Structure-from-Motion Analysis

2D back to 3D

Structure from motion

По rpanopt ua stan uaz .oculus antifetutis setedtopiricus" Itana, 1502 roza

Structure from motion

- Given: m images of n fixed 3D points

$$
\mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and $n 3$ D points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{X}_{i j}$

Multiple-view geometry questions

- Correspondence (stereo matching): Given a point in just one image, how does it constrain the position of the corresponding point in another image?

2-view
Fundamental matrix (uncalibrated camera)

- Essential matrix (calibrated camera)

N -view
Tensors (e.g., trifocal tensor)

- Camera geometry (motion): Given a set of corresponding points in two or more images, what are the camera matrices for these views?

Fundamental (Essential matrix) -> camera matrix

- Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding points in 3D?
- Triangulation

Three Essential Problems

Correspondence Relations
Correspondence Relations to Camera Matrix

* Triangulation
* The solutions to all three hinge upon
\square Feature (points, lines) correspondences in
\square Multiple views, using

$$
\begin{aligned}
& \mathbf{x}_{c c d}=\left[\begin{array}{ccc}
k_{u} & \mathrm{O} & u_{o} \\
\mathrm{O} & \boldsymbol{k}_{v} & v_{o} \\
\mathrm{O} & \mathrm{O} & 1
\end{array}\right]\left[\begin{array}{cccc}
f & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & f & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathbf{1} & \mathrm{O}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{T} \\
\mathbf{O} & 1
\end{array}\right] \mathbf{X}_{\text {world }} \\
& =\left[\begin{array}{cccc}
f k_{u} & \mathrm{O} & u_{o} & \mathrm{O} \\
\mathrm{O} & f k_{v} & v_{o} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & 1 & \mathrm{O}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{T} \\
\mathrm{O} & 1
\end{array}\right] \mathbf{X}_{\text {world }}=\mathbf{P} \mathbf{X}_{\text {world }}
\end{aligned}
$$

Simplest Problem - Triangulation

Linear Triangulation

$$
\begin{gathered}
\mathrm{x}=\mathrm{PX} \quad \mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathrm{X} \\
\mathrm{x} \times \mathrm{PX}=0, \mathrm{x}^{\prime} \times \mathrm{P}^{\prime} \mathrm{X}=0 \\
x\left(\mathrm{p}^{3 \mathrm{~T}} \mathrm{X}\right)-\left(\mathrm{p}^{1 \mathrm{~T}} \mathrm{X}\right)=0 \\
y\left(\mathrm{p}^{3 \mathrm{~T}} \mathrm{X}\right)-\left(\mathrm{p}^{2 \mathrm{~T}} \mathrm{X}\right)=0 \\
x\left(\mathrm{p}^{2 \mathrm{~T}} \mathrm{X}\right)-y\left(\mathrm{p}^{1 \mathrm{~T}} \mathrm{X}\right)=0
\end{gathered}
$$

homogeneous

$$
\|X\|=1
$$

inhomogeneous
$(X, Y, Z, 1)$

$$
A X=0
$$

$$
\mathrm{A}=\left[\begin{array}{l}
x \mathrm{p}^{3 \mathrm{~T}}-\mathrm{p}^{1 \mathrm{~T}} \\
y \mathrm{p}^{3 \mathrm{~T}}-\mathrm{p}^{2 \mathrm{~T}} \\
x^{\prime} \mathrm{p}^{\prime 3 \mathrm{~T}}-\mathrm{p}^{\prime \mathrm{T}} \\
y^{\prime} \mathrm{p}^{\prime 3 \mathrm{~T}}-\mathrm{p}^{\prime 2 \mathrm{~T}}
\end{array}\right]
$$

invariance?

$$
\left(\mathrm{AH}^{-1}\right)(\mathrm{HX})=\mathrm{e}
$$

algebraic error yes, constraint no (except for affine)

Discussion

Homogeneous

- SVD
$\square \mathrm{X}$ is the right singular vector associated with the smallest singular value

Inhomogeneous
\square Set w = 1
\square Bad behavior when object is far away

Geometric Error

$d(\mathrm{x}, \hat{\mathrm{x}})^{2}+d\left(\mathrm{x}^{\prime}, \hat{\mathrm{x}}^{\prime}\right)^{2}$ subject to $\hat{\mathrm{x}}^{\prime \mathrm{T}} \mathrm{F} \hat{\mathrm{x}}=0$
or equivalently subject to $\hat{x}=P \hat{X}$ and $\hat{x}^{\prime}=P^{\prime} \hat{X}$

* Not assuming point coordinates are precise (noisy)
* Reconstruction + optimization

Geometric error

Reconstruct matches in projective frame by minimizing the reprojection error

$$
d\left(\mathrm{x}_{1}, \mathrm{P}_{1} \mathrm{X}\right)^{2}+d\left(\mathrm{x}_{2}, \mathrm{P}_{2} \mathrm{X}\right)^{2}
$$

Non-iterative optimal solution (see Hartley\&Sturm,CVIU'97)

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

$$
\mathbf{x}=\mathbf{P X}=\left(\frac{1}{k} \mathbf{P}\right)(k \mathbf{X})
$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same
- More generally: if we transform the scene using a transformation \mathbf{Q} and apply the inverse transformation to the camera matrices, then the images do not change

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P} \mathbf{Q}^{-1}\right)(\mathbf{Q X})
$$

Projective ambiguity

Projective ambiguity

Affine ambiguity

Affine ambiguity

Similarity ambiguity

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}} \mathbf{X}\right)
$$

Similarity ambiguity

Hierarchy of 3D transformations

Projective 15dof

Affine 12dof

Similarity 7dof

Euclidean 6dof

Preserves intersection and tangency

Preserves parallellism, volume ratios

Preserves angles, ratios of length

Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction
- Need additional information to upgrade the reconstruction to refine, similarity, or Euclidean

Sidebar: Matrix form of cross product

The cross product of two vectors is a third vector, perpendicular to the others (right hand rule)

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \mathbf{b}=\left[\mathbf{a}_{\times}\right] \mathbf{b}
$$

$\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$
$\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0$

Side Bar (Useful Duality Relationship)

* Points to line
\square Two points determine a line

$$
\begin{aligned}
& {\left[x_{1}, y_{1}, w_{1}\right] \&\left[x_{2}, y_{2}, w_{2}\right]} \\
& {\left[x-\frac{x_{1}}{w_{1}}, y-\frac{y_{1}}{w_{1}}\right]\left[\begin{array}{l}
\frac{y_{1}}{w_{1}}-\frac{y_{2}}{w_{2}} \\
\frac{x_{2}}{w_{2}}-\frac{x_{1}}{w_{1}}
\end{array}\right]=0}
\end{aligned}
$$

$$
\left(\frac{y_{1}}{w_{1}}-\frac{y_{2}}{w_{2}}\right) x+\left(\frac{x_{2}}{w_{2}}-\frac{x_{1}}{w_{1}}\right) y-\frac{x_{1}}{w_{1}}\left(\frac{y_{1}}{w_{1}}-\frac{y_{2}}{w_{2}}\right)-\frac{y_{1}}{w_{1}}\left(\frac{x_{2}}{w_{2}}-\frac{x_{1}}{w_{1}}\right)=0
$$

$$
\left(w_{2} y_{1}-y_{2} w_{1}\right) x+\left(w_{1} x_{2}-w_{2} x_{1}\right) y+\left(x_{2} y_{1}-x_{1} y_{2}\right)=0
$$

$$
\Rightarrow\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \propto\left[\begin{array}{l}
x_{1} \\
y_{1} \\
w_{1}
\end{array}\right] \times\left[\begin{array}{l}
x_{2} \\
y_{2} \\
w_{2}
\end{array}\right]
$$

* Lines to point

Intersection of two lines is a point

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \propto\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right] \times\left[\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right]
$$

Side Bar (point + line)

Points on lines

$$
\begin{aligned}
& {[x, y, w] \&[a, b, c]} \\
& a(x / w)+b(y / w)+c=0 \\
& a x+b y+c w=0 \\
& (a, b, c) \cdot(x, y, w)=0
\end{aligned}
$$

Sidebar: Eigen Decomposition

Real symmetric Matrix
\square UDU $^{\text {T }}$
\square Eigen vectors are orthogonal
\square Eigen values are real

* Real anti-symmetric (Skew-symmetric) Matrix
\square UBU T
\square Eigen vectors are orthogonal
\square Eigen values are all imaginary and appear in pair
\square Skew-symmetric matrices of odd dimension are singular (a row and a column of zero)

Harder Problem

* What happens if we do not know the stereo configuration (baseline, camera orientation, etc.)?
\square If the stereo configuration can be recovered and then rectified, we can again apply the standard stereo matching algorithms described above

Recovering \mathbf{R} and \mathbf{T} (rigid camera motion) using
$\square 2$ views (fundamental matrix)
$\square 3$ views (trifocal tensors)
\square N views (factorization)
\square Epipolar geometry is again the key
> Correct \mathbf{R} and \mathbf{T} are not incidental, they match corresponding points and lines in different views

Epipolar geometry

- Epipolar Plane
- Epipoles
- Epipolar Lines
- Baseline

Epipolar constraint

- Potential matches for p have to lie on the corresponding epipolar line l '
- Potential matches for p^{\prime} have to lie on the corresponding epipolar line l

Epipolar lines example

Intuition

Given a point x , cannot determine x ' unique (General projection is not homography!)

* The best we can do is to determine a line that x ' must lie, that is
-1' $=f(x)$
* Then x ' must lie on this line determined by x
$\square x^{\prime} . l^{\prime}=0$ or $x^{\prime}{ }^{T} f(x)=0$
* Show that f is actually a matrix!
\square Calibrated camera $x^{\prime}{ }^{\mathrm{T}} \mathrm{Ex}=0$ (x in mms)
\square Uncalibrated camera $x^{\text {' }} \mathrm{Fx}=0$ (x in pixels)

Physical Meaning \#1: Plane View

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{H}_{\pi^{\mathrm{X}}} \\
& \mathrm{l}^{\prime}=\mathrm{e}^{\prime} \times \mathrm{x}^{\prime}=\left[\mathrm{e}^{\prime}\right]_{\mathrm{N}} \mathrm{H}_{\pi} \mathrm{x}=\mathrm{Fx} \\
& x^{\prime} \cdot l^{\prime}=x^{\prime T}\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{H}_{\pi} \mathrm{x}=x^{\prime T} \mathrm{Fx}=0
\end{aligned}
$$

Physical Meaning \#2: Point View

* Given a point
* Back project it into space
* Project 3D point into the second frame
* Form the line with epipole

$$
\begin{aligned}
& \mathbf{x}(\lambda)=\mathbf{P}^{+} \mathbf{x}+\lambda \mathbf{C} \\
& \Rightarrow \mathbf{x}^{\prime}(\lambda)=\mathbf{P}^{\prime}\left(\mathbf{P}^{+} \mathbf{x}+\lambda \mathbf{C}\right) \\
& \Rightarrow \mathbf{l}^{\prime}=\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{P}^{\prime}\left(\mathbf{P}^{+} \mathbf{x}+\lambda \mathbf{C}\right)=\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}=\mathbf{F} \mathbf{x} \\
& \Rightarrow \mathbf{x}^{\prime} \cdot \mathbf{l}^{\prime}=\mathbf{x}^{\prime}\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}=0 \mathbf{x}^{\prime} \mathbf{l}^{\prime}=\mathbf{x}^{T}\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}=0 \\
& \Rightarrow \mathbf{F}=\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{P}^{\prime} \mathbf{P}^{+} \\
& \text {where } \\
& \mathbf{P} \mathbf{P}^{+}=\mathbf{I} \\
& \mathbf{P}^{\prime} \mathbf{C}=\mathbf{e}^{\prime} \\
& {\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{e}^{\prime}=0}
\end{aligned}
$$

Physical Meaning \#3: Line View

Take an arbitrary line \mathbf{k} not passing through \mathbf{e} (the epipole)

$$
\mathbf{l}_{2}=\mathbf{F}[\mathbf{k}]_{x} \mathbf{l}_{1}
$$

Case 1: Calibrated camera

$O p \cdot\left(O O^{\prime} \times O p\right)=$?
$O p \cdot\left(O O^{\prime} \times O p\right)=0$
$E=\left[t_{x}\right] R=\left(\begin{array}{ccc}0 & -t_{z} & t_{y} \\ t_{z} & 0 & -t_{x} \\ -t_{y} & t_{x} & 0\end{array}\right) R$
[$\boldsymbol{R} t$] - rigid trans. from O to O^{\prime} $p \cdot\left(t \times R p^{\prime}\right)=0$

This can be written in matrix form as:
$\boldsymbol{p}^{T} \boldsymbol{E} \boldsymbol{p}^{\prime}=\mathbf{0}$

Don't believe it?

$$
\begin{aligned}
& P_{1}=R_{c \mid \leftarrow c 2} P_{2}+T_{c \mid \leftarrow c 2} \\
& Z_{1} p_{1}=Z_{2}\left(R_{c 1 \leftarrow c 2} p_{2}+T_{c \mid \leftarrow c 2}\right) \\
& p_{1}=\frac{Z_{2}}{Z_{1}}\left(R_{c 1 \leftarrow c 2} p_{2}+T_{c \mid \leftarrow c 2}\right) \\
& T_{c \mid \leftarrow c 2} \times p_{1}=\frac{Z_{2}}{Z_{1}}\left(T_{c \mid \leftarrow c 2} \times R_{c \mid \leftarrow c 2} p_{2}\right) \\
& p_{1} \cdot\left(T_{c \mid \leftarrow c 2} \times p_{1}\right)=\frac{Z_{2}}{Z_{1}} p_{1} \cdot T_{c \mid \leftarrow c} \times R_{c \mid \leftarrow 2} \underline{p_{2}}=0 \\
& p_{1} E p_{2}=0 \\
& E=\left[T_{c \mid \leftarrow c 2}\right] R_{c 1 \leftarrow c 2}
\end{aligned}
$$

Calibrated Camera: Essential Matrix

$$
O^{\prime} p \cdot\left(O^{\prime} O \times O p\right)=0
$$

* Coplanar (3D, regular coordinates)
- Colinear (2D, homogeneous coordinates)

3D Analysis

What is O in unprimed frame?
$\square[0,0,0]^{\mathrm{T}}$
What is p in unprimed frame?
$\square[\mathrm{x}, \mathrm{y}, 1]^{\mathrm{T}}$

$$
\begin{aligned}
& O^{\prime} p^{\prime} \cdot\left(O^{\prime} O \times O p\right)=0 \\
& p^{\prime T}(T \times(R p+T))=0 \\
& p^{\prime T}(T \times R p)=0 \\
& p^{\prime T}(T \times R) p=0 \\
& \text { essential matrix }
\end{aligned}
$$

*What is O in primed frame (or what is the vector $\left.\mathrm{O}^{\prime} \mathrm{O}\right)$?
$\square \mathbf{R O}+\mathbf{T}=\mathbf{T}$
*What is p in primed frame?
$\square \mathbf{R p + T}$
*What is p^{\prime} in primed frame?
$\square\left[x^{\prime}, y^{\prime}, 1\right]^{T}$

SideBar

Mathematically, what are R and T? say, in the following configuration?

Figure 4: A simple 2-view SfM configuration.

Interpretation one -

Express O'quantities in O system

 $\mathbf{P}^{\prime}=\mathbf{R}\left(\mathbf{P}^{\prime}-\mathbf{O O}{ }^{\prime}\right)=\left[\begin{array}{l}\boldsymbol{r}_{1} \\ \boldsymbol{r}_{2} \\ \boldsymbol{r}_{3}\end{array}\right]\left(\mathbf{P}^{\prime}-\mathbf{O O}{ }^{\prime}\right)=\mathbf{R} \mathbf{P}^{\prime}+\mathbf{T}$

Interpretation two -

 Express O quantities in O'system$$
\mathbf{P}^{\prime}=\mathbf{R} \mathbf{P}+\mathbf{T}=\mathrm{p} 1 \mathbf{r} 1+\mathrm{p} 2 \mathbf{r} 2+\mathrm{p} 3 \mathbf{r} 3+\mathbf{T}
$$

Graphically in 3D

$$
\begin{aligned}
& O^{\prime} p^{\prime} \cdot\left(O^{\prime} O \times O p\right)=0 \\
& O^{\prime} p^{\prime} \cdot\left(O^{\prime} O \times O^{\prime} p\right)=0
\end{aligned}
$$

All quantities are now expressed in the same coordinate system (O^{\prime})

2D Analysis

* $\mathrm{x} . \mathrm{y}, \mathrm{z}]$ can be treated
\square As a 3D regular coordinate (what we did in the previous slide)
\square As a 2D homogeneous coordinate (or x / z and y / z are projections onto the image plane)
* Now O'O is T, if it is treated as a 2D homogeneous coordinate, then it is the epipole of the unprimed camera in the prime frame
* Now the image of Op in the primed frame is Rp+T
* Hence, TxRp is the line equation that passes through the two points (that is exactly the epipolar line!, next slide)
* Hnece, p^{\prime} is on $\mathbf{T x R p}$ and $\mathbf{p T x R p}=\mathbf{0}$

Graphically in 2D

$O^{\prime} p^{\prime} \cdot\left(O^{\prime} O \times O p\right)=0$
$\left.O^{\prime} p^{\prime} \cdot O^{\prime} O \times O^{\prime} p\right)=0$
Fp: The line in the host formed by epipole of the guest in the host the point of the guest in the host

The Essential Matrix

\boldsymbol{E} describes the transformation between camera coordinate frames

* \boldsymbol{E} has five degrees of freedom
\square Defined up to a scale factor, since

$$
p^{T} \boldsymbol{E} p^{\prime}=0
$$

Why only five?
\square A rigid transformation has six degrees of freedom

- 3 rotation parameters, 2 translation direction parameters
\square Why only translation direction?

"Up to a scale factor"

* This is always the case with camera calibration and stereo
\square Shrink everything 10x and it all looks the same!

Typically there is something we know that we can use to specify the scale factor
\square E.g., the baseline, the size of an object, the depth of a point/plane

Camera calibration from \mathbf{E}

With five unknowns, theoretically we can recover the essential matrix \boldsymbol{E} by writing $\boldsymbol{p}^{T} \boldsymbol{E} \boldsymbol{p}^{\prime}=\mathbf{0}$ for five corresponding pairs of points
$\square 5$ equations and 5 unknowns
\square We don't need to know anything about the points (e.g., their depth), only that they project to p_{i} and $p_{i}{ }^{\prime}$
\square There are, however, limitations...
*This is used for camera calibration (extrinsic parameters)

Progression

$p^{T} E p^{\prime}=0$
\square Solve for \mathbf{E}, assuming 8 DOFs

* Better conditioning \mathbf{E}
\square There are only 5 DOFs (not 8!)
* Decompose E into R and T
* Form camera matrix
$\square[\mathrm{I} \mid 0]$ and $[\mathrm{R} \mid \mathrm{T}]$
* We will introduce a (conceptual) linear method (don't use it, not robust!)
* Use best nonlinear method known:
http://www.vis.uky.edu/~stewe/FIVEPOINT/

Linear algorithm

$$
\begin{gathered}
p^{T} F p^{\prime}=0 \\
(u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \quad \mathbf{A F}=\mathbf{0} \\
\\
\text { Pardon the notation: } \\
\text { This is the same slide as Fundamental Matrix } \\
\text { Just treat F as E! }
\end{gathered}
$$

Direct Solutions of \mathbf{E}

* Step one:
$\square \mathbf{A}^{\mathrm{T}} \mathbf{A}$ is symmetric and semi-definite
\square It has positive (or zero) eigenvalues
The solution corresponds to the eigenvector of the smallest eigenvalue
- Step two:
$\square \mathbf{E}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, with ($\mathrm{r}, \mathrm{s}, \mathrm{t}$) as the singular values in non-increasing order
$\square \mathbf{E}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$, with $(\mathrm{r}, \mathrm{r}, 0)$ as the singular values of $\Sigma^{\boldsymbol{`}}$
$>$ Zero out the smallest singular value
> Make the first two eigenvalues the same
* You can also infer essential matrix from fundamental matrix (more later)
* We will present the detailed procedure later with fundamental matrix

Decomposition of \mathbf{E}

* There are four solutions
* If \mathbf{t}, \mathbf{R} is one decomposition $(\mathbf{E}=\mathbf{t} \times \mathbf{R})$
- \mathbf{t} will be ok too (\mathbf{E} is defined up to a scale factor)
* UR will be ok too (U is an 180 rotation about \mathbf{t})
* So there are four solutions
$\square \mathbf{t}, \mathbf{R}$
$\square-\mathbf{t}, \mathbf{R}$
$\square \mathbf{t}, \mathrm{UR}$
$\square-\mathbf{t}$, UR

Why? Algebraic Explanation

* Skew-symmetric matrix has a block diagonal eigenvalue decomposition, for 3×3 matrices, we have

$$
\begin{aligned}
& \mathbf{S}=\mathbf{U}(\sigma \mathbf{Z}) \mathbf{U}^{T}=\sigma \mathbf{U d i a g}(1,1,0) \mathbf{W}^{T} \mathbf{U}^{T}=-\sigma \mathbf{U d i a g}(1,1,0) \mathbf{W} \mathbf{U}^{T} \\
& \mathbf{Z}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{W}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{Z}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=-\operatorname{diag}(1,1,0) \mathbf{W}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\operatorname{diag}(1,1,0) \mathbf{W}^{T}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Two ways to match \mathbf{Z} with $\operatorname{diag}(1,1,0)$: \mathbf{W} or \mathbf{W}^{T}

* E is determined up to a sign and a scale, so both are ok

Why? Algebraic Explanation

Essential matrix has two identical singular values and a zero singular value (if and only if condition) If (->) essential matrix has two identical singular values and a zero singular value

$$
\begin{aligned}
& \mathbf{E}=\mathbf{T R}=\mathbf{U}(\sigma \mathbf{Z}) \mathbf{U}^{T} \mathbf{R} \\
& =\mathbf{U Z} \mathbf{U}^{T} \mathbf{R} \\
& =\mathbf{U} \operatorname{diag}(1,1,0)\left(\mathbf{W U}^{T} \mathbf{R}\right)=\mathbf{U} \operatorname{diag}(1,1,0)\left(\mathbf{W}^{T} \mathbf{U}^{T} \mathbf{R}\right) \\
& =\mathbf{U} \boldsymbol{\Sigma} V^{T} \\
& \mathbf{W}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{Z}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{Z}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=-\operatorname{diag}(1,1,0) \mathbf{W}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\operatorname{diag}(1,1,0) \mathbf{W}^{T}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Why? Algebraic Explanation

Essential matrix has two identical singular values and a zero singular value (if and only if condition)
Only if (<-) a matrix has two identical singular values and a zero singular value is an essential matrix

$$
\begin{array}{ll}
\mathbf{E}=\mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{T} \\
= & \mathbf{U Z W} \\
\\
=\mathbf{U Z U}^{T} \mathbf{V}^{T}=\mathbf{U Z W} \\
\\
=\left(\mathbf{U Z U}^{T}\right)\left(\mathbf{U W}^{T}=\mathbf{U Z U}^{T} \mathbf{U W V}^{T}\right)=\left(\mathbf{U Z U}^{T}\right)\left(\mathbf{U W V}^{T}\right) & \\
=\mathbf{S R} &
\end{array}
$$

Why? Algebraic Explanation

Given SVD of E as $\mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{\mathrm{T}}$, there are two decompositions
\square See previous page for proof
Given SVD of E as $\mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{\mathrm{T}}$, there are four camera matrices
$\mathbf{P}=[\mathbf{I} \mid 0]$
An additional rotation about \mathbf{t}
$\left.\left.\mathbf{P}^{\prime}=\mathbf{U W V}^{\mathrm{T}} \mathbf{u}_{3}\right], \mathbf{U W V}^{\mathrm{T}}-\mathbf{u}_{3}\right],\left[W^{\mathrm{T}} \mathbf{V}^{\mathrm{T}} \mathbf{u}_{3}\right],\left[\mathbf{W}^{\mathrm{T}} \mathbf{V}^{\mathrm{T}}, \mathbf{u}_{3}\right]$

$$
\begin{aligned}
& {[\mathbf{t}]_{x}=\mathbf{U Z U}^{T}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
- & \mathbf{u}_{1}{ }^{T} & - \\
- & \mathbf{u}_{2}{ }^{T} & - \\
- & \mathbf{u}_{3}{ }^{T} & -
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & \mathbf{u}_{2}{ }^{T} & - \\
- & -\mathbf{u}_{1}{ }^{T} & - \\
- & \mathbf{0} & -
\end{array}\right] \\
& {[\mathbf{t}]_{x} \mathbf{t}=0 \Rightarrow \mathbf{t}=\mathbf{u}_{3}}
\end{aligned}
$$

Why? Physical Interpretation

$R_{\mathbf{n}}(\theta)=\mathbf{n n}^{T}+\left(\mathbf{I}-\mathbf{n n}^{T}\right) \cos \theta-\left[\mathbf{n}_{\mathbf{n}}\right] \sin \theta$

* A useful formula for rotation, a vector after rotation is made of three components
\square Component in the direction of n (no change)
\square Component perpendicular to the direction of n
> $\operatorname{Cos}(\theta)$ in the projected direction
$>\operatorname{Sin}(\theta)$ in the projected $+90^{\wedge}$ o direction

Physical Interpretation

Additional rotation of 180° about \mathbf{t} (translational) axis

$$
\mathbf{U}=\mathbf{R}_{\mathbf{t}}(\pi)=\mathbf{t t}^{T}+\left(\mathbf{I}-\mathbf{t t}^{T}\right) \cos \pi+\left[\mathbf{t}_{x}\right] \sin \pi=2 \mathbf{t t}^{T}-\mathbf{I}
$$

$\mathbf{t} \times\left(2 \mathbf{t t}^{T}-\mathbf{I}\right)=-\mathbf{t}$

Four possible reconstructions from \mathbf{E}

(only one solution where points is in front of both cameras)

Confused? You should be!

* Use Your favorite corner schemes (SIFT, SURF, Harris) to locate and match features (SPARSELY) in two views
* Use K (intrinsic.txt.backup) to convert pixels to mm
- In a RANSAC loop
\square Call calibrated_fivepoint with correspondences (at least five) to find E (warning: may return multiple solutions!) and reshape E from $9 x 1$ to $3 x 3$
\square Split E into T and R (four ways!)
\square Test which one gives the most points in front of the camera and give smallest reconstruction error
\square Keep that one

Four-way Split of E

* $\mathrm{W}=[0-10 ; 100 ; 001]$;
- [U, S, V] = svd(E);
© $\mathrm{C}=\left[\mathrm{U}^{*} \mathrm{~W}^{*} \mathrm{~V}^{\prime} \mathrm{U}(:, 3)\right]$;
* $\mathrm{C} 2=\left[\mathrm{U} * \mathrm{~W}^{*} \mathrm{~V}^{\prime}-\mathrm{U}(:, 3)\right]$;
* $\mathrm{C} 3=\left[\mathrm{U}^{*} \mathrm{~W}^{*}{ }^{\prime} \mathrm{V}^{\prime} \mathrm{U}(:, 3)\right]$;
* $\mathrm{C} 4=\left[\mathrm{U}^{*} \mathrm{~W}^{*} * \mathrm{~V}^{\prime}-\mathrm{U}(:, 3)\right]$;

Case 2: Uncalibrated camera

Intrinsic parameters not known
Points in the normalized image plane

$$
\begin{aligned}
& \begin{array}{l}
p=K_{1} \hat{p}^{\prime} \\
p^{\prime}=K_{2} \hat{p}^{\prime}
\end{array} \quad K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\beta}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \begin{array}{l}
p=K_{1} \hat{p}^{\prime} \\
p^{\prime}=K_{2} \hat{p}^{\prime}
\end{array} \quad K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\beta}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \hat{p}^{T} E \hat{p}^{\prime}=0 \\
& \left(K_{1}^{-1} p\right)^{T} E\left(K_{2}^{-1} p^{\prime}\right)=0 \\
& \left(p^{T} K_{1}^{-T}\right) E\left(K_{2}^{-1} p^{\prime}\right)=0 \\
& p^{T} F p^{\prime}=0 \\
& F=K_{1}^{-T} E K_{2}^{-1} \quad \text { Fundamental Matrix }
\end{aligned}
$$

The Fundamental Matrix

\boldsymbol{F} has seven independent parameters
$\square x^{{ }^{\prime} \mathrm{T}} \mathrm{Fx}=0$ is a homogeneous equation, -1 DOF
$\square e^{\prime}{ }^{\mathrm{T}} \mathrm{Fx}=\left(\mathrm{e}^{\mathrm{T}} \mathrm{F}\right) \mathrm{x}=0$ for all x (e^{\prime} is on all epipolar lines), or $\mathrm{e}^{\mathrm{T}}{ }^{\mathrm{T}} \mathrm{F}=0$, -1 DOF

* A simple, linear technique to recover \boldsymbol{F} from corresponding point locations is the "eight point algorithm"
*rom \boldsymbol{F}, we can recover the epipolar geometry of the cameras

Not saying how...

* This is called weak calibration

The eight-point algorithm

$$
\begin{aligned}
& p^{T} F p^{\prime}=0 \\
& (u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \quad \square\left(u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right)\left(\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right)=0
\end{aligned}
$$

$\mathbf{A F}=\mathbf{0}$

Detailed Algorithm

* First Important Observation:
$\square \mathbf{A}$ is rank deficient (its null space contains more than zero)
\square In fact, A has rank of 8, hence there is a unique solution (up to a scale factor)
* Second Important Observation:
\square The fundamental matrix is rank deficient (it is 3×3 of rank 2)
$\square e^{\prime}{ }^{T} F x=\left(e^{\prime}{ }^{T} F\right) x=0$ for all x (e' is on all epipolar lines), or $e^{\prime}{ }^{T} F=0$,

Solutions

- Step one:
$\square \mathbf{A}^{\mathrm{T}} \mathbf{A}$ is symmetric and semi-definite
\square It has positive (or zero) eigen values
\square The solution corresponds to the eigen vector of the smallest eigen value
\square Hint: use Lagrange multiplier, similar procedure as shown in the camera calibration slides
* Step two:
$\square \mathbf{F}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, with $(\mathrm{r}, \mathrm{s}, \mathrm{t})$ as the singular values in non-increasing order
$\square \mathbf{F}^{\prime}=\mathbf{U} \Sigma^{`} \mathbf{V}^{\mathrm{T}}$, with $(\mathrm{r}, \mathrm{s}, 0)$ as the singular values of $\boldsymbol{\Sigma}$ ‘
$>$ Zero out the smallest singular value

Don't Believe It?

$$
\begin{gathered}
e=\|\mathbf{A F}\|^{2}+\lambda\left(1-\|\mathbf{F}\|^{2}\right) \\
\frac{\partial e}{\partial \mathbf{F}}=\mathbf{A}^{T} \mathbf{A F}-\lambda \mathbf{F}=0
\end{gathered}
$$

$$
\Rightarrow \mathbf{A}^{T} \mathbf{A F}=\lambda \mathbf{F} \quad \mathbf{F} \text { is the eigen vector of } \mathrm{A}^{T} \mathrm{~A}
$$

$$
e=\|\mathbf{A F}\|^{2}+\lambda\left(1-\|\mathbf{F}\|^{2}\right)
$$

$$
=\mathbf{F}^{T} \mathbf{A}^{T} \mathbf{A F}+\lambda-\lambda \mathbf{F}^{T} \mathbf{F}
$$

$$
=\lambda \mathbf{F}^{T} \mathbf{F}+\lambda-\lambda \mathbf{F}^{T} \mathbf{F}=\lambda \quad \begin{aligned}
& \text { Error is } \lambda \\
& \boldsymbol{F} \text { is the }
\end{aligned}
$$

$$
\mathbf{F} \text { is the eigen vector of } \mathrm{A}^{\mathrm{T}} \mathrm{~A}
$$

With the smallest eigen value

The eight-point algorithm

$$
p^{T} F p^{\prime}=0
$$

$$
(u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0
$$

$$
\left(\begin{array}{llllllll}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}
\end{array}\right)\left(\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32}
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Least squares approach

If $n>8$

Minimize:

$$
\sum_{i=1}^{n}\left(\boldsymbol{p}_{i}^{T} \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)^{2}
$$

under the constraint $|F|^{2}=1$

Nonlinear least-squares approach

Minimize

$$
\begin{gathered}
\text { Point in image 1 } \\
\sum_{i=1}^{n}\left[\mathrm{~d}^{2}\left(\boldsymbol{p}_{i}, \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)+\mathrm{d}^{2}\left(\boldsymbol{p}_{i}^{\prime}, \mathcal{F}^{T} \boldsymbol{p}_{i}\right)\right] \\
\text { Epipolar line in image } 1 \text { caused by } p^{\prime}
\end{gathered}
$$

with respect to the coefficients of \mathcal{F}

Nonlinear - initialize it from the results of the eight-point algorithm

From Fundamental Matrix to

Camera Matrix

Given projection matrices of two views to find fundamental matrix is unique
Given fundamental matrix to find projection matrices of two views are not unique
\square Theorem, F is the fundamental matrix of multiple two-view projection matrices if and only if the multiple interpretations are related by a projective transform
*The reconstruction is up to a projective transform
*That is, not many property can be measured except incidence and collinearity

* Again, the importance of calibration cannot be overstated

Camera Matrix -> Fundamental Matrix

F invariant to transformations of projective 3 -space
$\mathrm{x}=\mathrm{PX}=(\mathrm{PH})\left(\mathrm{H}^{-1} \mathrm{X}\right)=\hat{\mathrm{P}} \hat{X}$
$\mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathrm{X}=\left(\mathrm{P}^{\prime} \mathrm{H}\right)\left(\mathrm{H}^{-1} \mathrm{X}\right)=\hat{\mathrm{P}}^{\prime} \hat{\mathrm{X}}$
$\left(\mathrm{P}, \mathrm{P}^{\prime}\right) \mapsto \mathrm{F} \quad$ unique

* Camera ($\mathrm{P}, \mathrm{P}^{\prime}$) on world (X)
* Camera (PH , and $\left.\mathrm{P}^{\prime} \mathrm{H}\right)$ on world $\left(\mathrm{H}^{-1} \mathrm{X}\right)$
* Share the same (x, x ') and F

Camera Matrix -> Fundamental

Matrix

*What is the fundamental matrix given camera matrices?

$$
\begin{aligned}
& \mathbf{F}=\left[\mathbf{e}^{\prime}\right]_{x} \mathbf{P}^{\prime} \mathbf{P}^{+}=[\mathbf{m}]_{x} \mathbf{M} \\
& \text { if } \\
& \mathbf{P}=[\mathbf{I} \mid \mathbf{0}] \Rightarrow \mathbf{P}^{+}=\left[\begin{array}{l}
\mathbf{I} \\
\mathbf{0}
\end{array}\right] \Rightarrow \mathbf{P} \mathbf{P}^{+}=\mathbf{I} \\
& \mathbf{P}^{\prime}=[\mathbf{M} \mid \mathbf{m}] \\
& \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}=[\mathbf{M} \mid \mathbf{m}]\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]=\mathbf{m} \\
& \mathbf{P}^{\prime} \mathbf{P}^{+}=[\mathbf{M} \mid \mathbf{m}]\left[\begin{array}{l}
\mathbf{I} \\
\mathbf{0}
\end{array}\right]=\mathbf{M}
\end{aligned}
$$

Fundamental Matrix -> Camera Matrix

$$
\mathrm{F} \mapsto\left(\mathrm{P}, \mathrm{P}^{\prime}\right) \quad \text { not unique }
$$

Possible choices:

$$
\begin{aligned}
& \mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\mathrm{SF} \mid \mathrm{e}^{\prime}\right] \\
& \text { or } \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{x} \mathrm{~F} \mid \mathrm{e}^{\prime}\right]
\end{aligned}
$$

* S : any skew symmetrical matrix that make P a valid camera matrix
* Most proof omitted, See Hartley and Zisserman pp. 253256

Canonical Cameras Given F

F matrix corresponds to $\mathrm{P}, \mathrm{P}^{\prime}$ iff $\mathrm{P}^{\text {'T }}{ }^{\mathrm{T}} \mathrm{FP}$ is skew-symmetric

$$
\left(X^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{FPX}=0, \forall \mathrm{X}\right)
$$

F matrix, S skew-symmetric matrix

$$
\begin{aligned}
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}= & {\left.\left[\mathrm{SF} \mid \mathrm{e}^{\prime}\right] \quad \text { (fund.matrix }=\mathrm{F}\right) } \\
& \left(\left[\mathrm{SF} \mid \mathrm{e}^{\prime}\right]^{\mathrm{T}} \mathrm{~F}[\mathrm{I} \mid 0]=\left[\begin{array}{cc}
\mathrm{F}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{~F} & 0 \\
\mathrm{e}^{\mathrm{T}} \mathrm{~F} & 0
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{F}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{~F} & 0 \\
0 & 0
\end{array}\right]\right)
\end{aligned}
$$

Possible choice:

$$
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{F} \mid \mathrm{e}^{\prime}\right]
$$

Canonical representation:

$$
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{F}+\mathrm{e}^{\prime} \mathrm{v}^{\mathrm{T}} \mid \lambda \mathrm{e}^{\prime}\right]
$$

Least squares 8-point algorithm

(a)

Hartley's normalized 8-point alg.

(b)

	Linear Least Squares	(Hartley, 1995)	(Luong et al., 1993)
Av. Dist.	2.33 pixels	0.92 pixels	0.86 pixels

Figure 10-4
Weak-calibration experiment using 37 point correspondences between two images of a toy house. The figure shows the epipolar lines found by (a) the least-squares version of the eight-point algorithm, and (b) the normalized variant of this method proposed by Hartley (1995). Note, for example, the much larger error in (a) for the feature point close to the bottom of the mug. Quantitative comparisons are given in the table, where the average distances between the data points and corresponding epipolar lines are shown for both techniques as well as the nonlinear algorithm of Luong et al. (1993). Data courtesy of Boubakeur Boufama and Roger Mohr:

Red/Green stereo display

From Mars Pathfinder

Three Camera Stereo

A powerful way of eliminate spurious matches
\square Hypothesize matches between A \& B
\square Matches between $A \& C$ on green epipolar line
\square Matches between $B \& C$ on red epipolar line
\square There better be something at the intersection (no search needed!)

Mathematically

Given two corresponding points p 1 and p 2 in views 1 and 2 , the point p 3 in the third view of the point P of intersection of the optical ray of p 1 and p 2 is

$$
\mathbf{p}_{3}=\mathbf{F}_{13} \mathbf{p}_{1} \times \mathbf{F}_{23} \mathbf{p}_{2}
$$

Why? ($\mathbf{F}_{\text {guest,host }}$)
$\square \mathbf{F}_{13} \mathbf{p}_{1}$ is the epipole line of p from $1^{\text {st }}$ frame in $3^{\text {rd }}$ frame
$\square \mathbf{F}_{23} \mathbf{p}_{2}$ is the epipole line of p from $2^{\text {nd }}$ frame in $3^{\text {rd }}$ frame

Special Cases - Many

If p corresponds to epipole, then there is no epipolar line
If the optical centers are colinear, epipolar lines will coincide and intersect everywhere
\square If you mount the camera on a translational stage without rotation, the three optical centers will be aligned (colinear). More views do not help

* If the optical centers are not colinear and P is in the trifocal plane (the plane formed by $\mathrm{O} 1, \mathrm{O} 2$ and O 3), the same as above
- More problems
\square Given point correspondences in three views, the above equation is no longer linear in terms of the two fundamental matrices

Multiple camera stereo

* Using multiple camera in stereo has advantages and disadvantages
* Some disadvantages
\square Computationally more expensive
\square More correspondence matching issues
\square More hardware (\$)
* Some advantages
\square Extra view(s) reduces ambiguity in matching
\square Wider range of view, fewer "holes"
\square Better noise properties
\square Increased depth precision

Trifocal Geometry

8.1 The geometry of three views from the viewpoint of two 417

Figure 8.5: The three points m_{1}, m_{2} and m_{3} belong to the three Trifocal lines $\left(c_{12}, e_{13}\right),\left(e_{23}, e_{21}\right),\left(c_{31}, c_{32}\right)$: They satisfy the equations (8.1) but are not the images of a single 3 D point.

Mathematically

* Mathematically, trifocal geometry is formulated in terms of trifocal tensor expression
* Two popular formulations (among many) involve
\square All lines:
$>$ From two views, back project the lines into planes
$>$ Two planes intersect in space into a line
$>$ Project that line into the third view, and it should be the same line as in the third view
\square A point in one and lines in the other two:
> From two views with lines, back project the lines into planes
> Two planes intersect in space into a line
$>$ Project that line into the third view, and the point should lie in that projected line

Geometrically

* A planar homography can be established by a line in image 2 (or 1,3) for features in images 1 and 3 (or 2 and 3, 1 and 2)

Point transfer

Sidebar: 2D line \& 3D plane

Given

\square A line $\mathbf{l}=[\mathrm{a}, \mathrm{b}, \mathrm{c}]^{\mathrm{T}}$ in image
\square A projection matrix \mathbf{P}, with $\mathbf{U}^{\mathrm{T}}, \mathbf{V}^{\mathrm{T}}, \mathbf{W}^{\mathrm{T}}$ as its three rows, or $\mathbf{P}^{\mathrm{T}}=[\mathbf{U}, \mathbf{V}, \mathbf{W}]$

* Then the space plane whose image is \mathbf{l} under \mathbf{P} is $\mathrm{a} \mathbf{U}+\mathrm{b} \mathbf{V}+\mathrm{c} \mathbf{W}$ or $\mathbf{P}^{\mathrm{T}} \mathbf{l}$
* Any point \mathbf{M} that is on the plane satisfy the plane equation, and hence, the projection satisfies the line equation

$$
\begin{aligned}
& \left(a \mathbf{U}^{T}+b \mathbf{V}^{T}+c \mathbf{W}^{T}\right) \mathbf{M}=0 \\
& {[a, b, c] \cdot\left[\mathbf{U}^{T} \mathbf{M}, \mathbf{V}^{T} \mathbf{M}, \mathbf{W}^{T} \mathbf{M}\right]=0} \\
& {[a, b, c] \cdot\left[\begin{array}{c}
\mathbf{U}^{T} \\
\mathbf{V}^{T} \\
\mathbf{W}^{T}
\end{array}\right] \mathbf{M}=0} \\
& {[a, b, c] \cdot \mathbf{P} \mathbf{M}=0}
\end{aligned}
$$

Sidebar: 3D Line Equation

* Plane equations
$\square \mathbf{N}_{\mathbf{1}} \cdot \mathbf{p}=\mathrm{d}_{1}$
$\square \mathbf{N}_{\mathbf{2}} \cdot \mathbf{p}=\mathrm{d}_{\mathbf{2}}$
* Line equation
$\square \mathrm{l}=\mathrm{c}_{\mathbf{1}} \mathbf{N}_{\mathbf{1}}+\mathrm{c}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}}+\mathrm{t} \mathbf{N}_{\mathbf{1}} * \mathbf{N}_{\mathbf{2}}$
- Solving for c_{1} and c_{2}
$\square \mathbf{N}_{\mathbf{1}} \cdot \mathbf{l}=\mathrm{d}_{\mathbf{1}}=\mathrm{c}_{\mathbf{1}} \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{1}}+\mathrm{c}_{\mathbf{2}} \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}$
$\square \mathbf{N}_{1} \cdot \mathbf{l}=\mathrm{d}_{\mathbf{2}}=\mathrm{c}_{\mathbf{1}} \mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}+\mathrm{c}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \cdot \mathbf{N}_{\mathbf{2}}$
$\square c_{1}=\left(d_{1} N_{2} \cdot N_{2}-d_{2} \mathbf{N}_{1} \cdot \mathbf{N}_{2}\right) /$ determinant
$\square \mathrm{c} 2=\left(\mathrm{d}_{2} \mathrm{~N}_{1} \cdot \mathrm{~N}_{1}-\mathrm{d}_{1} \mathrm{~N}_{1} \cdot \mathrm{~N}_{2}\right) /$ determinant
\square determinant $=\left(\mathbf{N}_{1} \cdot \mathbf{N}_{1}\right)\left(\mathbf{N}_{2} \cdot \mathbf{N}_{2}\right)-\left(\mathbf{N}_{1} \cdot \mathbf{N}_{2}\right)^{2}$

Detail on Trifocal Tensor

For three lines

\square Warning: We are not using tensor notation here. Instead, we use matrix-vector notation that is more readily accessible to most people

$$
\begin{gathered}
\mathbf{P}=[\mathbf{I} \mid \mathbf{0}]
\end{gathered} \quad \mathbf{P}^{\prime}=\left[\begin{array}{ll}
\mathbf{A} & \mid \mathbf{a}_{4}
\end{array}\right] \quad\left[\begin{array}{l}
\\
\pi=\mathrm{P}^{\top} \mathbf{l}=\binom{1}{0} \quad \pi^{\prime}=\mathrm{P}^{\prime} \mathrm{T}^{\prime} \mathrm{l}^{\prime}=\binom{\mathrm{A}^{\top} \mathrm{l}^{\prime}}{\mathbf{a}_{4}^{\top} \mathbf{l}^{\prime}} \quad \pi^{\prime \prime}=\mathrm{P}^{\prime \prime \mathrm{T}} \mathrm{l}^{\prime \prime}=\binom{\mathrm{B}^{\top} \mathrm{l}^{\prime \prime}}{\mathbf{b}_{4}^{\mathrm{l}^{\prime \prime}} \mathrm{l}^{\prime \prime}}
\end{array}\right.
$$

Detail on Trifocal Tensor (cont.)

M is 3×3, but has only one independent column

$$
\mathrm{I}^{\top}=\mathrm{I}^{\top}\left[\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right] \mathrm{I}^{\prime \prime}
$$

$$
\begin{aligned}
& M=\left[\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}\right]=\left[\begin{array}{lll}
1 & A^{\top} Y^{\top} & B^{\top} l^{\prime \prime} \\
0 & \mathbf{a}_{4}^{\top} I^{\prime} & \mathbf{b}_{4}^{\top} \prime^{\prime \prime}
\end{array}\right] \\
& \mathbf{m}_{1}=\alpha \mathbf{m}_{2}+\beta \mathbf{m}_{3} \quad \alpha=k\left(\mathbf{b}_{4}^{\top} \mathbf{I}^{\prime \prime}\right) \text { and } \beta=-k\left(\mathbf{a}_{4}^{\top} \mathbf{I}^{\prime}\right) \\
& \mathbf{l}=\left(\mathbf{b}_{4}^{\top} \mathbf{l}^{\prime \prime}\right) \mathrm{A}^{\top} \mathbf{l}^{\prime}-\left(\mathbf{a}_{4}^{\top} \mathbf{l}^{\prime}\right) \mathrm{B}^{\top} \mathbf{l}^{\prime \prime}=\left(\mathbf{l}^{\prime \prime \top} \mathbf{b}_{4}\right) \mathrm{A}^{\top} \mathbf{l}^{\prime}-\left(\mathbf{l}^{\prime \top} \mathbf{a}_{4}\right) \mathrm{B}^{\top} \mathbf{l}^{\prime \prime} \\
& l_{i}=l^{\prime \prime \top}\left(\mathbf{b}_{4} \mathrm{a}_{i}^{\top}\right) \mathbf{l}^{\prime}-\mathbf{l}^{\prime \top}\left(\mathrm{a}_{4} \mathrm{~b}_{i}^{\top}\right) \mathbf{l}^{\prime \prime}=\mathbf{l}^{\prime \top}\left(\mathrm{a}_{i} \mathbf{b}_{4}^{\top}\right) \mathrm{l}^{\prime \prime}-\mathbf{l}^{\top}\left(\mathrm{a}_{4} \mathrm{~b}_{i}^{\top}\right) \mathbf{l}^{\prime \prime} \\
& l_{i}=1^{\prime} \mathrm{T}_{i} \mathrm{I}^{\prime \prime} . \\
& \mathrm{T}_{i}=\mathrm{a}_{i} \mathbf{b}_{4}^{\top}-\mathrm{a}_{4} \mathbf{b}_{i}^{\top}
\end{aligned}
$$

Important Observations

* Similar to fundamental matrix \mathbf{F}
\square The expressions are linear in \mathbf{T}
\square Expressed in term of image observables (line orientation)
\square Given enough correspondences, we can solved for trifocal tensors
\square Then we can compute fundamental matrices and projection matrices from trifocal tensors

Multiple Views (>3)

* Math becomes really involved
* In fact, quadrifocal tensor does not provide new information beyond trifocal tensor (for 3 views) + fundamental matrix (for 2 views)
When the projection model is parallel, there is an elegant formulation based on factorization
*When the projection model is perspective, factorization does not generalize well
* The common approach:
\square Local: 2 views (fundamental matrix) or 3 views (trifocal tensor)
\square Global: bundle adjustment

Example: Four views Univ. of Penn

Input images

Texture input

The Stanford Multi-Camera Array
128 CMOS cameras, 2" baseline

5x5 racks version: 125 CMOS cameras, 9 " baseline 4 capture PCs, 4 electronics racks (1 board per camer

CMU multi-camera stereo
51 video cameras mounted on a 5 -meter diameter geodes@ome

Video 1
Video 2
Video 3

Virtualized Reality: CMU 3D Room

49 cameras
30 Hz
512×512 color
17 PCs

System Overview

Cameras

Range Images
3D Model
Appearance Model

Example: Basketball

(a)

(c)

(b)

(d)
a) Original scene
b) Range Image
c) Integrated range images
d) 3D model extraction

Example: Basketball (cont.)

(f)
e) Rendered view of model with texture
f) Rendered view of model from a virtual camera and combined with another digitized scene

Inputs (two separate events)

Video 1

Reconstructed 3D shape

Video 2

Virtual View of combined event

Video 3

Example: Baseball

Example: Baseball (cont.)

This example features a person swinging a baseball bat inside the recording studio. A director might select a single camera that provides a good view of the swing from the side (as in the above), but you might prefer to

- circle around as the batter swings...
- or stop the batter
- drop from above...
- be the BALL!

Example: Dance

Video 1
Video 2
Video 3

Example: Chair

Video 1
Video 2
Video 3

