Object Detection and Recognition




Object Categorization

K. Grauman. B. Leibe
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Challenges: robustness

« Detection in Crowded Scenes
— Learn object variability
+ Changes in appearance, scale, and articulation
— Compensate for clutter, overlap, and occlusion

K. Grauman. B. Leibe



Challenges: context and human experience

K. Grauman, B. Leibe



Challenges: context and human experience

Context cues

Image credit: D. Hoeim



Challenges: learning with minimal supervision
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Thisis a
pottopod

S. Savarese, 2003
Slide from Pietro Perona, 2004 Object Recognition workshop



Find the pottopod
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Slide from Pietro Perona, 2004 Object Recognition workshop



Rough evolution of focus in recognition research

1980s 1990s to early 2000s 2000-2010...



Detection, recognition, and classification

» Detection = 2-class classification problem
— Object/class or not object/class
— E.g., detect all the faces in this image

« Recognition of identity = within-class classification
problem

— Within a given class of objects (e.g., faces, logos), identify the
object as one particular member of the class (e.g., Joe’s face, Nike

logo)

« Recognition of class = among-class classification
— Which class of things 1s this: sky, cloud, forest, face, ...



Example: Face detection

Found Face at [x=108, y=80]
Found Face at [x=76, y=73]
Found Face at [x=257, y=99]
Found Face at [x=154, y=44]
Found Face at [x=211, y=100]
Found Face at [x=147, y=97]




Example: Face recognition

Confidence: BGE!
Access

Threshold: G A”Owed
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Approaches to detection and classification

« There are many approaches to object detection and
recognition, depending on how the object is modeled

— Template-based: Match an image template (or a family of image
templates) of the desired object

— Feature-based: Derive image features and then match with feature
model of object

+ Colors, texture, edges, corners, ...

— Shape (2D or 3D): Describe (parameterize) the object contour or
full shape, and look for that shape in the image

— And many more...

« In some sense, all these can be viewed as three steps:
— Modeling the object(s) (“training”)
— Preprocessing the image (computing features, shape, ...)

— Classify based on a comparison or match between model and
Image data



Template matching and classification

 |f we want to detect and recognize (classify) objects in
Images, one simple technique is to use normalized

correlation
— Provides a measure of how well the correlation template matches
the Image region
— Le., “template matching”
« But in general there is not just one template to match

— E.g., in face recognition — possibly many example templates
(different people, expressions, lighting, rotation, scale, ...)
— A classifier takes an input feature set and produces an output class

label




Extra

Classifiers

A classifier assigns a label to any new example
— E.g., the object name
— Classes: {Joe, Bob, Mary, Fred, Lisa, unknown}

A two-class classifier is a detector
— Classes: {face, no face}

« The classifier is trained from a training set
— Training set: (X4, Y1), (X5, ¥,), (X3, Y3), - - -
— X; — measurements (image, features, histogram, ...)
— vy; — labels
— This is typically framed as a learning problem

« Qutcome: (I — J) means outcome i is labeled as |
— (Matthew — Ralph) — error
— (Matthew — Matthew) — correct



Extra

Training set

« Training set examples:
— (image,, “Joe”), (image,, “Fred”), (image,, “Sue”), ...
— (color,, “Face”), (color,, “Hair”), (color,, “Lips”), ...
— (template,, “eye”), (template,, “eye”), (template,, “eye”), ...
— Perhaps negative examples also: (image;, “Not a face”)...

« We want a rule (function) that does

— F(new measurement) = label

...with a low error rate

* Errors
— False positives: Yes when the true answer is No
— False negatives: No when the true answer is Yes
— Misclassifications: A when the true answer is B



Classification errors

 For detection (two-class)

Not detected (0)

Detected (1)

Absent (0)

Present (1)

True negative (0 — 0)

False negative (1 — 0)

False positive (0 —> 1)

True positive (1 —> 1)

Misclassifications: (i — j), where i #

Misclassifications = False negatives + False positives




Extra

Segmentation and clustering

Feature 2

« Segmentation is about labeling similar T 1
pixels as belonging to the same group
or segment

— Pixels that belong together = pixels that
cluster

 Clustering can be done along many
dimensions (intensity, color, depth,
motion, texture, ...)
— Individually or combined

« There are some basic clustering
methods that do well in certain cases

— E.g., “k-means clustering”




Extra

Clustering/segmenting by k-means

» The “k-means” algorithm is a fast, simple way to cluster N-
dimensional data
— Given a bunch of data points, group them into k different clusters
— Each data point is typically a feature vector
+ But could even be RGB values

« \We would like to minimize the objective function

®(c|usters data)= ) D (x;—¢) (X;-c)

X; ieclusters jecluster(i)

...but this is too expensive to do for lots of data points!



Extra

Data points Cluster centers

k-means clustering
usteri / /

O(clusters, data) = > > (x;—¢) (X;—¢;)

ieclusters jecluster(i)

= the sum of the squares of the distances to cluster centers (means)
+
+
+ +
N + 4+ +
Ty
++

+
+
+
+ +
+ +.|.

The objective function would be
larger in this case



Extra

k-means clustering

Algorithm

« Randomly choose k data points to be the initial cluster
centers

* Iterate until centers are stable:
— Assign each point to the nearest cluster
— Recalculate the cluster center (mean)



Extra



Classification/detection example

Task: Automatically detect
abnormal white blood cells

1. Process images to find outlines
2. Count white blood cells

3. Classify abnormal white blood
cells

Steps 2 and 3 require training — teaching the system how to distinguish
between white blood cells and others, and between normal and abnormal
white blood cells

It’s very important to choose good, discriminating features



Classification/detection example
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Where to place the boundary?

False positive
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False negative (miss)

We wish to minimize false
positives and false negatives

Training vs. Testing

The training set (known
examples) should be
representative of the testing
set (real data).

Good performance on your
training set alone is
meaningless...!

In every experiment, keep the
training and testing data
separate.




Evaluating performance — the ROC curve

For (two-class) detection Perfect

10— oy

Detection rate

(1 - false negative rate) S \\
Improving performance

= better separability between classes

0 . 1.0
False positives
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Improving classification/detection

-
-
-

 More training samples A
— So classification strategy is more general o

-
k4

 Dor’t“overtram”
— Don’t want to “learn the noise” — keep it simple ' V)

« Use better features \
— (Good features lead to good class separation

* Don’t confuse movement along the ROC curve with
Improving the ROC curve
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General approach to recognition

Extra
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Invariant features for recognition

« An invariant feature is one that does not change under a
certain class of transformations

Lengths and angles are invariant under rigid motion

Normalized correlation is invariant under scaling of image
Intensities

Brightness/color of a Lambertian surface is invariant under rotation

Length and angles in the image are not invariant under out-of-
plane rotation and translation

Etc....

 Invariants can be geometric (location, shape) or
radiometric (image values)

Geometric invariants tend to be much more common and useful

Extra



General approach to recognition

Would like

Invariant features
here if possible \ 1

Image )

Feature
extraction

-

Images

Training

Object models

(feature vectors)

]

Feature e
Vector mm) Classification

mm) Match

Extra



Extra

Why not this for face recognition/detection?

1.

Ahead of time, search over all possible images to see
which ones look like my face, and save these

During recognition, see if the input image is one of these

Image space Is vastly large
— 8x8 binary image — 2% image points (distinct images)
— 1 billion images per second - 600 years

Step #1 would never finish!

Not to mention, we’d have to do this for every possible
view of my face

— Range of facial expressions, lighting conditions, poses, etc.



Levels of Recognition/Matching

Abstraction

Model

Shape

|

Features

Pixels

«_-—_»
«_-—_»
«_-—_»

Example

Shape

|

Features

Pixels

Extra

Model based
recognition

Feature based
recognition

Appearance based
recognition



Reminder: Why computer vision 1s so hard!

These are all images
of Stimon’s face!

In general, object recognition is difficult because of the immense
variability of object appearance. With faces, this is even worse!

How can we reliably detect/recognize Simon???



Scanning windows...



Detection via classification: Main idea

Basic component: a binary classifier

Car/non-car
Classifier

NoYemtcarcar.

K. Grauman, B. Leibe



Detection via classification: Main idea

If object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car
Classifier

(Essentially, our skin detector was doing this, with a
window that was one pixel big.)

K. Grauman, B. Leibe



Detection via classification: Main idea

Fleshing out this
pipeline a bit more,
we need to:

1. Obtain training data
2. Define features
3. Define classifier

Car/non-car
Classifier

K. Grauman, B. Leibe



Detection via classification: Main idea

« Consider all subwindows in an image
— Sample at multiple scales and positions (and orientations)

« Make a decision per window:

— “Does this contain object category X or not?”

K. Grauman, B. Leibe
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Feature extraction:

K. Grauman, B. Leibe

> grayscale / color histogram

Simple holistic descriptions of image content
» vector of pixel intensities



Eigenfaces: global appearance description

An early appearance-based approach to face recognition

Generate low-
dimensional
representation
of appearance
Akl with a linear
Eigenvectors computed su bSpace.

from covariance matrix

Project new
images to “face
space”.

Recognition via
nearest neighbors
in face space

Turk & Pentland, 1991

K. Grauman, B. Leibe
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 Pixel-based representations sensitive to small shifts
« Color or grayscale-based appearance description can be

Feature extraction: global appearance

K. Grauman, B. Leibe



Gradient-based representations

« Consider edges, contours, and (oriented) intensity
gradients

K. Grauman, B. Leibe



Gradient-based representations

 Consider edges, contours, and (oriented) intensity gradients

=

¥ |4

« Summarize local distribution of gradients with histogram
— Locally orderless: offers invariance to small shifts and rotations
— Contrast-normalization: try to correct for variable illumination

K. Grauman, B. Leibe



GIST



Representing Image Structure with “GIST”

Steerable
pyramid

V = {energy at each orientation and
scale} = 6 x 4 dimensions

o 80 features

— | V¢ }— PCA—

Ve

Vector of

Global features

. . L. Oliva & Torralba (2001,2002, 2006)
Slide Credit: Olivia



What do Images Statistics say about
h?

an-inade environments | - Natural environments:

; ' : : : ' V: Vertical
H: Horizontal
O: Oblique

0.8—

I 10 100 1000 1 _ 10 100 1000
Mean depth (meters) Mcan depth (mctcrs)

Slide Credit: Torralba, Olivia, J. Huang



Scene Scale

5-50 m 50-500 m

50-500 m >500m

o “The point of view that any given observer adopts on a
specific scene is constrained by the volume of the scene.”

o How does the amount of clutter vary against scene scale in
man-made environments? In natural environments?

Slide Credit: Torralba, Olivia, J. Huang



Categorization of Natural Scenes

Confusion Matrix (in % using Layout template) :
Classification of prototypical scenes (400 / category)

Coast Countryside Forest Mountain
Coast 88.6 8.9 1.2 1.3
Countryside 9.8 85.2 3.7 1.3
0.4 3.6 91.5 4.5

Mountain

0.4

4.6

3.8

91.2

Slide Credit: Olivia

Local organization:
correct for 92 % images

(4 similar images on 7 K-NN)




HOG



Gradient-based representations:

Histograms-of oriented-gradients-(HoG)

Orientation Voting
e o

"~ S ~ e
N . \\ ~C
. \\ N N

o \____\N_ e

AL

N e Overlapping Blocks

[Input Image Gradient Image

- Local Normalization

Map each grid cell in the input
window to a histogram counting
the gradients per orientation.

EE N }Pk

Code available:

http://pascal.inrialpes.fr/soft/olt/
Dalal & Triggs, CVPR 2005

K. Grauman, B. Leibe



Slide credit: Dalal, Triggs, P. Barnum



Input
image

Mormalize

gamma &
colour

Compute
eradients

Weighted vote
into spatial &
orientation cells

Contrast normalize

over overlapping
spatial blocks

Collect HOG s
over detection
window

Linear

Person /

—= 00— Persomn
classification

Slide credit: Dalal, Triggs, P. Barnum




Input
image

Normalize

—»| pamma &

colour

>

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over detection
window

-

Linear
SVM

Person /
3= [0I—person
classification

. Teded with

— RGB
LAB
— Grayscale

« Gamma Normalization and Compression

— Square root
— Log

Slide credit: Dalal, Triggs, P. Barnum




Tnput Normalize Compute Weighted vote Contrast normalize Collect HOG s — Person /
mage St (- gradients || o Bl &[> e yenlaping || overdeecion || gt” > [ R
-1 0 1 0 1
centered 1]
diagonal
-1 1
uncentered
400
21012
18|08 ]|-1 110
cubic-corrected Sobel

Slide credit: Dalal, Triggs, P. Barnum




Normalize Weighted vote Contrast normalize Collect HOG’s ; Person /
‘Iuput —»| pamma & [ Lo —= | into spatial &  [—=| over overlapping  |[—3=| over detection —» Linear| o non-person
image I gradients - . . v SVM =] 0

colour orientation cells spatial blocks window classification

1

« Histogram of gradient orientations
-Orientation  -Position

90
135 45
180 0 .
= " magnitu
225 315
270

Slide credit: Dalal, Triggs, P. Barnum



Normalize Weighted vote Contrast normalize Collect HOG’s ; Person /
iIlllllpluir_' gamma & | —» C:;Eiﬁ.a:ttes —| into spatial &  |—| over overlapping | —| over detection —» L'::'lear_‘ noN-person
e colour & orientation cells spatial blocks window SYM classification
) i
Cell Center Bin
— -~

AP
A%

Radial Bins. Angular Bins

-~ Block —

~— Block —=

Slide credit: Dalal, Triggs, P. Barnum



Normalize Weighted vote Contrast normalize Collect HOG’s ; Person /
Input _ gamma & | g&%ﬂﬁ — | into spatial &  |—=| over overlapping  |—3=| over detection |—»= IF:'{EI:: ' Non-person
colour orientation cells spatial blocks window classification

1
R-HOG C-HOG

| Center Bin
__4(. ell - b -

image

AP
A%

Radial Bins. Angular Bins

~— Block —

~— Block —=

. L 1 _ - A \ N
L1 —norm v — v/(||v|[1 + €) L1 —sqrt:v — y/v/([[v][1 +€)
L2 —norm : v — v/y/|[v]]3 + €2 L2 — hys : L2-norm, plus clipping at .2 and renomalizing

Slide credit: Dalal, Triggs, P. Barnum



Input
image

Normalize

—»| pamma &

colour

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over detection
window

-

Linear
SVM

Person /
3= [0I—person
classification

Slide credit: Dalal, Triggs, P. Barnum




Input
image

Normalize

—»| pamma &

colour

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over detection
window

-

Linear
SVM

Person /
3= [0I—person
classification

Slide credit: Dalal, Triggs, P. Barnum



Normalize Weighted vote Contrast normalize Collect HOG’s Person/
iIupul —»| zamma & | 'g::;[sﬂl:; —» | into spatial &  [—»| over overlapping  |—| over detection > non-person
mage colour orientation cells spatial blocks window SYM classification

1

Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Boosted Face Detection
with Gradient Features



Gradient-based representations:

Rectangular features
_|= ﬂ

Compute differences between sums of pixels in rectangles

Captures contrast in adjacent spatial regions, efficient to
compute

Each feature parameterized by scale, position, type.
Viola & Jones, CVPR 2001

K. Grauman, B. Leibe



Boosting

« Build a strong classifier by combining number of “weak
classifiers”, which need only be better than chance

« Sequential learning process: at each iteration, add a weak
classifier

 Flexible to choice of weak learner
— including fast simple classifiers that alone may be inaccurate

« We’ll look at Freund & Schapire’s AdaBoost algorithm

— Easy to implement
— Base learning algorithm for Viola-Jones face detector

K. Grauman. B. Leibe



AdaBoost: Intuition

o © Consider a 2-d feature
wak | g ® Q space with positive and
Classifier 1 o= - o ® negative examples.
® o0

Each weak classifier splits
the training examples with
at least 50% accuracy.

Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.

Figure adapted from Freund and Schapire

K. Grauman. B. Leibe



AdaBoost: Intuition

Weak
Classifier 1

—
—-— -
-
— -

Weights
Increased

Weak
Classifier 2

K. Grauman. B. Leibe
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AdaBoost: Intuition

Weak
Classifier 1

-
- - -
-
—'-

Weights o——0
Increased .\.i\
(] .
Weak ' @
Classifier 2 q

Weak
classifier 3

|\

.1

‘ ..
\
° @
\
\
@9
O

K. Grauman. B. Leibe




e Given example images (x1,41),...,(&n,yn) Where

y; = (), 1 for negative and positive examples respec-
tively.
e Initialize weights w, ; = 5—, 57 for y; = 0,1 respec-

tively, where m and [ are the number of negatives and
positives respectively.

e Fort=1,....,1":
1. Normalize the weights,

Uy L0
n o
Z_; 1 Wy 1l

so that w; is a probability distribution.

Wy i 4

]

For each feature, j, train a classifier f; which
is restricted to using a single feature. The
error is evaluated with respect to wy. ¢; =
Z; w; UJ-J. (;r: i) — ‘ .

3. Choose the classifier, i, with the lowest error e;.
4. Update the weights:

MWip1,: = "t'I.-‘,'_l.s,-""_f{.' o

where ¢; = 0 if example z; i1s classified cor-
rectly, e; = 1 otherwise, and [#; = ——.

i

e The final strong classifier is:

h(z) = { 1 Y, ahe(x) > 53, o

()  otherwise

where a; = log

Be

AdaBoost Algorithm

Start with

uniform o o o
weights on 7@ o
training ®eo

examples {X4,0 X}

For T rounds

. Evaluate
weighted error
for each
feature, pick
best.

. Re-weight the examples:
Incorrectly classified -> more
weight

Correctly classified -> less weight
Final classifier is combination of
the weak ones, weighted

according to error they had.
Freund & Schapire 199



Example: Face detection

Frontal faces are a good example of a class where global
appearance models + a sliding window detection approach fit
well:

— Regular 2D structure

— Center of face almost shaped like a “patch”/window

Now we’ll take AdaBoost and see how the Viola-Jones face
detector works

K. Grauman. B. Leibe
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Feature extraction

“Rectangular” filters

mem (| N | Feature output is difference

between adjacent regions
|
I3,

Efficiently computable
with integral image: any
sum can be computed
in constant time

Value at (x,y) is
sum of pixels
above and to the
left of (X,Y)

Avoid scaling images =2
scale features directly Integral image D=1+4-(2+3)

=A+(A+B+C+D)—-(A+C+ A+ B)
for same cost .

Viola & Jones, CVPR _ i
AN 4 K. Grauman. B. Leibe



Large library of filters

=

.: = Considering all

possible filter
parameters:
position, scale,

mes | and type:

iR
180,000+
possible features

]
B ]
associated with

0 I]
E; each 24 x 2
H

window

“u

Use AdaBoost both to select the informative
features and to form the classifier

Viola & Jones, CVPR

SMN\N1



AdaBoost for feature+classifier selection

« Want to select the single rectangle feature and threshold that best
separates positive (faces) and (non-faces) training
examples, in terms of weighted error.

L 0, 0, Resulting weak classifier:

-1 otkfem’ise

N N
M c ' o0 oo oo h%j{ﬂ it £(x) > O,

£ (x) For next round, reweight the
t examples according to errors,
Outputs of a I choose another filter/threshold
_possible rectangle combo.
feature on faces

and non-faces.
Viola & Jones, CVPR

SMN\N1



e Given example images (x1,41),...,(&n,yn) Where

y; = (), 1 for negative and positive examples respec-
tively.
e Initialize weights w, ; = 5—, 57 for y; = 0,1 respec-

tively, where m and [ are the number of negatives and
positives respectively.

e Fort=1,....,1":
1. Normalize the weights,

Uy L0
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Z_; 1 Wy 1l

so that w; is a probability distribution.

Wy i 4
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For each feature, j, train a classifier f; which
is restricted to using a single feature. The
error is evaluated with respect to wy. ¢; =
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rectlv. ¢; = 1 otherwise. and 3 = ———_
e The final strong classifier is:

h(z) = { 1 Y, ahe(x) > 53, o

()  otherwise

where a; = log

Be

AdaBoost Algorithm
Start with

uniform o o o
weights on 7@ o
training ®eo

examples {X4,0 X}

For T rounds

. Evaluate
weighted error
for each
feature, pick
best.

. Re-weight the examples:
Incorrectly classified -> more
weight

Correctly classified -> less weight
. Final classifier is combination of
the weak ones, weighted

according to error they had.
Freund & Schapire 199



AdaBoost for Efficient Feature
Selection
* Image Features = Weak Classifiers
* For each round of boosting:
— Evaluate each rectangle filter on each example

— Sort examples by filter values
— Select best threshold for each filter (min error)

« Sorted list can be quickly scanned for the optimal threshold
— Select best filter/threshold combination
— Weight on this feature 1s a simple function of error rate
— Reweight examples

Viola and Jones. Robust object detection using a boosted cascade of simple features. CVPR 2001



« Even if the filters are fast to compute, each new image has
a lot of possible windows to search.

« How to make the detection more efficient?



Cascading classifiers for detection

For efficiency, apply less accurate but

faster classifiers first to immediately

discard windows that clearly appear to
be negative; e.g., \

i o - - L T ~T T, ~T — —
— Filter for promising regions with an initial S ) C 2/%-‘\(%)%{4)%(F,gr;gg;ssm;.
inexpensive classifier FF P

( Reject Sub-window p)

— Build a chain of classifiers, choosing L foetsubncon
cheap ones with low false negative rates
early in the chain

Fleuret & Geman, IJCV 2001

Rowley et al., PAMI 1998

Vinla & lanace C\Yostalrman. B. Leibe Figure from Viola & Jones CVPR 2001



Viola-Jones Face Detector: Summary

Train cascade of
classifiers with
AdaBoost

 Train with 5K positives, 350M negatives
« Real-time detector using 38 layer cascade

« 6061 features in final layer

» [Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/]
K Graiiman B | ethe

New image

79



Viola-Jones Face Detector: Results

First two features
selected

5

K. Grauman. B. Leibe
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Viola-Jones Face Detector: Results




Viola-Jones Face Detector: Results




Results

Jones Face Detector:

Viola




Detecting profile faces?

Detecting profile faces requires training separate
detector with profile examples.




Viola-Jones Face Detector: Results




Example application

Frontal faces
detected and
then tracked,
character
names inferrec
with alignment
of script and
subtitles.

838296

Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV vide
BMVC 2006.
http://www.robots.ox.ac.uk/~vgg/research/nface/index.html
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K. Grauman, B. Leibe



Example application: faces in photos

rl g O AllWeb People Objects Tags My Photos

Visual Search [ SEARCH ]

Advanced

Riya Personal Search
Use our face recognition and text recognition, to search your personal photos

Upload your personal photos Use our face and text recognition
(public or privately) to auto tag your photos

Search & share photos
with your friends

rlyﬂ e Fa e Ched Pk

e g S S et S

14
EE

Riya's Personal Search lets you upload and search your own photos by name. You can keep them private or make them public and share
with all Riya searchers. We allow you to use face and text recognition to search your own photos.



Highlights

 Sliding window detection and global appearance
descriptors:
— Simple detection protocol to implement
— (Good feature choices critical
— Past successes for certain classes

K. Grauman. B. Leibe



Limitations

« High computational complexity

— For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000
evaluations!

— If training binary detectors independently, means cost increases linearly
with number of classes

« With so many windows, false positive rate better be low

K. Grauman. B. Leibe



Limitations (continued)

* Not all objects are “box” shaped

iF
\

carTrunc : e

=

—

K. Grauman. B. Leibe
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Limitations (continued)

* Non-rigid, deformable objects not captured well with
representations assuming a fixed 2d structure; or must
assume fixed viewpoint

» Objects with less-regular textures not captured well with
holistic appearance-based descriptions

e b HET

91

K. Grauman. B. Leibe



Limitations (continued)

« |If considering windows in isolation, context is lost

I
lrll l|| lll

I iy
_,/ ‘
J

Sliding window Detector S view

Figure credit: Derek Hoigq Grauman. B. Leibe

T ' : I
1 Ié N (LT | T |
FRANEERNRYERD I
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Context can constrain a sliding window search

_!llulill

INIi 7

ailnmenm

I;
IH I
[
i !
il
=N

Hoiem, Efros, Herbert, 2006

(D P(pel son \ viewpoint) (g) P(person|VleWp01nt geometry)



Limitations (continued)

In practice, often entails large, cropped training set
(expensive)

« Requiring good match to a global appearance description
can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, &&hiSeiiman. B. Leibe
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Models based on local features will

allev1ate some of these Iimitations..

' ;‘/ \ ‘WHHJ}L\I . |

K. Grauman. B. Leibe



|ocal-feature Alignment



Hypothesize and test: main idea

Given model of object

New image: hypothesize object identity and pose

Render object in camera

Compare rendering to actual image: if close, good hypothesis.




Recall: Alignment

« Alignment: fitting a model to a transformation between
pairs of features (matches) in two images

Xi @
| X Find transformation T
© T o that minimizes
@ — 6] o
o o > residual (T (x;), X{)
[



Alignment-based

L. G. Roberts, Machine Perception of
Three Dimensional Solids, Ph.D.
thesis, MIT Department of Electrical

Engineering, 1963.

(b) Differentiated picture.



http://www.packet.cc/files/mach-per-3D-solids.html

Alignment-based

o | |"':" 3 ;‘:;c'_:"
IS |

LI~

=
Sl §
-

& — o

Huttenlocher & Ullman (1987)

Source: Lana Lazebnik



Alignment-based

ACRONYM (Brooks
and Binford, 1981)




How to form a hypothesis?

Given a particular model object, we can estimate the
correspondences between image and model features

Use correspondence to estimate model pose relative to object
coordinate frame



Generating hypotheses

We want a good correspondence between model features and
Image features.

— Brute force?



Brute force hypothesis generation

» For every possible model, try every possible subset of image
points as matches for that model’s points.

« Say we have L objects with N features, M features in image

L models image



Generating hypotheses

We want a good correspondence between model features and
Image features.

— Brute force?

— Pose consistency, alignment: use subsets of features to
estimate larger correspondence

— Voting, pose clustering



Pose consistency / alignment

« Key idea:
— If we find good correspondences for a small set of features,
It Is easy to obtain correspondences for a much larger set.

« Strategy:

— Generate hypotheses using small numbers of
correspondences

— Backproject: transform all model features to image features
— Verify



Example: 2d affine mappings

« Say camera is looking down perpendicularly on planar surface

P, in object P,in image

P, in object P,1n image

* We have two coordinate systems (object and image), and they
are related by some affine mapping (rotation, scale, translation,
shear).



Alignment: verification

« Given the back-projected model in the image:

— Check if image edges coincide with predicted model
edges

— May be more robust if also require edges to have the
same orientation

— Consider texture in corresponding regions

e Possible issues?



Alignment: verification

i

Figure lfrom “Object recognition using alignment,” D.P. Huttenlocher and S.
Ullman, Proc. Int. Conf. Computer Vision, 1986, copyright IEEE, 1986



Alignment: verification




Issue with hypothesis &
—testapproach

« May have false matches
— We want reliable features to form the matches

« Local invariant features useful to find matches,
and to verify hypothesis

(SIFT, etc.)

« May be too many hypotheses to consider
— We want to look at the most likely hypotheses first

+ Pose clustering (voting): Narrow down number of
hypotheses to verify by letting features vote on
model parameters.



Pose clustering (voting)

« Narrow down the number of hypotheses to verify: identify
those model poses that a lot of features agree on.

— Use each group’s correspondence to estimate pose

— Vote for that object pose in accumulator array (one
array per object if we have multiple models)

 Local invariant features can give more reliable matches
and means of verification



Pose clustering and verification with SIFT
[Lowe]

To detect instances of objects from a model base:

1) Index descriptors (distinctive
features narrow possible matches)




Indexing local features




Pose clustering and verification with SIFT
[Lowe]

To detect instances of objects from a model base:

1) Index descriptors (distinctive
features narrow possible matches)

2) Generalized Hough transform to

vote for poses (keypoints have record
of parameters relative to model
coordinate system)

3) Affine fit to check for agreement
between model and image

features (approximates perspective
projection for planar objects)




| f Model images and
— —— their SIFT keypoints

Planar
objects

Input Image

Model keypoints
that were used to
recognize, get ~
least squares ”
solution.

Recognition result

[Lowe]



Background subtract for Objects recognized, Recogpnition in spite
model boundaries though affine model not of occlusion
as accurate.

[Lowe]



Recall: difficulties of voting

* Noise/clutter can lead to as many votes as true target

* Bin size for the accumulator array must be chosen
carefully

* (Recall Hough Transform)

 In practice, good idea to make broad bins and spread
votes to nearby bins, since verification stage can
prune bad vote peaks.



A probabilistic interpretation (and re-tuning) of Lowe’s
system:

P. Moreels and P. Perona, ""A probabilistic
cascade of detectors for individual object
recognition,' European Conference on Computer

Vision, 2008.



Coarse-to-Fine detection

Progressively narrow down focus on correct region of
hypothesis space

Reject with little computation cost irrelevant regions
of search space

Use first information that is easy to obtain
Simple building blocks organized in a cascade

Probabilistic interpretation of each step



Score of an extended hypothesis

Features
assignments ~ observed features

Hypothesis:
eometry + appearance

. g
model + posmon\ / / database of models
P(F.H,V|M)

P(H,V|F, M) = bl -

constant

............

\otes per model pose bin
k (Hougly transform)

......................
"""""""
......

......
..............
...................
.......
........
. .

.....
...............
..............................

........
.............
"""""""""""""""""""

................................
..................
...................
----------
......

.......
........................
..........................
.................................

Consistency

Prior on assignments (after PROSAC)
(before actual observations)

Prior on model
and poses



Coarse data : prior knowledge

« \Which objects are likely to be there, which pose are they
likely to have ?

unlikely
situations




Coarse Hough transform

model center

&n
Wz
g

[Lowe1999,2004]

(X1,Y1,51,01)
/

(X2,Y2,55,0,)

Transform predicted by this match:
* AX = Xy-Xq
* Ay =Y, Ya
e As=s,/s;
« AB=6,-6,

Each match is represented by a dot in
the space of 2D similarities (Hough space)

‘ As
AO > Ay




Coarse Hough transform

Prediction of position of model Model
center after transform

The space of transform
parameters is discretized into
‘bins’

-------------------------------------------------------------------------------------------------------------------------

Coarse bins to limit boundary .
Issues and have a low false- o | 5 5
alarm rate for this stage_ e e i —

N

We count the number  of 03
votes collected by each bin. | |
0

~ correct transformatlon ;
N .

. Test scene




Correspondence or clutter ? PROSAC

[Fischler 1973]
[Chum&Matas 2005]

« Similar to RANSAC - robust statistic
for parameter estimation

 Priority to candidates with good
guality of appearance match

« 2D affine transform : 6 parameters

—> each sample contains 3 candidate
correspondences.

Output of PROSAC : pose transformation
+ set of features correspondences




Consistency

Consistency between observations and predictions from hypothesis
P(FIV,N.N.H M) = 1] prg(filH fv)- 1] poo(fi)
V (i)#0 V(1)=0
Common-frame approximation : parts are
conditionally independent once reference position

of the object is fixed. [Lowe1999,HuttenI“"her90,'\goree!30’”
________ L = ¢ ;&J

; . 2@

= g o

= c

% pm(.i[-'l +++I-'J-‘I.,,-'} g Hpm 1|0m

E g i \ position of

o _ _ 5 O . : model m

© D.O.F. = O(Parts”) D.O.F. = O(Parts)



Consistency

Consistency between observations and predictions from hypothesis

V(1)£0 V(7)=0
f2
fl@ - - - > Q fl@ _____ g
foreground features ‘null’ assignments
appearance geometry

appearance geometry

Consistency - appearance Consistency - geometry



number of votes

An example

After model voting stage

(log,, scale)

T T T T

5 10

15

20

modelindex

25

30

k

voles

log,,(number of votes)

After Hough transform, before Prosac

0

10
Hough bin index (

Il incorrect sets of matches
correct sets of matches for fish
correct sets of matches for teddy bear

—

Il correct sets of matches for beer bottle | |

20

30

40

50

sorted by decreasing population)




An example

h

log(number of votes)

o o o
~ o ®

- =X
- b » O

(=]
o N

After Prosac

Il incorrect sets of matches

Il correct sets of matches for fish

B correct sets of matches for teddy bear
Il correct sets of matches for beer bottle

10 20 30

40 50
Hough bin index (same indices as in panel d.)

log(score)

1 2 3 4 5
Hough bin index (empty bins have been discarded)




Number of hypotheses

10° ;

Efficiency of coarse-to-fine processing

— Median value
—" = [ 25th & 75th percentile
10"‘::- - .JI_ 5th and 95th percentile
103 3
s
102} H
1
10"t : i
E !
L
10° ' ‘ L L L L ‘
After ftes ARer Aftel hy;l)\;:ﬁreses
: model Houah
prior g PROSAC merging and

voting  transform
probabilistic score

—

Coarse hypotheses (numbers of bins) Detailed hypotheses

S T Ny

Processing time (seconds)

10°

10 '

109}

= Median value
[ 25th & 75th percentile

—

' Sthand 95th percentile

— 1
ﬁ i
1
E e
ke
Model Hough PROSAC
voting transform

—

Coarse hypotheses (bins)

Detailed hypotheses




Giluseppe Toys database — Models

7-106.JFPG

11-114.JPG 14-117.JPG 15-120.JPG

16-121 JPG

20- 127 JFG

18-125.JPG 7 19-126.JPG
17 - 124 JPG

23-17.JFPG

21 - 14 JPG

22-16.JPG g 25-22.JPG

61 objects, 1-2 views/object



Test scenes

D
)
qu)
O
qv;
e
qe;
©
)
%)
_I

iuseppe

G

SOU5-159] Ko13|bulIs-1s3] K01 OuU-1S9]

141 test scenes




Results — Gluseppe Toys database

ROC curve Giuseppe Toys database

undetected objects: 05 : :
- \
features with poor -
045+
appearance distinctiveness
. . = B I
index to incorrect models = |
2 I
E 0354
_|_ @ : Moreels Perona, threshold on probabilistic score
a
© 03 ! - = = Moreels Perona, threshold on number of votes
Lower false alarm = n
M I Lowe, threshold on probabilistic score
rate S 0251 : = = =Lowe, threshold on number of votes
i = ,
- more systematic o o2}
verification of & ;'
, 5 0151, _
geometry consistency = ! =
@O B fm ===
- more consistent g 01 F e mmm ==
- - - J- =
verification of oosk o== "
- - 4
geometric consistency y
% 02 04 06 08 1 12 14 16

false alarm rate (per query image)

Lowe’99,’04



Conclusions — Moreels and Perona

Coarse-to-fine strategy prunes irrelevant search
branches at early stages.

Probabilistic interpretation of each step.

Higher performance than Lowe, especially in cluttered
environment.

Front end (features) needs more work for smooth or
shiny surfaces.



Scaling up:
BOW Indexing



A A

Outline of a large-scale retrieval strategy

regions

Invariant
descriptor
vectors

frames

invariant

s> (escriptor

vectors

Compute affine covariant regions in each frame independently

“Label” each region by a vector of descriptors based on its intensity

Finding corresponding regions is transformed to finding nearest neighbour vectors
Rank retrieved frames by number of corresponding regions

Verify retrieved frame based on spatialicossistency



Example of object recognition

1000+ descriptors per frame Shape adapted regions

Maximally stable regions

Slide credit: J. Sivic



Match regions between frames using SIFT descriptors and spatial
COITSTSTETTCY

Multiple regions overcome problem of partial occlusion

Shape adapted regions

Maximally stable regions

Slide credit: J. Sivic



Visual search using local regions

Schmid and Mohr °97 — 1k Images
Sivic and Zisserman’03 — 5k Images
Nister and Stewenius’06 — 50k Images
(IM)

Philbin et al.’07 — 100k images
Chum et al.’07 + Jegou and Schmid’07 — 1M images
Chum et al.’08 — 5M Images

Index 1 billion (1079) images ——
— 200 servers each indexing 5M images 7|8 -

Slide credit: J. Sivic



| Index

“Along I-75," From Dabroi ko
Flesida; inside back cover
"Dirive 1H95," Fram Boalan o
Flomida; iraide Dok cover
1itE Spanish Tral Rpadasy;
101 =102, 104
511 Trallic Informstion; 83
A1A (Barmier isf) - |-55 Access; 8BS
AAA (and CAAY, B3
Alh Meaticnad Offics; 82
Abbeeviations,
GCodored 25 mile Maps; covar
Exit Sarvices; 196
Travebogue: 85
Alica; 177
Agricutarsl Inspaction Sirs; 126
Ah-Tah:Thi-Ki FResaurn; 180
Air Conditiordng, First; 112
Alabama; 124
Alachua; 132
Conindy; 131
Alatia Fioar, 143
Alapaha, Name; 135
Alfred B Maclay Gardans; 106
Alligates Al 154158
Alligatar Fanm, 54 Augusting; 160
Alligater Hole (dediniticn); 157
Alligator, Bddy; 155
Adligatons; 100, 135,138,147, 156
Anasiasia laland; 170
Anhaica; 108-108, 146
Apalachicola River; 112
Appleton Mus of Arl: 135
Anquilar; 102
Aralsian Mights; 94
At Musoum, Ringing; 147
Aruba Beach Cale; 183
Aucilla River Project; 106
Babcock-Web WHA; 151
Bahia Mar Marina; 184
Bakar County; 98
Barafoot hallman; 182
Barge Canal; 137
Ban Lirsy Expy: 80
Balz Culied Mali: 82
Bernard Casire: 136
Big °I°; 165
Big Cypasss; 165,158
Big Fool Monster; 105
Billig Swamp Saferl; 160
Blackwaier Rioer SP; 117
Blu Arnels

Butberily Center, MoGiEr; 134
G (5ea ARA)
COC, Thi: 111,113,115,135,142
Ca d'Zan; 147
Calopsahaiches Rivar; 152
Fiama; 150
Canaveral Mabnl Seashane: 173
Cannon Creek Airpark; 130
Canopy Road; 106,160
Cope Conaverad 174
Casfdlo San Marcod; 165
Cave Diving: 131
Cyn Costa, Nama; 150
Clebraton; 3
Charkatte County;, 148
Charkoths Haror 150
Chautauqua; 118
Chiplay; 114
Mame, 115
Chactewsiches, Naema; 115
Circus Musaurm, Ringling; 147
Citrus; 88,87 130,136, 140,180
CityFlace, YW Palm Beach: 180
City Maps,
Fi Lansdnrdale Expavygs; 194,106
Jackaarwille; 163
Kissimmes Expwys; 152-153
Mlamil Expressways; 194-195
Ovlandd Exprassways; 152183
Panaasola; 28
Talzhassas; 191
Tampi- 51, Petersburg; 63
S0, hugsuting; 191
Civil War: 100,108,127, 138, 141
Claarwaler Marine Agquarum; 137
CoHlier County; 154
Collier, Barron; 152
Cotonial Spanian Cuarlers; 168
Cohumbin County; 101,128
Coquina Building Material; 165
Corkacrew Swarnp, Marne; 154
Ciowiazrys; 85
Crab Trag 1I; 144
Crackar, Flowida; 88 85 132
Crosstown Expy: 11,55,88.143
Cuban Bread; 184
Dade Batilafiahd; 140
Diachy, Maj. France:; 130-140,161
Dania Beach Husricanse: 184
Dantel Boone, Frorkda Walkz 117
Diaybona Baach; 172173
Dy Land: 87

Beyond Nearest Neighbors...
Indexing local features using inverted file index

Diriving Lanses; 85
Durval Coundy; 163
Eaui Galis: 175
Edison, Thomas:; 152
Eglin AFE; 116-115
Eight Reale; 176
Ellsnban; 144-145
Emantel Foint Wreck: 120
Emargency Calibooes; 53
Epiphytes; 142,148,157 155
Escambia Bay; 119
Baredge (1-10); 118
County; 120
E=fore; 153
Evanglads 30,85, 138-140, 154~ 160
Draining of; 156,181
Wildlifa WAA; 180
‘Waondar Gardens; 154
Falling Waters 5F. 115
Fantasy of Flight; 95
Fayar Dekoas SP; 111
Fires, Forest: 166
Fireg, Prascribed |, 148
Flsherman's VeElags; 151
Flaghsr Courty; 171
Flagher, Henry: 97185, 167,171
Flarida Aguarhem: 166
Flatida,
12,000 yaas ago; 187
Cavan SP; 114
Mag of all Exprossways: 2-3
Mus of Matwal History; 134
Mationnl Cematery © 141
arl of Alvica; 177
Fiathonm; 187
Sherifs Boys Camp; 126
Sports Hall of Fame; 130
Sun 'n Fun Mueseum: 97
Suprams Couwr; 107
Florida’s Turnpike (FTR), 178,189
25 mils Stip Maps: 66
Administragion; 188
Comn System; 150
Bl Services; 185
HEFT: 76,161,180
History; 189
Mamas; 189
Service Plakas; 100
Spur SRS TE
Ticket System; 150
ToE Plazas; 150
Fard, Henmg: 152

For text documents, an
efficient way to find all
pages on which a word
occurs 1S to use an index...

We want to find all images
In which a feature occurs.

To use this 1dea, we’ll need
to map our features to
“visual words”.

Slide credit: J. Sivic



Object » Bag of ‘words’

Slide credit L. Fei-Fei



Analogy to documents

China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold increase
on 2004's $32bn. The Comm BLce M|n|stry sald the

Beijing has made it clear that it will tak
and tread carefully before allowing the yu
rise further in value.

Slide credit L.

Fei-Fei




A clarification: definition of “BoW”’

Looser detinition
— Independent features

&
™ *
A

Slide credit L. Fei-Fei



A clarification: definition of “BoW”’

Stricter definition
— Independent features
— histogram representation

V' - A V'

Vi e g @@= g LT de

Slide credit L. Fei-Fei



Visual words: main idea

Extract some local features from a number of images ...

— =
Do

_—

e.g., SIFT descriptor space:
each point is 128-dimensional

Slide credit: D. Nister



Visual words: main 1dea

Slide credit: D. Nister



Visual words: main idea

Slide credit: D. Nister



Visual words: main idea

_

W\

f

i

AN |

|

f

I

Slide credit: D. Nister



Slide credit: D. Nister
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Slide credit: D. Nister



Visual words: main idea

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
« Quantize via

clustering, let
cluster centers be
the prototype
“‘words”

/Q 0 / /

Descriptor space

K. Grauman, B. Leibe



Visual words: main idea

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
» Determine which

word to assign to
each new image
region by finding
the closest cluster
center.

K. Grauman, B. Leibe
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Example: each group of
patches belongs to the
same visual word
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Visual words

* First explored for texture and
material representations

 Texton = cluster center of filter
responses over collection of
Images

e Describe textures and materials
based on distribution of
prototypical texture elements.

Leung & Malik 1999; Varma &
Zisserman, 2002; Lazebnik,
Schmid & Ponce, 2003;

Slide credit: J. Sivic



Inverted file index for images comprised of
visual words

Word List of image
number numbers

(1)— 5.10. ...
21, 10...

frame #5 frame #10
_

« Score each image by the number of common visual words
(tentative correspondences)

« But: does not take into account spatial layout of regions

Slide credit: J. Sivic



Clustering / quantization methods

« k-means (typical choice), agglomerative clustering, mean-
shift,...

 Hierarchical clustering: allows faster insertion / word
assignment while still allowing large vocabularies
— Vocabulary tree [Nister & Stewenius, CVPR 2006]

Slide credit: J. Sivic



Example: Recognition with Vocabulary Tree

Tree construction:

O \
[Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree

Training: Filling the tree

[Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree

Training: Filling the tree

[Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree

Training: Filling the tree

[Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree

Training: Filling the tree

ﬁ [Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree

Training: Filling the tree

{4 [Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree

Recognition

Verification on

spatial layout

ﬁ, [Nister & Stewenius, CVPR’06]

Slide credit: David Nister



Vocabulary Tree: Performance

Evaluated on large databases
— Indexing with up to 1M images

Online recognition for database W\M

of 50,000 CD covers | | |
_ _ 10k 100k 1M
— Retrieval in ~1s Database Size

Find experimentally that large
vocabularies can be beneficial for
recognition

[Nister & Stewenius, CVPR’06]

Slide credit: J. Sivic



“Bag of visual words”

Slide credit: J. Sivic



