
Edge Detection



Modern Approach

 Feature + classification networks

 End-to-end, joint optimization

 Nothing fixed or hand crafted

 Learning based on data 



General  2D Image Operations

 Point operation – some function of the pixel value

 I(x,y) = f ( I(x,y) )    or     Iij = f ( Iij ) 

 Examples: log, sqrt, threshold

 Local area operation – some function of the pixel values in 

the area surrounding the pixel

 Iij = f ( {I(i+u)(j+v)} ) where –m<u<m and –n<v<n

 Examples: blur, low-pass, high-pass, gradient, center-surround

 Global operation – some function of the whole image

 Examples: histogram, mean value, median value, 2nd moment



Point Operations



Point Operations



Global examples

Same histogram Same average value

• Histogram: Distribution (count) of possible image values

• Average pixel value



Global examples

Indoors Outdoors



Image neighborhoods

Q: What happens if we reshuffle all pixels within the 

images?

A:  Its histogram won’t change.                                          

Point-wise processing unaffected.

Need to measure properties relative to small 

neighborhoods of pixels



Comparison

 Point operations and global operations don’t tell much 

about the object and scene

 Objects/surfaces have finite area

Most surfaces have texture (defined by a local area)

 This is referred to as “aperture problem” 

 Point operations – very small aperture

 Only information of a single pixel  is used, no other spatial or 

temporal information 

 Global operations – very large aperture

 How do you focus on what is relevant?

 How do you deal with computational complexity? 

 Again, human vision system can solve focusing and complexity 

issues, but not current machine vision systems



Area operations: Linear filtering

Much of computer vision analysis starts with local area 

operations and then builds from there 

 Texture, edges, contours, shape, etc.

 Perhaps at multiple scales (because how do you know how large 

should your aperture be?)

 Linear filtering is an important class of local operators

 Convolution

 Correlation

 Fourier (and other) transforms

 Sampling and aliasing issues



2D Convolution

 The response of a linear shift-invariant system can be 

described by the convolution operation

Rij = H i-u, j-v Fuv
u,v
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Convolution

 Think of 2D convolution as the following procedure

 For every pixel (i,j):

 Line up the image at (i,j) with the filter kernel

 Flip the kernel in both directions (vertical and horizontal)

Multiply and sum (dot product) to get output value R(i,j)

(i,j)

Sometimes defined so that this value will go 

here (kernel and image line up at center)

Or here (opposite corner)

(Minor detail)



Convolution

 For every (i,j) location in the output image R, there is a 

summation over the local area 

F

H

R4,4 = H0,0F4,4 + H0,1F4,3 + H0,2F4,2 + 

H1,0F3,4 + H1,1F3,3 + H1,2F3,2 + 

H2,0F2,4 + H2,1F2,3 + H2,2F2,2

njmi

M

m

N

n

nmij FHR --

-

=

-

=

= ,

1

0

1

0

= -1*222+0*170+1*149+

-2*173+0*147+2*205+

-1*149+0*198+1*221

= 63

(i,x)

(j,y)

(0,0)



Convolution

 So, what do you get if you convolve an image with
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 Convolution is a linear filter (a linear shift-invariant 

operation)
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Convolution

What do you get if you convolve an image with

-1 1 -1

1

and then

1 -1

-1 1

?

 Because of associative property, (I*A)*B = I*(A*B)

 So it is the same as convolving with this

Differentiation



Convolution

What about and then
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

?
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3 6 9 6 3

2 4 6 4 2
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It is the same as convolving with this

Border effects can be a 

bit tricky



Linear Filter: noise reduction

We can measure noise in multiple images of the same 

static scene.

 How could we reduce the noise, i.e., give an estimate of 

the true intensities?



Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;



Effect of 

sigma on 

Gaussian 

noise:

Image shows 

the noise 

values 

themselves.



Effect of 

sigma on 

Gaussian 

noise:

Image shows 

the noise 

values 

themselves.



Effect of 

sigma on 

Gaussian 

noise:

Image shows 

the noise 

values 

themselves.



sigma=1

Effect of 

sigma on 

Gaussian 

noise:

This shows 

the noise 

values added 

to the raw 

intensities of 

an image.



sigma=16

Effect of 

sigma on 

Gaussian 

noise

This shows 

the noise 

values added 

to the raw 

intensities of 

an image.



Motivation: noise reduction

 How could we reduce the noise, i.e., give an estimate of 

the true intensities?

What if there’s only one image?



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 

its neighborhood

• Assumptions: 

 Expect pixels to be like their neighbors

 Expect noise processes to be independent from pixel to pixel



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 

its neighborhood

• Moving average in 1D:

Source: S. Marschner



Weighted Moving Average

 Can add weights to our moving average

Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner



Weighted Moving Average

 Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Averaging filter

What values belong in the kernel H for the moving average 

example?
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?



Smoothing by averaging

depicts box filter: 

white = high value, black = low value

original filtered



Gaussian filter
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What if we want nearest neighboring pixels to have the 

most influence on the output?

This kernel is an 
approximation of a 
Gaussian function:

Source: S. Seitz



Smoothing with a Gaussian
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Boundary issues

What is the size of the output?

• MATLAB: filter2(g, f, shape)

shape = ‘full’: output size is sum of sizes of f and g

shape = ‘same’: output size is same as f

shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik



Boundary issues

What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods:

 clip filter (black)

 wrap around

 copy edge

 reflect across edge

Source: S. Marschner



Boundary issues

What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods (MATLAB):

 clip filter (black): imfilter(f, g, 0)

 wrap around: imfilter(f, g, ‘circular’)

 copy edge: imfilter(f, g, ‘replicate’)

 reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner



Median filter

• No new pixel values 

introduced

• Removes spikes: good 

for impulse, salt & 

pepper noise



Median filter

Salt and 

pepper 

noise

Median 

filtered

Source: M. Hebert

Plots of a row of the image



Median filter

Median filter is edge preserving





Frequency Decomposition

Basis 

 X, Y, Z

 V = a X + b Y + c Z

 Any vector can be 

decomposed into the bases

 a = < V. X>

 b = <V . Y>

 c = <V . Z>

Frequency

 Different sinusoidal waves

 Any waveform can be 

decomposed into the Fourier 

bases

X

Y

Z

V



High vs. Low Frequencies

Slow varying 

components

Smooth regions

Accentuated by 

suppressing the high-

frequency component

E.g., using box or 

Gaussian smoothing

Fast varying 

components

Edges and noise

Accentuated by 

suppressing the low-

frequency component

E.g. using derivative 

operators



Gaussian filter
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Symmetric Gaussian kernel:

Mean: (0,0)

Standard deviation: 

Gaussian filtering (smoothing, blurring) is a good model of camera optics

Large 

Small 



Gaussian filters

What parameters matter here?

Size of kernel or mask

Note, Gaussian function has infinite support, but discrete filters 

use finite kernels

σ = 5 with 10 

x 10 kernel

σ = 5 with 30 

x 30 kernel



Gaussian filters

What parameters matter here?

Variance of Gaussian: determines extent of 

smoothing

σ = 2 with 30 

x 30 kernel

σ = 5 with 30 

x 30 kernel



Convolution

 For a high-pass filter, the kernel values should add 
to zero

 Blocks out low spatial frequencies (gradual changes), 
accentuates high spatial frequencies (rapid changes)

 Accentuates image noise!

 For a low-pass filter, the kernel values should add to 
one

 Blocks out high spatial frequencies

 Smoothing, averaging, blurring

 Reduces image noise!

High pass Low pass



High-pass filter example



Low-pass Gaussian filter example

Amount of noise

Originals

Filter #1

Filter #2



Correlation

 Correlation is almost the same thing as convolution

Minus the “flip the kernel in both directions” step

 So it’s somewhat more intuitive than convolution

 Normalized correlation is a frequently used operation in 

computer vision

More on that later…



Edge Detection

 All the discussions so far

 Filtering

 Convolution, correlation, etc. 

 Average, mean, Gaussian

 High-pass, low-pass 

 Lead us to edge detection which needs all the 

terminologies and techiques 



Edge Detection

 Edge detection is a local area operator that seeks to find 

significant, meaningful changes in image intensity (color?) 

that correspond to 

 Boundaries of objects and patterns

 Texture

 Changes in object color or brightness

 Highlights

 Occlusions

 Etc.

http://www.pbase.com/image/8800861
http://www.pbase.com/image/8800861
http://www.pbase.com/image/8804458
http://www.pbase.com/image/8804458


Example

Vertical edges

Horizontal edges

Original Edge magnitude



Edge detection examples



The bad news

 Unfortunately, it’s very hard to tell significant edges from 

bogus edges!

 Noise is a big problem!

 An edge detector is basically a high-frequency filter, since 

sharp intensity changes are high-frequency events

 But image noise is also high-frequency, so edge detectors 

tend to accentuate noise!

 Some things to do:

 Smooth before edge detection (hoping to get rid of noise but not 

edges!)

 Look for edges at multiple scales (pyramids!)

 Use an adaptive edge threshold



Caveats

 In reality, low light levels and random noise lead to high 

fluctuations in individual pixel values, leading to bad 

estimations. 



Graphically



Edge detection history

 Edge detection has a long history and a huge literature

 Edge modeling: Step edges, roof edges, impulse edges…

 Biological modeling: How does human vision do it?

 Elegant and complex mathematical models

 Simple and computationally cheap edge detectors

 Etc., etc., etc…..

 Typical usage:

 Detect “edge points” in the image (filter then threshold)

 Edges may have magnitude and orientation

 Throw away “bad” ones (isolated points)

 Link edge points together to make edge segments

 Merge segments into lines, corners, junctions, etc.

 Interpret these higher-level features in the context of the problem



Edge detection

 The bottom line:

 It doesn’t work!

 At least, now how we’d like it to:

 Too many false positives (noise)

 Too many omissions (little or no local signal)

 Still, edge detection is often the first step in a computer 

vision program

We have to learn to live with imperfection



How to design an edge detector?

What specifically are we 
trying to detect?

 Step edges

 Ramp edges

 Ridge edges

 Roof edges

 Texture edges

 Color edges

 etc.

 Do the math

 Build a filter to detect
the edge type

What about noise?

1-D profiles

(cross-sections)

Image patches



What should an edge detector 

output?
Where does the edge exist?



Edge detection: Three primary steps

 Smoothing

 Reduce noise

 Reduce frequency content not of 
interest

 Are we looking for low, 
medium, or high frequency 
edges?

 Edge enhancement

 Filter (usually linear) to produce 
high values where there are 
strong edges, low values 
elsewhere

 Edge localization

Where specifically are the edge 
points?



Edge detection criteria

 Optimal edge detector for competing criteria:

 Detection

 Maximize detection (minimize misses (false negatives))

 Minimize false positives

 Localization

 Location of detected edge should be as close as possible to true 

location

 There is a tradeoff between these two criteria

 Compromise between good detection and good localization for a 

given approach

How can you assure no misses?

How can you assure no false positives?



Evaluating performance – the ROC 

curve

False positives

Detection rate

(1-False negatives)

0

0 1.0

1.0

Perfect

Random chance

Improving performance



Canny edge detector

 Properties of the Canny edge detector

 Designed for step edges (but generalizes relatively well)

 Good detection

 Good localization

 Single response constraint

 Uses nonmaximum supression to return just one edge point per 

“true” edge point

 Basic detection filter:

 1D first derivative of a Gaussian

 Apply this at multiple orientations to detect 2D edges and their 

orientations

Avoids this:



Example of measuring at multiple 

orientations

1

2

3

4



Canny steps

 Apply Gaussian smoothing

 2D Gaussian filter over the whole image

 Can actually be done with H and V 1D filters (much faster)

 Run 1D detectors at multiple orientations

 Produce edge strength and edge orientation maps

 Run nonmaximum suppression to eliminate extra edge 

points, producing only one per true edge point (ideally)

 Threshold to produce a binary (edge or no edge) edge 

image

 Alter the threshold value depending on local edge information



The Canny edge detector

original image (Lena)



The Canny edge detector

Combine the 1D detectors

 Edge strength map



The Canny edge detector

Thresholding



The Canny edge detector

Thinning

(non-maximum suppression)



Image gradient

 The gradient of an image: 

 The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

The edge strength is given by the gradient magnitude



The discrete gradient

 How can we differentiate a digital image f[x,y]?

 Option 1:  reconstruct a continuous image, then take gradient

 Option 2:  take discrete derivative (finite difference)

How would you implement this as a correlation?



Other (simpler) edge detectors

 Sobel detector

 Prewitt detector

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Gx Gy
|G| = Gx

2 + Gy
2

 = atan Gy/Gx

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

0 0 0

1 1 1

Gx Gy

Gy

Gx

|G|





Other Possibilities

8-directional masks

1 2 1

-1 -2 -1



Sobel example

Vertical edges

Horizontal edges

Original Edge magnitude



More edge detectors

 Laplacian detectors

 Single kernel

0 -1 0

-1 4 -1

0 -1 0

-1 -1 -1

-1 8 -1

-1 -1 -1

1 -2 1

-2 4 -2

1 -2 1

Etc.

Edge detectors are not limited to 3x3 kernels



Multiple Scales
Bad localization

Where is the edge? 



Multiple Scales (cont.)

Bad localization

Where is the edge? 



Sharp vs. Fuzzy



86



Response to a blurred step edge

87



88



89



Multiple  Scales (cont.)

Basically, considering your operator 

myopic – that it uses only information in a 

small neighborhood of a pixel

Why?

Saving in computation effort

Local coherency

But how large should the neighborhood be?

Too small – not enough information 

Too large – Too noisy, with multiple edges



Multiple Scales (cont.)

No single scale will suffice

E.g. sharply focused objects have fast transition 
edges, out-of-focus objects have slow transition 
edges

Need operators that are tuned to edges of 
different scales

For an operator with a large processing 
window, the content can be noisy (multiple 
edge presence)

Need a mechanism to smooth out small edges



2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian



Multiple Scales
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Multiple Scales



The scale of the smoothing filter affects derivative estimates, and also

the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels



We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve

(non-maximum suppression).  These points should form a curve.  There are

then two algorithmic issues: at which point is the maximum, and where is the

next one?



Non-maximum

suppression

At q, we have a 

maximum if the 

value is larger 

than those at 

both p and at r. 

Interpolate to 

get these 

values.



Predicting

the next

edge point

Assume the 

marked point is an 

edge point.  Then 

we construct the 

tangent to the edge 

curve (which is 

normal to the 

gradient at that 

point) and use this 

to predict the next 

points (here either 

r or s). 





fine scale

high 

threshold



coarse 

scale,

high 

threshold



coarse

scale

low

threshold




