Introduction

TA: Sahar Sajadieh

Email: sahar@umail.ucsb.edu

or Class Email: <u>cs181b@cs.ucsb.edu</u>

Office Hours: Wednesday 10AM-12PM------CSIL

Thursday 9AM-11AM-----CSIL

Edge Detection: Marr-Hildreth Algorithm

- 1. Convert RGB picture to Gray Scale
- □ 2. Smoothing: using Gaussian filter
- □ 3. Second order derivative: using Laplacian filter
- 4. Zero crossing

1. Convert RGB picture to Gray Scale

imgGry=Rgb2gray(img)

How to apply a filter on an image

- Use Convolution Operation
- **Convolution notations:** $R = H * F = H \otimes F$
- outputImg = conv2(H, F); %H is the filter, and F is the image

figure;

imshow(outputImg);

Convolution

- □ For every pixel (i,j):
 - □ Line up the image at (i,j) with the filter kernel
 - Flip the kernel in both directions (vertical and horizontal)
 - Multiply and sum (dot product) to get output value R(i,j)

Convolution

What is Gaussian?

- A Low Pass Filter: to get rid of high-frequency noise
- Smoothing by Averaging
- Rotationally symmetric
- Weights of nearby pixels are more than distant ones

Sigma=3

Sigma=12

Sigma=48

How does a Gaussian Kernel looks like?

How does a Gaussian Kernel looks like?

The filter looks something like this:

Formula:

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp \frac{-(x^2+y^2)}{\sigma^2}$$

In Matlab: 1<= x, y<=n (n is the dimension of the filter)</p>

What is n?

Don't forget to normalize the filter

Please Note: Even though the Gaussian equation in the previous page is correct, to do this HW in Matlab, you need to use a modified version of that equation:

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp \frac{-(i^2 + j^2)}{\sigma^2}$$

i=x-1-floor(n/2), j=y-1-floor(n/2)

- x, y are the indices of the Gaussian Kernel matrix in Matlab→ 1<= x, y<=n</p>
- -floor(n/2)<i, j<+floor(n/2) (so that the Gaussian filter is centered at zero, with the max value at i, j=0)

What is n?

What is n?

n is based on your choice, but:

🗖 What is n?

n is based on your choice, but:

- Should contain at least one sigma (in each side)
- Should be an odd number, since the Gaussian filter is symmetric and we want to have a center point to do the averaging for.

For example n= (6*sigma)+1 (With 6*sigma, we can get most of the Gaussian energy inside of the window.)

□ How to normalize the filter?

□ How to normalize the filter?

2nd order Edge detection filter:

∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacian is the sum of second partial derivatives of the function.

□ What is a gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

How do you approximate it (in a discrete space/grid with finite elements): "Discrete Gradient"

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

What is a Laplacian of an image:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

How do you approximate it (in a discrete space/grid with finite elements):

"Discrete Laplacian"

How to make a Matrix:

A= [1 2 3; 4 5 6; 7 8 9]

□ You can use either of these filters:

1	-2	1
-2	4	-2
1	-2	1

Most Commonly-used Laplacian kernel

□ What is LoG?

What is LoG? Convolution of Laplacian and Gaussian

What is LoG? Convolution of Laplacian and Gaussian

What is LoG? Convolution of Laplacian and Gaussian

Why does it work?

- Why does it work?
 - Convolution is commutative:

conv2(A, B)=conv2(B, A)

Convolution is associative:

conv2(conv2(img, A),B)=conv2(img, conv2(A,B))

Why do we need to get the zero crossing of the Laplacian of Gaussian of the image to find the edges?

- Why do we need to get the zero crossing of the Laplacian of Gaussian of the image to find the edges?
- What happens to the first order derivative of f, at the zero crossing of the second derivative of f?

- Why do we need to get the zero crossing of the Laplacian of Gaussian of the image to find the edges?
- What happens to the first order derivative of f, at the zero crossing of the second derivative of f?
- What happens to f, at the zero crossing of the second derivative of f?

How to do Zero Crossing?

How to do Zero Crossing?

img(x, y) is a zero crossing if:

- img(x, y)*img(x+1, y)<0</p>
- Or:
- img(x, y)*img(x, y+1)<0</p>

If img(x, y) is zero crossing, set the corresponding pixel (imgEdge(x,y)) in the edge image to 1, otherwise to 0.

* Finding the exact 0s are hard, due to precision and discretization.

Functions to use; Functions not to use

- Matlab Functions that are OK to be used:
 - Basic Functions such as: Conv2, imfilter, imread, imwrite, rgb2gray, size, figure, imshow, ...
- Matlab Functions that are NOT OK to be used:
 - Complex functions such as: Mexihat, edgeDetector, fspecial functions (ie. Of Gaussian, or Laplacian type), ...

Functions to use; Functions not to use

- Matlab Functions that are OK to be used:
 - Basic Functions such as: Conv2, imfilter, imread, imwrite, rgb2gray, size, figure, imshow, ...
- Matlab Functions that are NOT OK to be used:
 - Complex functions such as: Mexihat, edgeDetector, fspecial functions (ie. Of Gaussian, or Laplacian type), ...

Basically you need to construct Laplacian and Gaussian filters, and use convolution operation(conv2) to apply them to the image: As simple as that!

Questions?