
Edge Detection



Modern Approach

 Feature + classification networks

 End-to-end, joint optimization

 Nothing fixed or hand crafted

 Learning based on data 



General  2D Image Operations

 Point operation – some function of the pixel value

 I(x,y) = f ( I(x,y) )    or     Iij = f ( Iij ) 

 Examples: log, sqrt, threshold

 Local area operation – some function of the pixel values in 

the area surrounding the pixel

 Iij = f ( {I(i+u)(j+v)} ) where –m<u<m and –n<v<n

 Examples: blur, low-pass, high-pass, gradient, center-surround

 Global operation – some function of the whole image

 Examples: histogram, mean value, median value, 2nd moment



Point Operations



Point Operations



Global examples

Same histogram Same average value

• Histogram: Distribution (count) of possible image values

• Average pixel value



Global examples

Indoors Outdoors



Image neighborhoods

Q: What happens if we reshuffle all pixels within the 

images?

A:  Its histogram won’t change.                                          

Point-wise processing unaffected.

Need to measure properties relative to small 

neighborhoods of pixels



Comparison

 Point operations and global operations don’t tell much 

about the object and scene

 Objects/surfaces have finite area

Most surfaces have texture (defined by a local area)

 This is referred to as “aperture problem” 

 Point operations – very small aperture

 Only information of a single pixel  is used, no other spatial or 

temporal information 

 Global operations – very large aperture

 How do you focus on what is relevant?

 How do you deal with computational complexity? 

 Again, human vision system can solve focusing and complexity 

issues, but not current machine vision systems



Area operations: Linear filtering

Much of computer vision analysis starts with local area 

operations and then builds from there 

 Texture, edges, contours, shape, etc.

 Perhaps at multiple scales (because how do you know how large 

should your aperture be?)

 Linear filtering is an important class of local operators

 Convolution

 Correlation

 Fourier (and other) transforms

 Sampling and aliasing issues



2D Convolution

 The response of a linear shift-invariant system can be 

described by the convolution operation

Rij = H i-u, j-v Fuv
u,v


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Convolution

 Think of 2D convolution as the following procedure

 For every pixel (i,j):

 Line up the image at (i,j) with the filter kernel

 Flip the kernel in both directions (vertical and horizontal)

Multiply and sum (dot product) to get output value R(i,j)

(i,j)

Sometimes defined so that this value will go 

here (kernel and image line up at center)

Or here (opposite corner)

(Minor detail)



Convolution

 For every (i,j) location in the output image R, there is a 

summation over the local area 

F

H
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Convolution

 So, what do you get if you convolve an image with
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 Convolution is a linear filter (a linear shift-invariant 

operation)

FGGF ** =

Symmetric

HGFHGF *)*()*(* =

Associative



Convolution

What do you get if you convolve an image with

-1 1 -1

1

and then

1 -1

-1 1

?

 Because of associative property, (I*A)*B = I*(A*B)

 So it is the same as convolving with this

Differentiation



Convolution

What about and then
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

?

1 2 3 2 1

2 4 6 4 2

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

It is the same as convolving with this

Border effects can be a 

bit tricky



Linear Filter: noise reduction

We can measure noise in multiple images of the same 

static scene.

 How could we reduce the noise, i.e., give an estimate of 

the true intensities?



Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;



Effect of 

sigma on 

Gaussian 

noise:

Image shows 

the noise 

values 

themselves.
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Effect of 

sigma on 

Gaussian 

noise:

Image shows 
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values 

themselves.



sigma=1

Effect of 

sigma on 

Gaussian 

noise:

This shows 

the noise 

values added 

to the raw 

intensities of 

an image.



sigma=16

Effect of 

sigma on 

Gaussian 

noise

This shows 

the noise 

values added 

to the raw 

intensities of 

an image.



Motivation: noise reduction

 How could we reduce the noise, i.e., give an estimate of 

the true intensities?

What if there’s only one image?



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 

its neighborhood

• Assumptions: 

 Expect pixels to be like their neighbors

 Expect noise processes to be independent from pixel to pixel



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 

its neighborhood

• Moving average in 1D:

Source: S. Marschner



Weighted Moving Average

 Can add weights to our moving average

Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner



Weighted Moving Average

 Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Averaging filter

What values belong in the kernel H for the moving average 

example?

0 10 20 30 30
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0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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“box filter”

?



Smoothing by averaging

depicts box filter: 

white = high value, black = low value

original filtered



Gaussian filter
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0 0 0 0 0 0 0 0 0 0
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What if we want nearest neighboring pixels to have the 

most influence on the output?

This kernel is an 
approximation of a 
Gaussian function:

Source: S. Seitz



Smoothing with a Gaussian
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Boundary issues

What is the size of the output?

• MATLAB: filter2(g, f, shape)

shape = ‘full’: output size is sum of sizes of f and g

shape = ‘same’: output size is same as f

shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik



Boundary issues

What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods:

 clip filter (black)

 wrap around

 copy edge

 reflect across edge

Source: S. Marschner



Boundary issues

What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods (MATLAB):

 clip filter (black): imfilter(f, g, 0)

 wrap around: imfilter(f, g, ‘circular’)

 copy edge: imfilter(f, g, ‘replicate’)

 reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner



Median filter

• No new pixel values 

introduced

• Removes spikes: good 

for impulse, salt & 

pepper noise



Median filter

Salt and 

pepper 

noise

Median 

filtered

Source: M. Hebert

Plots of a row of the image



Median filter

Median filter is edge preserving





Frequency Decomposition

Basis 

 X, Y, Z

 V = a X + b Y + c Z

 Any vector can be 

decomposed into the bases

 a = < V. X>

 b = <V . Y>

 c = <V . Z>

Frequency

 Different sinusoidal waves

 Any waveform can be 

decomposed into the Fourier 

bases

X

Y

Z

V



High vs. Low Frequencies

Slow varying 

components

Smooth regions

Accentuated by 

suppressing the high-

frequency component

E.g., using box or 

Gaussian smoothing

Fast varying 

components

Edges and noise

Accentuated by 

suppressing the low-

frequency component

E.g. using derivative 

operators



Gaussian filter
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Symmetric Gaussian kernel:

Mean: (0,0)

Standard deviation: 

Gaussian filtering (smoothing, blurring) is a good model of camera optics
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Gaussian filters

What parameters matter here?

Size of kernel or mask

Note, Gaussian function has infinite support, but discrete filters 

use finite kernels

σ = 5 with 10 

x 10 kernel

σ = 5 with 30 

x 30 kernel



Gaussian filters

What parameters matter here?

Variance of Gaussian: determines extent of 

smoothing

σ = 2 with 30 

x 30 kernel

σ = 5 with 30 

x 30 kernel



Convolution

 For a high-pass filter, the kernel values should add 
to zero

 Blocks out low spatial frequencies (gradual changes), 
accentuates high spatial frequencies (rapid changes)

 Accentuates image noise!

 For a low-pass filter, the kernel values should add to 
one

 Blocks out high spatial frequencies

 Smoothing, averaging, blurring

 Reduces image noise!

High pass Low pass



High-pass filter example



Low-pass Gaussian filter example

Amount of noise

Originals

Filter #1

Filter #2



Correlation

 Correlation is almost the same thing as convolution

Minus the “flip the kernel in both directions” step

 So it’s somewhat more intuitive than convolution

 Normalized correlation is a frequently used operation in 

computer vision

More on that later…



Edge Detection

 All the discussions so far

 Filtering

 Convolution, correlation, etc. 

 Average, mean, Gaussian

 High-pass, low-pass 

 Lead us to edge detection which needs all the 

terminologies and techiques 



Edge Detection

 Edge detection is a local area operator that seeks to find 

significant, meaningful changes in image intensity (color?) 

that correspond to 

 Boundaries of objects and patterns

 Texture

 Changes in object color or brightness

 Highlights

 Occlusions

 Etc.

http://www.pbase.com/image/8800861
http://www.pbase.com/image/8800861
http://www.pbase.com/image/8804458
http://www.pbase.com/image/8804458


Example

Vertical edges

Horizontal edges

Original Edge magnitude



Edge detection examples



The bad news

 Unfortunately, it’s very hard to tell significant edges from 

bogus edges!

 Noise is a big problem!

 An edge detector is basically a high-frequency filter, since 

sharp intensity changes are high-frequency events

 But image noise is also high-frequency, so edge detectors 

tend to accentuate noise!

 Some things to do:

 Smooth before edge detection (hoping to get rid of noise but not 

edges!)

 Look for edges at multiple scales (pyramids!)

 Use an adaptive edge threshold



Caveats

 In reality, low light levels and random noise lead to high 

fluctuations in individual pixel values, leading to bad 

estimations. 



Graphically



Edge detection history

 Edge detection has a long history and a huge literature

 Edge modeling: Step edges, roof edges, impulse edges…

 Biological modeling: How does human vision do it?

 Elegant and complex mathematical models

 Simple and computationally cheap edge detectors

 Etc., etc., etc…..

 Typical usage:

 Detect “edge points” in the image (filter then threshold)

 Edges may have magnitude and orientation

 Throw away “bad” ones (isolated points)

 Link edge points together to make edge segments

 Merge segments into lines, corners, junctions, etc.

 Interpret these higher-level features in the context of the problem



Edge detection

 The bottom line:

 It doesn’t work!

 At least, now how we’d like it to:

 Too many false positives (noise)

 Too many omissions (little or no local signal)

 Still, edge detection is often the first step in a computer 

vision program

We have to learn to live with imperfection



How to design an edge detector?

What specifically are we 
trying to detect?

 Step edges

 Ramp edges

 Ridge edges

 Roof edges

 Texture edges

 Color edges

 etc.

 Do the math

 Build a filter to detect
the edge type

What about noise?

1-D profiles

(cross-sections)

Image patches



What should an edge detector 

output?
Where does the edge exist?



Edge detection: Three primary steps

 Smoothing

 Reduce noise

 Reduce frequency content not of 
interest

 Are we looking for low, 
medium, or high frequency 
edges?

 Edge enhancement

 Filter (usually linear) to produce 
high values where there are 
strong edges, low values 
elsewhere

 Edge localization

Where specifically are the edge 
points?



Edge detection criteria

 Optimal edge detector for competing criteria:

 Detection

 Maximize detection (minimize misses (false negatives))

 Minimize false positives

 Localization

 Location of detected edge should be as close as possible to true 

location

 There is a tradeoff between these two criteria

 Compromise between good detection and good localization for a 

given approach

How can you assure no misses?

How can you assure no false positives?



Evaluating performance – the ROC 

curve

False positives

Detection rate

(1-False negatives)

0

0 1.0

1.0

Perfect

Random chance

Improving performance



Canny edge detector

 Properties of the Canny edge detector

 Designed for step edges (but generalizes relatively well)

 Good detection

 Good localization

 Single response constraint

 Uses nonmaximum supression to return just one edge point per 

“true” edge point

 Basic detection filter:

 1D first derivative of a Gaussian

 Apply this at multiple orientations to detect 2D edges and their 

orientations

Avoids this:



Example of measuring at multiple 

orientations

1

2

3

4



Canny steps

 Apply Gaussian smoothing

 2D Gaussian filter over the whole image

 Can actually be done with H and V 1D filters (much faster)

 Run 1D detectors at multiple orientations

 Produce edge strength and edge orientation maps

 Run nonmaximum suppression to eliminate extra edge 

points, producing only one per true edge point (ideally)

 Threshold to produce a binary (edge or no edge) edge 

image

 Alter the threshold value depending on local edge information



The Canny edge detector

original image (Lena)



The Canny edge detector

Combine the 1D detectors

 Edge strength map



The Canny edge detector

Thresholding



The Canny edge detector

Thinning

(non-maximum suppression)



Image gradient

 The gradient of an image: 

 The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

The edge strength is given by the gradient magnitude



The discrete gradient

 How can we differentiate a digital image f[x,y]?

 Option 1:  reconstruct a continuous image, then take gradient

 Option 2:  take discrete derivative (finite difference)

How would you implement this as a correlation?



Other (simpler) edge detectors

 Sobel detector

 Prewitt detector

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Gx Gy
|G| = Gx

2 + Gy
2

 = atan Gy/Gx

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

0 0 0

1 1 1

Gx Gy

Gy

Gx

|G|





Other Possibilities

8-directional masks

1 2 1

-1 -2 -1



Sobel example

Vertical edges

Horizontal edges

Original Edge magnitude



More edge detectors

 Laplacian detectors

 Single kernel

0 -1 0

-1 4 -1

0 -1 0

-1 -1 -1

-1 8 -1

-1 -1 -1

1 -2 1

-2 4 -2

1 -2 1

Etc.

Edge detectors are not limited to 3x3 kernels



Multiple Scales
Bad localization

Where is the edge? 



Multiple Scales (cont.)

Bad localization

Where is the edge? 



Sharp vs. Fuzzy



86



Response to a blurred step edge

87
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Multiple  Scales (cont.)

Basically, considering your operator 

myopic – that it uses only information in a 

small neighborhood of a pixel

Why?

Saving in computation effort

Local coherency

But how large should the neighborhood be?

Too small – not enough information 

Too large – Too noisy, with multiple edges



Multiple Scales (cont.)

No single scale will suffice

E.g. sharply focused objects have fast transition 
edges, out-of-focus objects have slow transition 
edges

Need operators that are tuned to edges of 
different scales

For an operator with a large processing 
window, the content can be noisy (multiple 
edge presence)

Need a mechanism to smooth out small edges



2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian



Multiple Scales

1

 2

3

 4

2

2

2

2

ZC1

ZC2

ZC3

ZC4

Original

image

Combined

zero

crossing

maps

Gaussian

smoothing

Laplacian Zero crossing

maps

G e

x y

=
-


1

2 2
2

2 2

2


  = 2

2

2

2

2







x y

 = -
 -



2

4

2 2

2
2

1
1

2

2 2

2

G
x y

e

x y

 
( )



Multiple Scales



The scale of the smoothing filter affects derivative estimates, and also

the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels



We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve

(non-maximum suppression).  These points should form a curve.  There are

then two algorithmic issues: at which point is the maximum, and where is the

next one?



Non-maximum

suppression

At q, we have a 

maximum if the 

value is larger 

than those at 

both p and at r. 

Interpolate to 

get these 

values.



Predicting

the next

edge point

Assume the 

marked point is an 

edge point.  Then 

we construct the 

tangent to the edge 

curve (which is 

normal to the 

gradient at that 

point) and use this 

to predict the next 

points (here either 

r or s). 





fine scale

high 

threshold



coarse 

scale,

high 

threshold



coarse

scale

low

threshold




