Convolutional
Neural Network

Can the network be simplified by

considering the properties of images?




Artificial Neural Networks

e Connectionist, PDP, etc. models

* A biologically-inspired approach for
* intelligent computing machines
* massive parallelism
* distributed computing
* learning, generalization, adaptivity

* Tolerant of fault, uncertainty, imprecise info



Compared to Von Neumann

Von Neumann Biological
computer neural systems
Processor |complex, high simple, low
speed, few speed, many
Memory |separate from Integrated into
processor, processor,
non-content content
addressable addressable
Computing |centralized, distributed,
sequential stored ||parallel self-
programs learning
Reliability |vulnerable fault tolerant




Biological Neural Networks

e soma (cell body)
* dendrites (receivers)
e axon (transmitters)

. syna?ses (connection points, axon-soma, axon-dendrite, axon-
axon

e Chemicals (neurotransmitters)
11
« 10 "neurons
e each makes about 103 ~ 1O4connections
e with an operating speed of a few milliseconds
e one-hundred-step rule
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Signal Generation

e Resting potential

* Charge difference across neuron membrane
approximately —=70mV

* Graded potential
e Stimulus across synapses of post-synaptic neuron

e Action potential

* |f accumulation of graded potential across neuron
membrane over a short period of time is higher than
~15mV, action potential is generated and propagated
across axon

e Same form and amplitude regardless of stimulus, signal
by frequency rather than amplitude

PR, ANN, L ML



Signal Generation
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An action potential.

PR, ANN, L ML



Computational Neuron Model
(McCulloch and Pitts)
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What does a neuron do mathematically?

e W and b determine a e W and b determine a
“basis” function partitioning hyperplane

* Unlike Fourier bases, * They separate high-
these bases are learned dimensional feature
to fit the data spaces into regions

e Pattern finder or e Pattern classifier
classifier

* Again, the partitioning
hyperplanes are
learned



Why CNN for Image

* Some patterns are much smaller than the whole
image

A neuron does not have to see the whole image
to discover the pattern.

Connecting to small region with less parameters

“beak” detector




Why CNN for Image

* The same patterns appear in different regions.

“upper-left
beak” detector

Do almost the same thing

They can use the same
set of parameters.

“middle beak”

detector



Why CNN for Image

e Subsampling the pixels will not change the object

bird
bird

We can subsample the pixels to make image smaller

‘ Less parameters for the network to process the image



The whole CNN

> Can repeat
many times

Max Pooling



The whole CNN

Property 1

Convolution

Property 2
Max Pooling
> Can repeat
many times

Property 3 Convolution

Max Pooling




Convolution

Max Pooling

Convolution

Max Pooling

>

Can repeat
many times



CNN — Convolution

Those are the network
parameters to be learned.
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6 x 6 image

Each filter detects a small
Sl pattern (3 x 3).



CNN — Convolution [ZT3 731 Fitters

stride=1
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CNN — Convolution [ZT3 731 Fitters

If stride=2

We set stride=1 below
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CNN — Convolution

Filter 1
stride=1

-1

-3

1

6 X 6 image -2 -2 -1
Property 2



CNN — Convolution 1011/ Filter2

-1 1 1
stride=1 Do the same process for
every filter

6 X 6 image




CNN — Colorful image
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Convolution v.s. Fully Connected
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Filter 1

6 X 6 image

Less parameters!

13:
14.

15:
16:

. N e
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Only connect to 9
input, not fully
connected




Filter 1

0
1
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6 X 6 image

Less parameters!
Even less parameters!
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Shared weights




The whole CNN

by

cat dog ...... )

: _

Fully Connected
Feedforward network

iz Ll

Flatten

>

Can repeat
many times



CNN — Max Pooling

Filter 1

-1 | Filter 2




CNN — Max Pooling

New image
110l0l0l01!1 but smaller
0O/1/{0|]0|1]0
O|0|1|1]0]0 @@
1000|110
0|1(0|0|1]|0 Max @@
ojo|[1]|0|1]|0 Pooling

2 X 2 image

6 X 6 image .
Each filter

is a channel



The whole CNN

e B

iﬁJ<—

many times
Smaller than the original Convolution |

image Activation

Convolution

Activation

> Can repeat

The number of the channel Max Pooling
is the number of filters



The whole CNN

Feedforward network Convolution

)|

Max Pooling

Flatten




Flatten e
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Flatten

Fully Connected
Feedforward network



CNN Demo - Mnist

 Hand-written digits

* 60,000 training samples and 10,000 test samples

» 28x28 binary images
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CNN Demo — CiFar10

* 10 classes (airplane, auto, bird, cat, dog, etc.)
* 50,000 training samples and 10,000 test samples

* 32x32 color images —..% »” ...:“"
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CNNfor Mhnist iny modified the network structure and
input format (vector -> 3-D tensor)

input

1x28 x 28 ‘v

Convolution

25 x 26 x 26 ‘ Activation

Fully Max Pooling

Connected
Feedforward 25x13x13

network Convolution

50x11x 11 Activation

Max Pooling

Flatten



Loss Function

e Ground truth — 1-hot vector of dimension nx1
 N: number of categories
e 1: true category (dog, cat, etc.)

* CNN output
* Softmax post processing to make a probability
distribution
* Loss:
* Sum over mini-batch
e 2-norm error (doesn’t work)
* Cross entropy



Softmax Function

e’

— ZK - forj=1,...,Kand z = (2‘1,...,3;{) c RE
k=1 €™

o(z);

* Exponent CNN output

* Normalized by sum of exponents

e Qutput is a probability distribution

e Accentuate positives and suppress negatives



Entropy (Information .
Theory)

3t

S = —ZPE' 1DgPE'. _%;2.5-

15}

1t

* Number of bits required to encode a lexicon
 Amount of info (surprise)

 Large Pi -> small —log(Pi) -> short codeword
* Small pi -> large —log(pi) -> large codeword
 Compared to ASCII (8-bit per char)

* Entropy is largest when all pi are the same (most
uncertain)



Cross Entropy
=—) p(z) logg(x

zeX

* Use a codebook designed for one distribution for
another

* Not symmetric, hence, not a distance function

* g(x) > p(x) => x has a short codeword => with small
p(x)

* q(x) > p(x) => x has a long codeword => with large
p(x)

* Smallest when p==q
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1x28 x28

model?2.add( Convolution?2D (
input shape= (-7,
How Mmany parameters

for each filter? S S2uadl2020
Max Pooling
25x13x13

model?2.add (Convolution?2D ( ;o 2))

How many parameters

\ 50x11x11
for each filter?
model?2 .add (MaxPooling2D ((”2,7))) Max Pooling

50x5x5



CNN in Keras f)nly modified the network structure and
input format (vector -> 3-D tensor)

input

1x 28 x 28 ‘v

Convolution

25x26x26‘v

FuIIy Connected Max Pooling

Feedforward network
25x13x13

output dim= ))
model?2.add (Activation ( ))
model?2.add (Dense (output dim='0))
model2. add A tlvatlon( )) S50x11x11

Max Pooling

model?2.add (Flatten())



Backpropagation Learning rule

O. O 0, Lz =g(NET) =g QX Wy, ) =90 W,a Qo wix ™)
j j k

Wij m ___________ NETiu :ZWiij'u :ZWijg(ZijXku)
ij j j 2

yju = g(n9tju) = g(zwjkxku)
K

N u u
net’ = w,X,
Kk



Cost function
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What does machine learn?

S5 M6

http://newsneakernews.wpengine.netdna-cdn.com/wp-
content/uploads/2016/11/rihanna-puma-creeper-velvet-release-date-02.jpg



Visualizing Convolutional Networks

Deconvolutional Network
Map activations back to the input " pocted ian

Reconstruction

. - Switches AN )
pixel space, show what input pattern oxunootne T[] ( ) Max Pooling
O r i g i nal Iy Caused a g iven aCtivati On " Unpooled Maps Rectified Feature Maps

Rectified Linear AN Rectified Linear
Function ~/ Function
D Ste pS Rectified Unpooled Maps Feature Maps
I i onvolutiona AN onvolutiona
L Compute activations at a ey 1| Comvoluional
S pec I fl C I aye r' Reconstruction Layer Below Pooled Maps
O Keep one activation and set all
others to zero. Layer Above

Reconstruction oled Maps

"%IEK 3\%

Po
Unpooling \Q [3 Pooling

1 o] NN
R N

Unpooled Rectified
Maps Feature Maps “
[1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference
on Computer Vision. Springer International Publishing, 2014. 42

O Unpooling and deconvolution
O Construct input image

Max Locations
“Switches”




Visualizing Convolutional Networks
I

dLayerl

[1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference
on Computer Vision. Springer International Publishing, 2014. 43



Visualizing Convolutional Networks

Layer2
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[1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference
on Computer Vision. Springer International Publishing, 2014. 44



Visualizing Convolutional Networks

Layer3

[1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference
on Computer Vision. Springer International Publishing, 2014. 45



Visualizing Convolutional Networks

Layer4

[1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference
on Computer Vision. Springer International Publishing, 2014.

46



Visualizing Convolutional Networks
I
Layer5

[1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference
on Computer Vision. Springer International Publishing, 2014. 47



More Application: Playing Go

[N

hlext move
R RE s » Network » (19x19
1 19 % 19 matrix & 19 x 19 vector

(image)

Black: 1 Fully-connected feedforward
white: -1 network can be used

none: 0 But CNN performs much better.




More Application: Playing Go

record of

L 0. . om ., m.
Tralnlng. preVIOUS plays 7N 52£_> E- fjt _>n\\- EZS oes

Target:
llfi” — 1
else=0

Target:
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Why CNN for playing Go?

* Some patterns are much smaller than the whole

Image

Alpha Go uses 5 x 5 for first layer ‘\R‘
l

* The same patterns appear in different regions.
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FFFFFFFFFFFFFFFFFFF
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Why CNN for playing Go?

e Subsampling the pixels will not change the object

‘ VEYELol[lif:8 How to explain this???

Neural network architecture. The input to the policy network isa 19 x 19 x 48
nage stack consisting of 48 feature planes. The first hidden layer zero pads the
w&w then convolves k filters of kernel size 5 x 5 with stride

1 with the input image and applies a rectifier nonlinearity. Each of the subsequent

hidden lavers 2 to 12 zero pads the respective previous hidden laver into a 21 x 21
image, then convolves k filters of Kernel size 3 x 3 with stride 1, again followed

by a rectifier 110111111ea1‘1ty The final layer convolves 1 filter of kernel size 1 x 1
with stridg : S ax func-

pNg AIPTMNd B0 dOES NOL USE IVidx FOOIINgS ...... xtended
Data Table 3 additionally show the results of training with k=128, 256 and
384 filters.




More Application: Speech
t

CNN

The filters move in the
frequency direction.

Frequency

Time
Spectrogram



embedding dimension

More Application: Text

sentence convolutional pooled softmax
matrix feature map representation
= Rdx|sl C e Rrx|s|-m-+1 Cpool € Rlxn

PR S A Source of image:
http://citeseerx.ist.psu.edu/viewdoc/downloa
d?doi=10.1.1.703.6858&rep=repl&type=pdf



