Convolution

Convolve the filter with the image

"Slide over the image spatially, computing dot products"

Convolution

1 number:

the result of taking a dot product between the filter and a small 5x5x3 chunk of the image. $w^{T}x + b$

Convolution

Convolution - Intuition

3-3	·	2	·	3-
	0	1	0	0
	1	-4	1	
	0	1	0	
2-2		3):		8

□ Intuition of convolution

- Similarity measurement: image chunk and convolutional filter.
- □ Looking for local patterns.
- □ Patterns are not fixed and will be learned during training.

Convolutional Layer

□ Stacking multiple convolutions in one layer

Convolutional Feature Maps

□ A feature hierarchy by stacking convolutional layers

6

Max Pooling

□ Max pooling operation

- □ Slides a small non-overlapping window.
- □ Picks the maximum value inside each window.

Max Pooling

□ Max pooling operation

- □ Slides a small non-overlapping window.
- □ Picks the maximum value inside each window.

Max Pooling Layer

Advantages

- □ Reduces the redundancy of convolutions.
- □ Makes the representations smaller and more manageable.
- □ Reduces the number of parameters, controls overfitting.
- □ Invariant to small transformations, distortions and transitions.

Fully Connected Layer

A classifier on top of feature mapsMaps high-dimensional matrix to predictions (1-D vector)

fully connected layers

Convolutional Neural Network

□ First CNN trained with backpropagation □ Three different layers: convolution, subsampling, fully-connected

□ Training CNN: gradient-decent optimization (backpropagation)

 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

Training Convolution Neural Network

Gradient Descent

- □ Randomly initialize weights at each layer.
- □ Compute a forward pass and calculate the cost function.
- □ Calculate the with respect to each weight during a backward pass.
- Update weights.

Compute activations

12