view
of the swing from the side (as in the above), but you might prefer to

« circle around as the batter swings...

e Or stop the batter

e drop from above...
e be the BALL!



Baseball/Circle+Time.mpeg
Baseball/Circle.mpeg
Baseball/Blimp-noball.mpeg
Baseball/BallEye.mpeg

Example: Dance

Video 1
Video 2
Video 3



http://www-2.cs.cmu.edu/~virtualized-reality/images/dance/final_with_audio.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/dance/final_with_audio.mpg
Dance/camera29.col.mpeg
Dance/dance_model.mpeg
Dance/final_with_audio.mpeg

Ir

Cha

Video 1
Video 2
Video 3

Example



http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
http://www-2.cs.cmu.edu/~virtualized-reality/images/morphed_img/seq1_camera21.mpg
Chair/seq1_camera21.mpeg
Chair/seq1_mesh.mpeg
Chair/best_Seq1+2_only_bk.mpeg

