2D Image Analysis

2D Image Analysis

- *Segmentation
- Localization
- Shape Analysis
- Classification & Categorization

Segmentation

Partition images into *meaningful* entities

The "Holy-Grail" problem in low-level computer vision

*A panacea to many high-level vision problems

https://www.youtube.com/watch?v=OOT3UIXZztE https://www.youtube.com/watch?v=g7z4mkfRj1

Segmentation (cont.)

- Even though appeared simple, the problem is extremely hard
 - Noise
 - Sensing and lighting conditions
 - **Repetitive** patterns
 - Syntactic vs. semantic grouping
 - Top down vs. bottom up approaches

What is segmentation?

Isolating a specific region of interest ("find the star" or "bluish thing")

What is segmentation?

Partitioning images/volumes into meaningful pieces

What is segmentation?

Assigning each pixel a type (tissue or material)

Examples

Example

Examples

Examples

Figure 6. Segmenting a maple leaf. (a) The user input: circles indicate the object, squares indicate the background (colour is for visualization purposes only). (b) The result without shape priors – segmentation is shown in white. (c) The level-set of the shape template after transformation, $\bar{\phi}_{trans}$. (d) The result with shape priors.

Figure 7. Segmenting a fish. (a) The user input: circles indicate the object, squares indicate the background (colour is for visualization purposes only). (b) The result without shape priors – segmentation is shown in black. (c) The level-set of the shape template after transformation, $\bar{\phi}_{trans}$. (d) The result with shape priors.

Examples

Sony <u>EyeToy</u> Background, motion, and color segmentation

Segmentation

 Spatial and temporal segmentation
 And spatial-temporal ("spatiotemporal") segmentation

- Segment images/video based on:
 - Grayscales
 - Color
 - Textures
 - Depth
 - Motion
 - Low-level features
 - Etc.

Gelstalt Examples

How edges should be grouped?

How regions should be defined?

Semantic vs. syntactic

Fig. 6.1 Six examples of texture. (a) Cane. (b) Paper. (c) Coffee beans. (d) Brick wall. (e) Coins. (f) Wire braid.

Syntactic vs. Semantic

2D Image Analysis (cont.)

- Representation (*syntactic* level)
 Describe the *shape* (*appearance*) of edges and regions
 - regions: size, location, orientation, etc.
 - > edges: curvature, orientation, length, etc.
 - > info can be extracted from images alone

2D Image Analysis (cont.)

- Interpretation (semantic analysis)
 - Describe the *identity* of image features
 - Regions: sky, water body, etc.
 - Edges: 3D orientation, occluding contours, road boundaries, etc.
 - Often need domain specific knowledge and contextual information

General purpose segmentation strategies

Region-based methods

Regions are locally homogeneous (in some property)

Regions satisfy some property (to within an tolerance)

□E.g., Flood fill

Edge- or contour-based methods

- □ Regions are bounded by features
- $\Box \text{Features} \rightarrow \text{sharp contrast}$
- E.g., Canny Edges

Bottom up (from images to features and objects)

Syntactic information

Segmentation via deformable models

Active contours

- Train models to learn certain shapes
- Snakes (polyline)

Grayscale-based segmentation (Thresholding)

"Together" = similar grayscale values

Input image

Foreground segmentation

Original

 $\theta = 100$ 1 FG region

 $\theta = 75$ 2 FG regions

 $\theta = 50$ 3 FG regions

 $\theta = 25$ 3 (large) FG regions

Example with noise

Where to threshold to get this segmentation? Let's look at the <u>histogram</u> of the input image...

Color-based segmentation

"Together" = similar color values
Color and intensity, or just color???
E.g., are "dark green" and "bright green" similar?

Segment based on partitioning of color space
 RGB, YUV, HSV, ...?

Several ways to model the color range of a region, including...

Color-based segmentation

Color cube:

- $\Box r_{min} < R < r_{max} AND g_{min} < G < g_{max} AND b_{min} < B < b_{max}$
- Euclidian distance:
 - $d = \| (R,G,B) (r_{c}, g_{c}, b_{c}) \|$ $- d < d\theta$
- Mahalanobis distance: Takes into account variance in all dimensions:

$$- d^{2} = (x - x_{m})^{\mathrm{T}} \mathrm{C}_{\mathrm{x}}^{-1} (x - x_{m})$$

- $d < d\theta$
 - *x* is the (R,G,B) vector
 - x_m is the mean of the class distribution
 - C_x is the covariance matrix of the distribution

Color-based skin segmentation

Original

Threshold based on color

After morphological analysis

Original

Threshold based on color

Texture painted back on face regions

May want to enforce **spatial** proximity as well as **color** proximity

Color segmentation examples

http://www.ee.columbia.edu/~dzhong/rtrack/demo.htm

Color segmentation examples

Texture-based segmentation

"Together" = similar texture properties
Fundamentally an area-based measure, not a single pixel

There is no single definition/measure of texture

□Number of edge segments per unit area

si

CS,

a

ics

Brodatz

textures

(magnitude, orientation.)

p, stat

Fre

Statistic

Texture-based segmentation

Texture-based segmentation

http://www-dbv.cs.uni-bonn.de/image/example6.html

Motion-based segmentation

"Together" = similar motion

. . .

Rigid motion: all object points described by the same transformation

> Pencils, coffee mugs, computer monitors, marbles,

Non-rigid motion: articulated objects, bending objects, squishy objects...

> Clouds, fluids, faces, hair, arms, scissors, ...

Relative motion (depth)

Segmenting two moving objects

http://robotics.eecs.berkeley.edu/~rvidal/segment.html

Surveillance

Depth-based segmentation

"Together" = similar depth (distance from reference)

- **How similar**?
- How to segment a large object? A wall?
- Or surface normal
- Or contiguous object

Segmentation: Background subtraction

Goal: Separate the "foreground" from the "background" in the scene

□Not necessarily related to depth

• Approach: Model the background, then detect significant changes from the model

Temporal segmentation of video

Segment video into clips (shots) by looking for large changes

Overall frame-to-frame change (frame differencing)

> Color, grayscale pixel values

- Histogram change
 - > Can be faster to compute

