
Camera Calibration

Geometry and Radiometry



Motivation

 Think about the application of drawing the first-down line in football 
game

 Calibration steps:

 Contour mapping

 Camera calibration – position

 During the game:

 Cameras: three, PTZ readings provided in real-time

 People: spotter, line-position technician, 1st & ten operator, trouble-
shooter

 Computers: five

 Gather PC: receive PTZ data

 Tally: keep track of on-air camera and choose 3D map to use

 F Ten: video display and overlay 3D map

 Matte: pattern recognition (player/field classification)

 Render: receives data from all other, draws the line
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Camera Calibration

 Static:

Where is a camera placed with respect to the field?

 How is the camera aimed? 

 Dynamic:

 How is the camera aim’s changed? 

 In essence:

 Camera coordinates (i,j) must be able to correlate into world 

coordinates (x,y,z) 
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Other Applications

 Autonomous navigation

 Photogrammetry and remote sensing

 Soldering and welding

 Inspection

 Almost all CV algorithms (except those deal entirely with 

2D images) perform camera calibration 



Calibration & Registration

 Camera calibration

 Intrinsic parameters (e.g., focal length, aspect ratio, lens distortion)

 Independent of camera placement

 Pose registration

 Extrinsic parameters

 Independent of choice of cameras



Mathematics of Image Formation 

 A sequence of coordinate transforms + projection (lens 

transform)

 3D world coordinate

 3D camera coordinate

 2D ideal image coordinate

 2D real image coordinate

World  to camera: rigid body transform (R and T)

 Camera to ideal: ideal projection

 Ideal to real: real CCD and lens
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2D examples
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3D Translation
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3D: Euler Angle Rotation
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Generally

 A translation 

 Followed by a rotation around x

 Followed by another translation

 Followed by a rotation around y

 Followed by another translation

 Followed by a rotation around z

 Etc.
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Sidebar: Representation of Coordinates

 use (X,Y,Z)T for 3D and (x,y) T for 2D 

results in different representation for translation and 

rotation P’3x1=R3x3P3x1+T3x1

 Homogeneous coordinates 

P’ 4x1=M4x4P4x1

)/,/,/(),,,(

0),,,,(),,(

wwzwwywwxwwzwywx

wwwzwywxzyx





P
TR

P 









10
'



3D Translation
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3D: Euler Angle Rotation
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Generally

 A translation 

 Followed by a rotation around x

 Followed by another translation

 Followed by a rotation around y

 Followed by another translation

 Followed by a rotation around z

 Etc.

 A much elegant representation in terms of matrix operation

 Easy concatenation

PTRTRTR 123 xyz



View Normalization – Hard Way

Make world coordinates make sense to a camera

 Transform world coordinates into camera coordinates

 One translation

 Zero out camera origin

 Three rotations –line up coordinate axes

 Rotate about Y

 Rotate about X

 Rotate about Z

TPRRR yxz
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World  to Camera – Easy Way 
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Viewing Transform in OpenGL

void gluLookAt (GLdouble eyex, eyey, eyez,

GLdouble centerx, centery, centerz, 

GLdouble upx, upy, upz)
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Y

Z

X

W

up

U

V

 eye and center: local w(z) direction

 up and local w(z): local v(y) direction

 local v(y) and w(z) directions: local u(x) direction

Viewing Transform (cont.)



Viewing Normalization
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Camera to (Ideal) Image

 Represented by a projection

 focal length f, aspect ratio 1
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Intrinsic parameters

 5 intrinsic parameters account for

 The focal length ( f )

 The principal point (C0)=(u0,v0)

 Where the optical axis intersects the image plane

 Pixel aspect ratio (ku, kv)

 Pixels aren’t necessarily square

 Angle between the axes (θ)

 Skewness in manufacturing

θ



Intrinsic parameters

realx
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idealy xcamera
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z
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Principal point

C0 = (u0, v0)

f

θ

Orealy

Sensor array – real image plane

Normalized (ideal) image plane
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Putting It All Together
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Usage

 Governing equation

 Off-line process

 Given known 3D coordinates (landmarks) and their 2D 

projections, calculate q’s

 On-line process

 Given arbitrary 3D coordinates (first down at 30 yards) and q’s, 

calculate 2D coordinates (where to draw the first-and-ten line)

 Given arbitrary 2D coordinates (images of a vehicle) and q’s, 

calculate 3D coordinates (where to aim the gun to fire)
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Camera Calibration and Registration

 First step

 Estimate the combined transformation matrix 

 Second step

 Estimate intrinsic camera parameters

 Estimate extrinsic camera parameters

 Solution

 Using objects of known sizes and shapes (6 points at least)

 Each point provides two constraints (x,y)

 A checked board pattern placed at different depths

worldrealM



Calibration software available

 Lots of it these days!

 E.g., Camera Calibration Toolkit for Matlab

 From the Computational Vision Group at Caltech (Bouguet)

 http://www.vision.caltech.edu/bouguetj/calib_doc/

 Includes lots of links to calibration tools and research
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Putting It All Together



Camera Calibration

 Certainly, not all 3x4 matrices are like above

 3x4 matrices have 11 free parameters (with a scale factor that 

cannot be decided uniquely)

 matrix in the previous slide has 10 parameters (2 scale, 2 camera  

center, 3 translation, 3 rotation)

 additional constraints can be very useful

 to solve for the matrix, and

 to compute the parameters

 Theorem: 3x4 matrices can be put in the form of the previous slide 

if and only if the following two constraints are satisfied
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Finding the transform matrix
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 Each data point provide two equations, with at least 6 

points we will have 12 equations for solving 11 

numbers up to a scale factor

 Lagrange multipliers can be used to incorporate other 

constraints

 The usual constraint is q3
2=1

 Afterward, both intrinsic and extrinsic parameters can 

be recovered

Finding the transform matrix (cont.)



Details

 Solved by Langrage multiplier
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Other Formulations

With a calibration pattern

 Flexible placement of the pattern 

With a calibration patterns

 Use vanishing points and vanishing lines

 Calibrating against lens distortion

 Fisheye and others

 Calibrating pan-tilt-zoom cameras

 Pan and tilt axis direction, placement, angle

 Registration vs. calibration 

Many times vs. once

 On-line vs. off-line



Flexible Pattern Placement

 http://research.microsoft.com/~zhang/calib/

http://research.microsoft.com/~zhang/calib/


Step 1: Intrinsic Parameters

 ximage=Hxplane=K[R1,R2,T]xplane
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 One homography

 8 DOFs

 6 extrinsic parameters (3 rotation + 3 translation)

 2 constraints on intrinsic parameters

 3 planes in general configuration

Image of absolute conic



Step 2: Extrinsic Parameters
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Step 3: Intrinsic + Extrinsic Parameters

 ximage=Hxplane=K[R1,R2,T]xplane

2model
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 Nonlinear optimization 

 Using Lenvenberg-Marquardt in Minpack

 K from the previous step as initial guess

# of images # of points/images



Calibrating for radial distortion

 The camera lens also introduces errors of several type (as 

we’ve already discussed):

 Spherical aberration

 Coma

 Chromatic aberration

 Vignetting

 Astigmatism

Misfocus

 Radial distortion

 Of these, radial distortion is the most significant in most 

systems, and it can be corrected for



Radial distortion

 Variation in the magnification for object points at different distances 

from the optical axis

 Effect increases with distance from the optical axis

 Straight lines become bent!

 Two main descriptions: barrel distortion and pincushion distortion

 Can be modeled and corrected for

Barrel PincushionCorrect





Correcting for radial distortion

Original Corrected



Modeling Lens Distortion

 Radial, Barrel, Pincushion, etc.

Modeled as bi-cubic (or bi-linear) with more parameters to 

compensate for

 Very hard to solve
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Modeling radial distortion

 The radial distortion can be modeled as a polynomial 

function () of d2, where d is the distance between the 

image center and the image point

 Called the radial alignment constraint
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q distortion coefficients (q <4)



Less Frequently Used –

Tangential Distortion
 Less common

Radial

Tangential



Modeling distortion

 Now do calibration by estimating the 11+q parameters
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 Since d is a function of u and v, we could also write  as 

(u, v)

where (u’, v’) comes from K[R|T]P



Radiometry Calibration



Radiometry Calibration











Formulation





Where is the = Sign?

 Assume overlapped area contains diffuse surface

 It doesn’t matter where the camera is, Lx is constant (the 

surface gives out light equally in all directions)

 Procedure: match the intensities of points that are seen in 

both images 1 and 2 
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