
Edge Linking



Example

Edge points Strongest lines



Lane Detection and Departure 

Warning



Edge Linking Rationale

 Edge maps are still in an image format 

 Image to data structure transform

 Two issues

 Identity: there are so many edge points, which ones should be 

grouped together?

 Representation: now that a group of edge pixels are identified, how 

best to represent them?



The Canny edge detector

thinning

(non-maximum suppression)

Problem: 

pixels along 

this edge 

didn’t survive 

the 

thresholding



Hysteresis thresholding

Check that maximum value of gradient value is 

sufficiently large
 drop-outs?  use hysteresis

 use a high threshold to start edge curves and a low threshold to 

continue them.



Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold



Object boundaries vs. edges

Background Texture Shadows



Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: L. Lazebnik

Much more on segmentation later in term…

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


Identity

Measurement space clustering 

 curve fitting

 global technique

 Image space grouping

 tracing or following

 with known templates

 local technique



Intuition

 Q: If several points fall on the same line, what 

“commonality” is there?
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Measurement Space Clustering
 Example: Hough transform
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Duality of Representation

 Image space

 a line

 a point

 Measurement space

 a point

 a sinusoidal curve
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 A voting (evidence accumulation) scheme

 A point votes for all lines it is on

 All points (on a single line) vote for the single line they are 

on

 Tolerate a certain degree of occlusion

Must know the parametric form
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Hough Transform Algorithm

 Select a parametric form

 Quantize measurement space

 For each edge pixel, increment all 

cells satisfying the parametric form

 Locate maximum in the 

measurement space
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Example

Image Accumulator array  (θ, d) 













Hough Transform for Circles
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Hough Transform (cont.)

 Theoretically, Hough transform can be constructed for any 

parametric curve

 a curve with n parameters

 n-dimensional measurement space

 (n-1)-dimensional surfaces for each image point

 highly computationally intensive if n>3

 used mainly for lines, circles, ellipses, etc.





Sometimes edge 

detectors find the 

boundary pretty well

D. Jacobs



Sometimes not 

well at all

D. Jacobs



At times we want to find a 

complete bounding contour 

of an object:

D. Jacobs

At other times we want to find an internal or 

partial contour. E.g., the best path between 

two points:



Which of these two 

paths is better?

How do we decide 

how good a path 

is?  

D. Jacobs



Example: edgels to line segments to 

contours

Contours derived from edgelsOriginal image



Desired properties of an image contour: 

• Contour should be near/on edges

− Strength of gradient

• Contour should be smooth (good 

continuation)

− Low curvature

D. Jacobs



Active Contours (deformable 

contours, snakes)

 Points, corners, lines, circles, etc., do not characterize well 

many objects, especially non-man-made ones

We want other ways to describe and represent objects and 

image regions: Contour representations

 In particular, active contours are contour representations 

that conform to the (2D) shape by combining geometry 

and physics to make elastic, deformable shape models

 These are often used to track contours in time, so the shape 

deforms to stay with the changing object



Active Contours

 Given an initial contour estimate, find the best match to the 

image data – evolve the contour to fit the object boundary

 This is an optimization problem

 Often uses dynamic programming, or something similar, in its 

solution

 Iterates until final solution, or until a time limit

 Visual evidence (support) for the contour can come from edges, 

corners, detected features, or even user input

 Current best contour fit can be the initial estimate for the 

subsequent frame (e.g., in tracking over time)

 Active contours are particularly useful when dealing with 

deformable (non-rigid) objects and surfaces

 These are not easily described by edges, corners, etc.



Active Contours

 Applications:

 Object segmentation (for object recognition, medical imaging, etc.)

 Tracking through time

 Region selection (e.g., in Photoshop) – human in the loop



Contour tracking examples

 http://www.youtube.com/watch?v=laiykNbPkgg

 http://www.youtube.com/watch?v=5se69vcbqxA

 http://www.youtube.com/watch?v=ARIZzcE11Es

 http://www.youtube.com/watch?v=OFTDqGLa2p0

http://www.youtube.com/watch?v=laiykNbPkgg
http://www.youtube.com/watch?v=5se69vcbqxA
http://www.youtube.com/watch?v=ARIZzcE11Es
http://www.youtube.com/watch?v=OFTDqGLa2p0


Illusory contours

Human vision seems to “fill in” where there is 

visual evidence of a contour



Partial contours

 Active contours can deal with occluded or missing image 

data

initial intermediate final



Active contours

 Think of an active contour as an elastic band, with an 

initial default (low energy) shape, that gets pulled or 

pushed to be near image positions that satisfy various 

criteria

 Be near high gradients, detected points, user input, etc.

 Don’t get stretched too much

 Keep a smooth shape

 How is the current contour adjusted to find the new 

contour at each iteration?

 Define a cost function (“energy” function) that says how good a 

possible configuration is.

 Seek next configuration that minimizes that cost function.



Energy minimization framework

 Framework: energy minimization

 Bending and stretching curve = more energy

 Good features = less energy

 Curve evolves to minimize energy

 Parametric representation of the curve

Minimize an energy function on v(s)

v(s) = (x(s), y(s))

constraintexternalinternaltotal EEEE 



Energy minimization framework

 A good fit between the current deformable contour and the 

target shape in the image will yield a low value for this 

cost (energy) function

 Internal energy: encourage prior shape preferences: e.g., 

smoothness, elasticity, particular known shape.

 External energy (“image” energy): encourage contour to fit on 

places where image structures exist, e.g., edges.

 Constraint energy: allow for specific (often user-specified) 

constraints that alter the contour locally

constraintexternalinternaltotal EEEE 



Energy minimization

 The energy functional typically consists of three terms:

Total 

energy

Internal 

(contour) 

energy

Image 

energy

Constraint 

energy

Minimize length and curvature of contour

Maximize gradient along contour

(Minimize the negative of this)

Spring constraint (attraction)

Negative spring constraint 

(repulsion)
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Examples

Image gradients

are large only directly on the boundary

I
Internal model is too “tight”



Examples



Examples



Corpus callosum example



Corpus callosum example



Lips example





Active contours: pros and cons

Pros:

 Useful to track and fit non-rigid shapes

 Contour remains connected

 Possible to fill in “subjective” contours

 Flexibility in how energy function is defined, weighted.

Cons:

Must have decent initialization near true boundary, may 

get stuck in local minimum

 Parameters of energy function must be set well based on 

prior information



Devil in the Details

 Snake: an energy minimizing spline

 subject to

 internal forces (template shape)

 resisting stretching and compression 

 maintain natural length

 resisting bending

 maintain natural curvature

 resisting twisting 

 maintain natural torsion (for 3D snake)

 external forces (shape detector)

 attract a snake to lines, edges, corners, etc. 



Physics Law

 A snake’s final position and shape influenced by

 balance of all applied forces 

 total potential energy is minimum

 a dynamic sequence is played out which is based on physics 

principle



Programming Methods

 A 2D snake
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Comparison

There is a nontrivial 

prior shape (e.g., lip) 

represented by c (0) 

The prior shape is 

“zero” 

Shrink-wrap models
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 External energy

 point attachment

– attach the snake to a bright line  (not used in hw)

– attach the snake to an edge

2|))(),((),(| oooo sysxyxlE 

E I c s ds  ( ( ))

E I c s ds   ( ( ( )))2



 Treated as an minimization problem, we are looking for a 

function c(s) or f(s,t) that minimizes the total energy 

(int+ext)

 Intuitively, 

 small internal energy, less stretching, bending, twisting, closer to 

the natural resting state

 small external energy, confirming to external constraints (e.g., 

close to attachment points, image contours, etc.)



 For those of you who are mathematics-gifted, you 

probably recognize this as a calculus of variation problem

 The solution is the Euler equation (a partial differential 

equation)

 The energy expression is a “functional”

 Need a function to give the extremal value of the 

“functional”



Calculus
 function

 locations (extremums of function)

 derivatives

 ordinary equations

Variational Calculus
 functional

 functions (extremums of 

functional)

 variational derivatives

 partial differential equations
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 For those of you who are physics-gifted, you probably 

recognize this as a generalized force problem 

 Again, the solution is based on the Euler equation (a partial 

differential equation) of variational derivatives



Math Detail

 Need to maintain 

 Length (no stretching)

 Curvature (no bending)

 Both arc length and curvature are vectors!

Length (tangent)

curvature



Math Detail

Most generally, allowing both translation and rotation (a 

rigid-body motion) that doesn’t deform the shape

 Tangent and curvature vectors do not have to line up 

(under rotation), but their magnitude should be maintained

 Turn out the math becomes very messy

 Simpler formulation: translation only (or small rotation)

 Vectors should line up 



Mathematical Details
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Mathematical Details

 Turn a variational calculus problem into a standard 

calculus problem

 2n variables

 2n equations (linear equations)

 Can solve a (very sparse) matrix equation of AX=B using 

Matlab A\B (or iterative)

 Sparsity comes from 1st and 2nd order derivative 

approximation using only neighboring points
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How to Get There? 

 Caveat

 This is not a numerical analysis course

 Options: Newton’s method,  line search and trust-region method, 

etc.

 Gradient descent

 Go in the negative gradient direction in “some” length (step size)

 How to tune the step size? 

What is the gradient direction? For n points, 2n variables 

(x,y)
𝜗𝐸

𝜗𝑐1
. .

𝜗𝐸

𝜗𝑐𝑘
. .
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T



Mathematical Details
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Mathematical Details
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Mathematical Details
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Mathematical Details

 Derivative of E (potential) is a gradient (force) field

Minimization go in the negative gradient direction 

 Pull the snake in the direction

 Large gradient 

 Large increase in gradient 

 around a node 

int

(0) 2 (0) 2 2

2

Minimize

( ( ) ( )) ( ( ) ( )) ( ( )) ( ( ( )))

( ( ( )))
2[ ( , ) ( , ) ] 2[ ( , ), ( , )][ , ]

total ext

s s ss ss

y y Tx x
x k k y k k x k k y k k

k k k k k

E E E

c s c s c s c s I c s I c s ds

I II II c s
I x y I x y I x y I x y

x x x x x

  

 

      

   
  

    





Details

 (-1,2,-1) + (1 -4, 6, -4, 1) = (1, -5, 8, -5, 1) (if )

 Not diagonally dominant, need conditioning (regularization)

 Resulting in gradient of form AX-AX0-B

 A is pentdiagonal matrix of the form (1, -5, 8, -5, 1) (if )

 AX0 has internal energy term

 Template (x(0) ,y(0)) 

 Fixed (original template) or varying (last time instant)

 Has the form of -AX(0) or -AX(t-1) or some combination

 B External energy term <- varying 

[ ( , ), ( , )][ , ]
y Tx

x k k y k k

k k

II
I x y I x y

x x



 



Programming Methods

 The equation represents balance of forces!

 A force to enforce similar tangent

 A force to enforce similar curvature

 A force to penalize non-maximum intensity

 A force to penalize not at zero crossing

( ) ( )( ) ( )x x x xk k k k   1

0
1

0

( ) ( )( ) ( ) ( )x x x x x xk k k k k k       2 1

0
2

0
1

02 2





I

xk





2

2

I

xk



 Caveat:

Snake needs good initial position

Provided by initial interactive placement

Smooth images to enlarge “potential field”

Snake won’t move if

 Gradient is zero or 

 Change of gradient is zero



Numerical Methods - Iterative
 Using Euler’s method: expressions AX-AXo-B are gradient

 Explicit Euler: 

 Implicit Euler:



Mixed Euler: 

 Justification for mixed Euler:

 B cannot be evaluated without knowing Xt, so use values at Xt-1

 A can be easily inverted, so use Xt

 Your choice, explicit Euler for simplicity
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t t t t
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   



Numerical Methods - Direct

 Should result in a sparse, pentadiagonal matrix 

 AX = B, solve with

 Direct method X = inv(A) * B (preferred for small system < 20 

points and GOOD initialization)

 Caveats:

 A can be numerically ill-conditioned (not diagonally dominant –

the |diagonal element| is larger than the sum of |off-diagonal 

elements|)

 Fix: Regularization (a topic to be discussed more later)

Minimize || AX-B||^2 + w||X||^2

 (A’A+ wI) X = A’B or X = inv(A’A+wI)*A’B 



Numerical Methods

a = [

8    -5     1     0     0     1    -5

-5     8    -5     1     0     0     1

1    -5     8    -5     1     0     0

0     1    -5     8    -5     1     0

0     0     1    -5     8    -5     1

1     0     0     1    -5     8    -5

-5     1     0     0     1    -5     8

];

b = rand(7,1) ;

for lambda = 0:1:10

x = inv(a’a+lambda*eye(7))*a’*b;

err(lambda+1) = norm(a*x - b);

end

plot(err) Lambda=0



Direct or Iterative

No iteration 

Initial state must be 

close to final state 

(because external 

energy is position 

dependent), image 

smoothing is 

important

Require good template 

and update of 

templates

Iterative

Initial state does not 

have to be close to 

final state

External energy terms 

must be updated 

through out


