Visual Motion
Analysis and Representation




Example

*» Ullman’s concentric counter-rotating cylinder experiment
“* Two concentric cylinders of different radii

< W. a random dot pattern on both surfaces (cylinder
surfaces and boundaries are not displayed)

«* Stationary: not able to tell them apart
+ Counter-rotating: structures apparent




Example (cont.)

04

“* Motion helps in
] segmentation (two structures)
C identification (two cylinders)
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Classes of Techniques

“+ Feature-based methods
] Extract visual features (corners, textured areas) and track them
] Sparse motion fields, but possibly robust tracking
] Suitable especially when image motion is large (10s of pixels)

* Direct-methods (Pixel-based methods)

 Directly recover image motion from spatio-temporal image brightness
variations

J Global motion parameters directly recovered without an intermediate
feature motion calculation

1 Dense motion fields, but more sensitive to appearance variations
] Suitable for video and when image motion is small (< 10 pixels)
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Traditional vs Modern

“» Syntactic features
+s» Small deformation
*¢* Precise localization

*» Sparse vs dense
(vector/pixel) tracking

+* Semantic features
» Large deformation
+2» Global localization

“» ODbject (people, dog,
etc.) tracking
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Optical flow and motion analysis

“* Now we move to considering images that vary over time —
Image sequences

[ Typical case is video — images captured at 30 frames/second (or
15, or 60, or ...)

1y, 1) 2 Lxy) =1y, 1), Lxy) =1y, 1), etc.
] “Spatial-temporal space” describes (X, Y, t)

/

f—— What can change between I,
X and I,,?

t

U What do images close in time
have in common?




Spatio-temporal image data
(examples)




x-t slice




Optical flow and motion analysis

“* Optical flow Is the apparent motion of brightness patterns

In the iImage sequence

. A 2D vector at each point — a vector field

“* The motion field is the true motion (3D) at each point,

mapped onto the 2D image
. A vector field

“* They are not always
the same
 E.g., white, featureless ball?

In general, we estimate the motion field by
computing the optical flow

The motion field is not directly
observed
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Figure 8.6 The motion field of a pilot looking to the right in level flight. The fc
of expansion here is off at infinity to the left of the figure; equivalently, the focu
contraction is off at infinity to the right of the figure. (From [Gibson 1950] 1
permission. Copyright © 1977, 1950 by Houghton Mifflin Company.)
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Example
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Fig. 7.7 Optical low from feature point analyses. (a) An image. (b) Later image. (¢) Opti-
cal flow found by relaxation.
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Caveats

“* Motion analysis a very important and popular area in
computer vision

“+ A large body of literature exits with maybe hundreds of

different formulations (at cvpPR, you will find at least 2 or 3 sessions on
motion)

< Many of them can be very mathematical

“+ Apparent motion != True motion




Rigid vs. nonrigid motion

» Camera motion is 6 DOF rigid motion

+ Object motion may be rigid or nonrigid o g
[ Rigid: coffee mugs, silverware, baseballs, jets, ... 4
L Nonrigid: humans, face, medical imagery, beach e | ﬁv
balls, scissors, grass, ...

> Includes articulated motion




Nonrigid motion

<+ Nonrigid motion is complicated and difficult, especially
with little prior knowledge on what is being viewed

 Typical problem: What are the parameters of the known nonrigid
model of the object being viewed?

We’ll just focus on rigid motion




The barber’s pole illus
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http://infohost.nmt.edu/~armiller/java/barber/barber.htm

The aperture problem

¢ In local processing, we can only measure
motion perpendicular to the image
gradient

Final
Edge Position
Initial Aperture
Edge Position

Candidate Motions
of Point on Edge




First steps

“* Motion processing starts with estimating optical flow from
frame to frame, either densely or sparsely

“* The typical approaches are:
(1 Dense correspondence:
» Differential methods, local area/correlation based
» This could be hierarchical (coarse-to-fine approach)
(] Sparse correspondence
» Matching methods, feature based

<+ Asumption: Points/features can be matched in nearby
Images




Brightness constancy equation

e dl_dI(x(t), y(1),t)
dt dt

=0 For a given scene point

d1(x(®),y(t),t) _al dx_ al dy ol dt

dt =~ ox dt | oy dt T &t dt =0

ol a1 (dx dy al _0
ox'dy ) \dt dt )T Bt
V| Image gradient

VI-v+1, =0 @ |\ opical flow

| . Time difference
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Brightness constancy equation
(method #2)

| (X,Y,t) =1(X+8X,y+0dYy,t+ Ot) Foragiven scene point

1(X+8X, y+8Y,t+8t)— 1(x,y,t)=0

1(X,y,2)+ ol ();’Xy’t) dx + ol ()é’yy’t) dy + ol ();ty t) by Taylor expansion
ol (X, y,1) ol (X, y,1) ol(x,y,t)
P dx + By dy + P dt=0
ol dx Ol dy 6I _0 VI-v+1, =0

ox dt ay at

AR =
S8 8% ol
a | P’
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Brightness constancy equation
method #2

Image at time t




Back to the aperture problem

VIi-v+1, =0
VI.-v=—I,

Final
Edge Position
Initial Aperture
Edge Position

Candidate Motions
of Point on Edge

Many vectors v satisfy this
Only the normal direction is constrained




On images...

p t ( G

P ‘

X ol X ol

at ot

Y ol 1 ol

y X y X
ol Is al
oy vy

Vi-v+1, =0

This equation defines and constrains the optical flow v(X, y)




What Is the Image gradient?

Image gradient — the first derivative (slope) of the intensity variation in (X, y)




What is the temporal gradient?







Brightness constancy of a point

Image
sequence




Difficulty

“* One equation with two unknowns

» Aperture problem

1 spatial derivatives use only a few adjacent pixels (limited aperture
and visibility)
J many combinations of (u,v) will satisfy the equation

\Y

/\ A (e, 1)

Constraint line
Lou+T,v+ 1 =0




@ intensity gradient is zero
no constraints on (u,v) (0,0)-(u,v)=0
Interpolated from other places

@ intensity gradient is nonzero
but Is constant A A w2
one constraints on (u,v) ox oy a
only the component along the gradient

are recoverable

@ intensity gradient is nonzero
and changing
multiple constraints on (u,v)
motion recoverable
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Patch Translation [Lucas-Kanade]

Assume a single velocity for all pixels within an image patch

E(u,v) = Z(Ix(x, y)u+1,(x, y)v+|t)2

X,yed

Minimizing

D Wan b

SviviT)g =3 vii,

LHS: sum of the 2x2 outer product of the gradient vector
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Image motion

How do we determine correspondences?

Assume all change between frames is due to motion:
J(Xy) = L(X+U(xy), Yy +V(xY))




The Aperture Problem

et M= (VI)vI)  and {%:y:j

 Algorithm: At each pixel compute U by solving MU=Db

* M is singular if all gradient vectors point in the same direction
* e.g., along an edge

» of course, trivially singular if the summation is over a single pixel
or there is no texture

* I.e., only normal flow is available (aperture problem)

 Corners and textured areas are OK

Saidzelisk




SD Surface — Textured area




SSD Surface -- Edge




SSD — homogeneous area




Limits of the gradient method

Fails when intensity structure in window is poor

Fails when the displacement is large (typical operating range is
motion of 1 pixel)
Linearization of brightness is suitable only for small displacements

< Also, brightness is not strictly constant in images

actually less problematic than it appears, since we can pre-filter images
to make them look similar
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Coarse-to-Fine Estimatio
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Pyramid of image J




lterative Refinement

»+ Estimate velocity at each pixel using one iteration of Lucas
and Kanade estimation

< Warp one image toward the other using the estimated flow
field

(easier said than done)

“+ Refine estimate by repeating the process
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Optical Flow: Iterative Estimation

A f1®) . faa)

estimate

Initial quess: dn = 0O
update J 0

Estimate: d; =dg+d

<V

(using d for displacement here instead of u)




Optical Flow: Iterative Estimation

A file —d1) fo(2)

estimate

Initial guess:
update J 1

Estimate: do =d; +d

<V




Optical Flow: Iterative Estimation

A file —d2) | f5(2)

estimate

Initial guess: d-
update

Estimate: d3 =do +d

<V




Temporal coherency

t t + ot t+ 20t
(U, V) (u,v) e
’ e E e
e
(G5 em=—5 Dy wn--2
 Caveat:

— (u,v) must stay the same across several frames
— scenes highly textured

— (u,v) at the same location actually refers to
different object points




Spatial coherency

¢ neighboring pixels should have “similar” flow vector
“* Q: What do you mean by “similar”
< Al: identical

% A2: change slowly =0
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Mathematical formulation

» Based on Lagrange Multiplier
“* Incorporate smoothness as an additional constraint

++ Can be thought of as a weighting of two terms:
1 optical flow constraint

] smoothness constraint

ol ol __a
(575)‘(%”— P

Aly, AUy, N,y N,
) )+ () +(5)

Ay




“* Optimize over all image plane:

P us Dy DMy ar Py (D ( Py, (N
E_Ij(éb(u+é’yv+ét) +/1[(0’b<) +(5y) +(0’><) +(5y) Jdxdy

+»+ Discretize the governing equation, at (i,)):

ou — au =u u
5? i+1, ] i,j §,y i,j+1 i, ]
o — A —

5 Vi+l,j i,] 5 Vi,j+l Vi,j

*» Discretized expression.

T R IV I
E_Z;(é’x ui’j+§y Vi’j+0’t )

i,j i,j By
2 7 2 2
+/1[(ui+1,j _ui,j) +(ui,j+1_ui,j) +(Vi+1,j _Vi,j) +(Vi,j+1_vi,j) 1




At a pixel location (k,l):

OE ol Ol Ol Ol
= 2(— Ui ¥ —=— Vi T—= )—
Ay OX | 2% A\ OX
— 24U, —u D)+, —u )+, —u )+ (U, —u )]=0

cE Ol Ol Ol Ol
= 2(— Ui ¥ —=— Vi T —= )—
évk,l éxk,l é,yk,l A k,I éyk,l

— 2NV Vi) +F Ve Ve ) F (Vi Vi) (Ve — Vi )1=0




« Putting It all together:

A Ol Ol ol 2l —

(— )Zuk,l + Vir + —4A(u—u,,)=0
Xy OX 1 PY Xy, Oty

AN U + (ﬂ )2Vk,l + ol 2 _4/1(\_/_Vk,l) =0
OX 1 PY Y . Y1 Oty

U= Uy, +U 5 +U_ . +U )4
V=V +Vi i1+ Vi V) /4




e Or:

[42+(2 Y, +2 2L oy, =aau-2 2
ﬁxk,l axk,I ﬁyk,l k,l A k.l
A2y A (D Y, =aav- D D
éjxk,l é)yk,l o k,I ayk,l étk,l
a s 5,2
U = U— é)xk,l é,yk,l étk,l ol
k,I —
ar+ (D oy (L yr X
axk,l O/)yk,l
- a o A
V —V— é)xk,l yk,l étk,l ol
kI —
41+(é’| )2+(é’| )2 208
é)Xk,I é,yk,l




estimate based on smoothness

*how much does the smooth estimate violate
optical flow constraint

*how much does the optical flow constraint matters

direction for correction




w

Algorithms

. Compute a : a : a from a pair of input images
oy ot
. Choose a weighting factor A4
. Compute (u, V)
At each pixel location (k,l), do
o - 2 —m Ol
— u +— Vv +
(n+1) —(n) axk,I O/‘)y k.l ﬁ K, é’l
Yo =~ 2l 2 x
AA+(T0 Y H(S ) T
éxk,l O/)y k,l
A -m ad - Ol
— U +— VvV T+
(n+1) _ () éka é’y K. A k.1 Al
Vi =V T ] ] 5
AA+(C Y+ ) DY
k,l é,y k,l
Iterate steps 3 and 4 until no change or count exceeds
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Motion representations

?

IS SCENe:

How can we describe thi

e

*




Block-based motion prediction

* Break image up into square blocks
» Estimate translation for each block
“+ Use this to predict next frame, code difference (MPEG-2)




Layered motion

“* Break image sequence up into “layers”:

*
I

*» Describe ca s




Layered motion

+ Advantages:

» can represent occlusions / disocclusions
 each layer’s motion can be smooth

* video segmentation for semantic processing
» Difficulties:

* how do we determine the correct number?

* how do we assign pixels?

* how do we model the motion?
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Layers for video summarization

I AT IR

== 3

Background scene (players removed)

1 3 |
u W) -/ University ot Gali

SR taBarbar
i 1 - e




Background modeling (MPEG-4)

“+ Convert masked images into a background sprite for
layered video coding
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Optical flow summary

* Optical flow techniques:

 Techniques that estimate the motion field from the image
brightness constancy equation

* Optical flow:
1 Is best estimated (least noisy) at image points with high spatial
Image gradients. (Why?)
J Works best for Lambertian surfaces (Why?)
J Works best for very high frame rates (Why?)

“+ From optical flow, we can compute shape/structure/depth,
motion parameters, segmentation, etc.

O But if you primarily want to track an object, other methods may be
preferred




Tracking

¢ Tracking 1s the process of updating an object’s position
(and orientation, and articulation?) over time through a
video sequence
(] Estimate the object pose at each time point
> “Pose” — position and orientation

“* Applications
. Surveillance
] Targeting

J Motion-based recognition (e.g., gesture recognition, computation
of egomotion)

1 Motion analysis (golf swing, gait, character animation)




Tracking vs. optical flow

“ In tracking, we are generally acknowledging that some
sparse features are the points to track
 Corners, lines, regions, patterns, contours....

“* Rather than computing the full motion field from optical
flow, let’s keep track of the time-varying position of these
sparse features

1 Then compute {egomotion, object pose, etc.} from this

“* This typically involves a loop of prediction, measurement,
and correction

[ Often with presumed models of motion dynamics and
measurement noise




Tracking vs. Matching

* Tracking requires
videos

«* Small displacement is
assumed

“* Simple features

“»Use Image constraint
(similar to optical flow
constraint)

“* Matching can be done
on discrete frames

“* Displacement can be
large (>10 pixels)

* Often more elaborate
features

“* Independent detection
In each frame and then
match




Examples LKT tracker

F(x)andG(x) = F(x —|— h G(x) F(x)

) A -




Examples LKT tracker

G(z) — F(x) )
2.z F'(z) G(x) F(x)

h ~~ S 1 ; A- A
1 o F(o)]
)]

w(z) [G(x) — F(z

- i F'(z )
Zz ’UJ(I)
ho — 0
w(z) [G(z) — F(z + hy)]
2 i :
h‘k-+-1 = h‘k -+ F (‘T + hk)

2z W(7)




KLT tracker (better formulation)
F(x + h) ~ F(x) + hF'(2)

E=Y[F(z+h) - G(2)]*.

~ = 3 [F(2) + hF'(z) - G(2)] |

= 2F(a) [F(z)+ hF'(z) — G(x)]

" ¥, F(2)[G(z) - F(x)]
TR Py

ho =0
_ 2 W(@)F'(z + hy) [G(z) — F( + hy)]
{hk-H = hy + S w(@)F'(z + he)?







