Object Detection and Recognition

Object Categorization

• How to recognize ANY car

• How to recognize ANV cow

K. Grauman, B. Leibe

Challenges: robustness

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges: robustness

- Detection in Crowded Scenes
 - Learn object variability
 - Changes in appearance, scale, and articulation
 - Compensate for clutter, overlap, and occlusion

K. Grauman, B. Leibe

Challenges: context and human experience

K. Grauman, B. Leibe

Challenges: context and human experience

Context cues

Image credit: D. Hoeim

Challenges: learning with minimal supervision

K. Grauman, B. Leibe

This is a pottopod

Slide from Pietro Perona, 2004 Object Recognition workshop

Slide from Pietro Perona, 2004 Object Recognition workshop

Rough evolution of focus in recognition research

1980s

1990s to early 2000s

2000-2010...

Detection, recognition, and classification

- Detection = 2-class classification problem
 - Object/class or not object/class
 - E.g., detect all the faces in this image
- Recognition of identity = within-class classification problem
 - Within a given class of objects (e.g., faces, logos), identify the object as one particular member of the class (e.g., Joe's face, Nike logo)
- Recognition of class = among-class classification
 - Which class of things is this: sky, cloud, forest, face, ...

Example: Face detection

Found Face	at [x=108, y=80]
Found Face	at [x=76, y=73]
Found Face	at [x=257, y=99]
Found Face	at [x=154, y=44]
Found Face	at [x=211, y=100]
Found Face	at [x=147, y=97]

Example: Face recognition

Example: Polyhedral object recognition

Approaches to detection and classification

- There are many approaches to object detection and recognition, depending on how the object is modeled
 - Template-based: Match an image template (or a family of image templates) of the desired object
 - Feature-based: Derive image features and then match with feature model of object
 - Colors, texture, edges, corners, ...
 - Shape (2D or 3D): Describe (parameterize) the object contour or full shape, and look for that shape in the image
 - And many more...
- In some sense, all these can be viewed as three steps:
 - Modeling the object(s) ("training")
 - Preprocessing the image (computing features, shape, ...)
 - Classify based on a comparison or match between model and image data

Template matching and classification

- If we want to detect and recognize (classify) objects in images, one simple technique is to use <u>normalized</u> <u>correlation</u>
 - Provides a measure of how well the correlation template matches the image region
 - I.e., "template matching"
- But in general there is not just one template to match
 - E.g., in face recognition possibly many example templates (different people, expressions, lighting, rotation, scale, ...)
 - A *classifier* takes an input feature set and produces an output class label

Classifiers

- A classifier assigns a label to any new example
 - E.g., the object name
 - Classes: {Joe, Bob, Mary, Fred, Lisa, unknown}
- A two-class classifier is a detector
 - Classes: {face, no face}
- The classifier is trained from a *training set*
 - Training set: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots$
 - x_i measurements (image, features, histogram, ...)
 - $-y_i$ labels
 - This is typically framed as a **learning** problem
- Outcome: $(i \rightarrow j)$ means outcome *i* is labeled as *j*
 - $(Matthew \rightarrow Ralph) error$
 - $(Matthew \rightarrow Matthew)$ correct

Training set

- Training set examples:
 - (image₁, "Joe"), (image₂, "Fred"), (image₃, "Sue"), ...
 - (color₁, "Face"), (color₂, "Hair"), (color₃, "Lips"), ...
 - (template₁, "eye"), (template₂, "eye"), (template₃, "eye"), \dots
 - Perhaps *negative* examples also: (image_i, "Not a face")...
- We want a rule (function) that does
 - F(new measurement) = label
 - ... with a low error rate
- Errors
 - False positives: *Yes* when the true answer is *No*
 - False negatives: *No* when the true answer is *Yes*
 - Misclassifications: A when the true answer is B

Classification errors

• For detection (two-class)

	Absent (0)	Present (1)
Not detected (0)	True negative $(0 \rightarrow 0)$	False negative $(1 \rightarrow 0)$
Detected (1)	False positive $(0 \rightarrow 1)$	True positive $(1 \rightarrow 1)$

Misclassifications: $(i \rightarrow j)$, where $i \neq j$

Misclassifications = *False negatives* + *False positives*

Segmentation and clustering

- Segmentation is about labeling similar pixels as belonging to the same group or segment
 - Pixels that *belong together* = pixels that *cluster*
- Clustering can be done along many dimensions (intensity, color, depth, motion, texture, ...)
 - Individually or combined
- There are some basic clustering methods that do well in certain cases
 - E.g., "k-means clustering"

Clustering/segmenting by k-means

- The "*k-means*" algorithm is a fast, simple way to cluster *N*-dimensional data
 - Given a bunch of data points, group them into k different clusters
 - Each data point is typically a feature vector
 - But could even be RGB values
- We would like to minimize the *objective function*

$$\Theta(\text{clusters, data}) = \sum_{i \in clusters} \sum_{j \in cluster(i)} (x_j - c_i)^T (x_j - c_i)$$

...but this is too expensive to do for lots of data points!

= the sum of the squares of the distances to cluster centers (means)

Extra

The objective function would be larger in this case

k-means clustering

Algorithm

- Randomly choose *k* data points to be the initial cluster centers
- Iterate until centers are stable:
 - Assign each point to the nearest cluster
 - Recalculate the cluster center (mean)

Extra

Classification/detection example

- Task: Automatically detect abnormal white blood cells
- 1. Process images to find outlines
- 2. Count white blood cells
- 3. Classify abnormal white blood cells

Steps 2 and 3 require *training* – teaching the system how to distinguish between white blood cells and others, and between normal and abnormal white blood cells

It's very important to choose good, discriminating features

Classification/detection example

 \mathbf{O}

 \mathbf{O}

•

 \mathbf{O}

0

Size

Size

Where to place the boundary?

We wish to minimize false positives and false negatives

Training vs. Testing

The *training set* (known examples) should be representative of the *testing set* (real data).

Good performance on your training set alone is meaningless...!

In every experiment, keep the *training* and *testing* data separate.

Evaluating performance – the ROC curve

Improving classification/detection

- More training samples
 - So classification strategy is more general
- Don't "overtrain"
 - Don't want to "learn the noise" keep it simple
- Use better features
 - Good features lead to good class separation
- Don't confuse movement *along* the ROC curve with *improving* the ROC curve

Extra

General approach to recognition

Invariant features for recognition

- An *invariant* feature is one that does not change under a certain class of transformations
 - Lengths and angles are invariant under rigid motion
 - Normalized correlation is invariant under scaling of image intensities
 - Brightness/color of a Lambertian surface is invariant under rotation
 - Length and angles *in the image* are **not** invariant under out-ofplane rotation and translation
 - Etc....
- Invariants can be geometric (location, shape) or radiometric (image values)
 - Geometric invariants tend to be much more common and useful

General approach to recognition

Why not this for face recognition/detection?

- 1. Ahead of time, search over all possible images to see which ones look like my face, and save these
- 2. During recognition, see if the input image is one of these
- Image space is vastly large
 - 8x8 binary image $\rightarrow 2^{64}$ image points (distinct images)
 - 1 billion images per second \rightarrow 600 years
- Step #1 would never finish!
- Not to mention, we'd have to do this for every possible view of my face
 - Range of facial expressions, lighting conditions, poses, etc.

Levels of Recognition/Matching

Reminder: Why computer vision is so hard!

These are all images of Simon's face!

In general, object recognition is difficult because of the immense variability of object appearance. With faces, this is even worse!

How can we reliably detect/recognize Simon???

Scanning windows...
Basic component: a binary classifier

If object may be in a cluttered scene, slide a window around looking for it.

(Essentially, our skin detector was doing this, with a window that was one pixel big.)

Fleshing out this pipeline a bit more, we need to:

- 1. Obtain training data
- 2. Define features
- 3. Define classifier

- Consider all subwindows in an image
 - Sample at multiple scales and positions (and orientations)
- Make a decision per window:
 - "Does this contain object category X or not?"

Feature extraction: global appearance

Simple holistic descriptions of image content

- » grayscale / color histogram
- vector of pixel intensities

Eigenfaces: global appearance description

An early appearance-based approach to face recognition

Training images

Eigenvectors computed from covariance matrix

Generate lowdimensional representation of appearance with a linear subspace.

Project new images to "face space".

Recognition via nearest neighbors in face space

Turk & Pentland, 1991

Feature extraction: global appearance

• Pixel-based representations sensitive to small shifts

 Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Cartoon example: an albino koala

Gradient-based representations

• Consider edges, contours, and (oriented) intensity gradients

Gradient-based representations

• Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

GIST

Representing Image Structure with "GIST"

Global features

Slide Credit: Olivia

Oliva & Torralba (2001,2002, 2006)

What do Images Statistics say about **Depth**?

Slide Credit: Torralba, Olivia, J. Huang

Scene Scale

- "The point of view that any given observer adopts on a specific scene is constrained by the volume of the scene."
- How does the amount of clutter vary against scene scale in man-made environments? In natural environments?

Slide Credit: Torralba, Olivia, J. Huang

Categorization of Natural Scenes

Confusion Matrix (in % using Layout template) : Local organization: Classification of prototypical scenes (400 / category) correct for 92 % images Countryside Coast Forest Mountain (4 similar images on 7 K-NN) 88.6 8.9 1.3 Coast 1.2 1.3 Countryside 9.8 85.2 3.7 0.4 3.6 4.5 91.5 Mountain 0.4 4.6 3.8 91.2

Slide Credit: Olivia

inter singly

HOG

Map each grid cell in the input window to a histogram counting the gradients per orientation.

Code available: http://pascal.inrialpes.fr/soft/olt/

Dalal & Triggs, CVPR 2005

Slide credit: Dalal, Triggs, P. Barnum

- Tested with
 - RGB
 - LAB
 - Grayscale
- Gamma Normalization and Compression
 - Square root
 - Log

Sobel

• Histogram of gradient orientations

-Orientation -Position

$$L1 - norm: v \longrightarrow v/(||v||_1 + \epsilon) \qquad L1 - sqrt: v \longrightarrow \sqrt{v/(||v||_1 + \epsilon)}$$
$$L2 - norm: v \longrightarrow v/\sqrt{||v||_2^2 + \epsilon^2} \qquad L2 - hys: L2 \text{-norm, plus clipping at .2 and renomalizing}$$

Slide credit: Dalal, Triggs, P. Barnum

Boosted Face Detection with Gradient Features

Gradient-based representations: Rectangular features

Compute differences between sums of pixels in rectangles

Captures contrast in adjacent spatial regions, efficient to compute

Each feature parameterized by scale, position, type.

Viola & Jones, CVPR 2001

Boosting

- Build a strong classifier by combining number of "weak classifiers", which need only be better than chance
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
 - including fast simple classifiers that alone may be inaccurate
- We'll look at Freund & Schapire's AdaBoost algorithm
 - Easy to implement
 - Base learning algorithm for Viola-Jones face detector

AdaBoost: Intuition

Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire

AdaBoost: Intuition

AdaBoost: Intuition

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples For T rounds

Evaluate

 weighted error
 for each
 feature, pick
 best.
 Re-weight the examples:
 Incorrectly classified -> more
 weight

Correctly classified -> less weight
Final classifier is combination of

the weak ones, weighted according to error they had. Freund & Schapire 199

Example: Face detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

• Now we'll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

"Rectangular" filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images → scale features directly for same cost

Viola & Jones, CVPR K. Grauman, B. Leibe
Large library of filters

Considering all possible filter parameters: position, scale, and type: 180,000+ possible features

associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

Viola & Jones, CVPR

AdaBoost for feature+classifier selection

• Want to select the single rectangle feature and threshold that best separates positive (faces) and (non-faces) training examples, in terms of *weighted* error.

Resulting weak classifier:

$$h_{t}(x) = \begin{cases} +1 & \text{if } f_{t}(x) > \theta_{t} \\ -1 & \text{otherwise} \end{cases}$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly. $e_i = 1$ otherwise. and $\beta_t = \frac{\epsilon_t}{\epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples For T rounds

Evaluate

 weighted error
 for each
 feature, pick
 best.
 Re-weight the examples:
 Incorrectly classified -> more
 weight
 Correctly classified -> less weight

Final classifier is combination of

the weak ones, weighted according to error they had. Freund & Schapire 199

AdaBoost for Efficient Feature Selection

- Image Features = Weak Classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this feature is a simple function of error rate
 - Reweight examples

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- How to make the detection more efficient?

Cascading classifiers for detection

For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,

- Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

Fleuret & Geman, IJCV 2001 Rowley et al., PAMI 1998 Viola & Jones CVERGramman, B. Leibe

Viola-Jones Face Detector: Summary

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]
 K. Grauman, B. Leibe

First two features selected

K. Grauman, B. Leibe

Detecting profile faces?

Detecting profile faces requires training separate detector with profile examples.

Example application

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV vide BMVC 2006.

http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example application: faces in photos

Highlights

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

• Not all objects are "box" shaped

K. Grauman, B. Leibe

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

K. Grauman, B. Leibe

• If considering windows in isolation, context is lost

Sliding window

Detector's view

Figure credit: Derek Hoier. Grauman, B. Leibe

Context can constrain a sliding window search

(b) P(person) = uniform

(f) P(person | viewpoint)

(d) P(person | geometry)

(g) P(person|viewpoint,geometry)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Models based on local features will

alleviate some of these limitations...

K. Grauman, B. Leibe

Local-feature Alignment

Hypothesize and test: main idea

- Given model of object
- New image: hypothesize object identity and pose
- Render object in camera
- Compare rendering to actual image: if close, good hypothesis.

Recall: Alignment

• Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images

Alignment-based

-23-4445(a-d)

(a) Original picture.

(b) Differentiated picture.

(c) Line drawing.

L. G. Roberts, *Machine Perception of Three Dimensional Solids*, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

(d) Rotated view.

Alignment-based

Huttenlocher & Ullman (1987)

Source: Lana Lazebnik

Alignment-based

ACRONYM (Brooks and Binford, 1981)

Given a particular model object, we can estimate the *correspondences* between image and model features

Use correspondence to estimate model pose relative to object coordinate frame

Generating hypotheses

We want a good correspondence between model features and image features.

– Brute force?

Brute force hypothesis generation

- For every possible model, try every possible subset of image points as matches for that model's points.
- Say we have L objects with N features, M features in image

Generating hypotheses

We want a good correspondence between model features and image features.

- Brute force?
- Pose consistency, alignment: use subsets of features to estimate larger correspondence
- Voting, pose clustering

Pose consistency / alignment

- Key idea:
 - If we find good correspondences for a small set of features, it is easy to obtain correspondences for a much larger set.
- Strategy:
 - Generate hypotheses using small numbers of correspondences
 - Backproject: transform *all* model features to image features
 - Verify

Example: 2d affine mappings

• Say camera is looking down perpendicularly on planar surface

• We have two coordinate systems (object and image), and they are related by some affine mapping (rotation, scale, translation, shear).

Alignment: verification

- Given the back-projected model in the image:
 - Check if image edges coincide with predicted model edges
 - May be more robust if also require edges to have the same orientation
 - Consider texture in corresponding regions
- Possible issues?
Alignment: verification

Figure from "Object recognition using alignment," D.P. Huttenlocher and S. Ullman, Proc. Int. Conf. Computer Vision, 1986, copyright IEEE, 1986

Alignment: verification

Issue with hypothesis & test approach

- May have false matches
 - We want *reliable* features to form the matches
 - Local invariant features useful to find matches, and to verify hypothesis

(SIFT, etc.)

- May be too many hypotheses to consider
 - We want to look at the *most likely* hypotheses first
 - **Pose clustering (voting):** Narrow down number of hypotheses to verify by letting features *vote* on model parameters.

Pose clustering (voting)

- Narrow down the number of hypotheses to verify: identify those model poses that a lot of features agree on.
 - Use each group's correspondence to estimate pose
 - Vote for that object pose in accumulator array (one array per object if we have multiple models)

• Local invariant features can give more reliable matches and means of verification

Pose clustering and verification with SIFT [Lowe]

To detect **instances** of objects from a model base:

1) Index descriptors (distinctive features narrow possible matches)

Indexing local features

Pose clustering and verification with SIFT [Lowe]

To detect **instances** of objects from a model base:

- 1) Index descriptors (distinctive features narrow possible matches)
- 2) Generalized Hough transform to vote for poses (keypoints have record of parameters relative to model coordinate system)
- 3) Affine fit to check for agreement
 between model and image
 features (approximates perspective
 projection for planar objects)

Planar objects

Model images and their SIFT keypoints

Input image

Recognition result

3d objects

Background subtract for model boundaries

Objects recognized, though affine model not as accurate. Recognition in spite of occlusion

[Lowe]

Recall: difficulties of voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully
- (Recall Hough Transform)
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

A probabilistic interpretation (and re-tuning) of Lowe's system:

P. Moreels and P. Perona, "A probabilistic cascade of detectors for individual object recognition," European Conference on Computer Vision, 2008.

Coarse-to-Fine detection

- Progressively narrow down focus on correct region of hypothesis space
- Reject with little computation cost irrelevant regions of search space
- Use first information that is easy to obtain
- Simple building blocks organized in a cascade
- Probabilistic interpretation of each step

Score of an extended hypothesis

Coarse data : prior knowledge

• Which objects are likely to be there, which pose are they likely to have ?

unlikely situations

Coarse Hough transform

[Lowe1999,2004]

Coarse Hough transform

- Prediction of position of model center after transform
- The space of transform parameters is discretized into 'bins'
- Coarse bins to limit boundary issues and have a low falsealarm rate for this stage \widetilde{N}
- We count the number of votes collected by each bin.

Correspondence or clutter ? PROSAC

- Similar to RANSAC robust statistic for parameter estimation
 - Priority to candidates with good **quality** of appearance match
- 2D affine transform : 6 parameters
 ⇒ each sample contains 3 candidate correspondences.

[Fischler 1973] [Chum&Matas 2005] **Output** of PROSAC : pose transformation + set of features correspondences

Consistency

Consistency between observations and predictions from hypothesis

$$P(F|V, \tilde{N}, \bar{N}, H, M) = \prod_{V(i) \neq 0} p_{fg}(f_i|H, f_{V(i)}) \cdot \prod_{V(i) = 0} p_{bg}(f_i)$$

Common-frame approximation : parts are

Constellation model

conditionally independent once reference position

of the object is fixed. [Lowe1999,Huttenlpcher90,Moreels04]-

model m $p_m(x_1...x_N)$ $D.O.F. = O(Parts^2)$ model m $p_m(x_1...x_N)$ $D.O.F. = O(Parts^2)$ $p_m(x_i | \Theta_m)$ D.O.F. = O(Parts) $p_m(x_i | \Theta_m)$ D.O.F. = O(Parts)

Consistency

Consistency between observations and predictions from hypothesis

$$P(F|V, \tilde{N}, \bar{N}, H, M) = \prod_{V(i) \neq 0} p_{fg}(f_i|H, f_{V(i)}) \cdot \prod_{V(i) = 0} p_{bg}(f_i)$$

An example

An example

Efficiency of coarse-to-fine processing

Giuseppe Toys database – Models

3 - 10.JPG

4 - 100.JPG

5 - 103.JPG

6 - 104.JPG

8 - 11.JPG

9 - 110.JPG

10 - 112.JPG

11 - 114.JPG

13 - 116.JPG

14 - 117.JPG

15 - 120.JPG

18 - 125.JPG

19 - 126.JPG

20 - 127.JPG

22 - 16.JPG

24 - 20.JPG

25 - 22.JPG

61 objects, 1-2 views/object

Giuseppe Toys database – Test scenes

141 test scenes

Results – Giuseppe Toys database

Lowe'99,'04

<u>Conclusions – Moreels and Perona</u>

• Coarse-to-fine strategy prunes irrelevant search branches at early stages.

• Probabilistic interpretation of each step.

• Higher performance than Lowe, especially in cluttered environment.

• Front end (features) needs more work for smooth or shiny surfaces.

Scaling up: BOW Indexing

Outline of a large-scale retrieval strategy

- 1. Compute affine covariant regions in each frame independently
- 2. "Label" each region by a vector of descriptors based on its intensity
- 3. Finding corresponding regions is transformed to finding nearest neighbour vectors
- 4. Rank retrieved frames by number of corresponding regions
- 5. Verify retrieved frame based on spatial consistency

Example of object recognition

1000+ descriptors per frame

Shape adapted regions

Maximally stable regions

Match regions between frames using SIFT descriptors and spatial consistency

Multiple regions overcome problem of partial occlusion

Shape adapted regions

Maximally stable regions

Visual search using local regions

Schmid and Mohr '97

Sivic and Zisserman'03

Nister and Stewenius'06 (1M)

Philbin et al.'07

Chum et al.'07 + Jegou and Schmid'07 Chum et al.'08

- 1k images
- 5k images
- 50k images
- 100k images
- 1M images
- 5M images

Index 1 billion (10^9) images

- 200 servers each indexing 5M images?

Beyond Nearest Neighbors... Indexing local features using inverted file index

Jong L75 * From Detroit to	Butterthy Contex McGuire: 124
Elorida: ingida hack cover	CAA (eeo AAA)
Trive L05 " From Roston to	CCC The 111 112 115 125 142
Elorida: inelde hack cover	Co #Zao: 147
29 Spanish Trail Boadway	Calonsabatchee River: 152
101-102 104	Name: 150
1 Traffic Information: 83	Canavaral Natri Sasehora: 173
14 (Barrier Isi) + 1-95 Access: 86	Cannon Creek Airnark: 130
AA (and CAA): 83	Capper Boad: 106 169
AA National Office: 88	Cane Canaveral: 174
obreviations	Castillo San Marcos: 169
Colored 25 mile Maps: cover	Cave Diving: 131
Exit Services: 196	Cavo Costa, Name: 150
Traveloque: 85	Celebration: 93
rica: 177	Charlotte County: 149
pricultural Inspection Stns: 126	Charlotte Harbor: 150
h-Tah-Thi-Ki Museum: 160	Chautauqua: 116
r Conditioning, First; 112	Chipley: 114
abama: 124	Name: 115
achua: 132	Choctawatchee, Name; 115
County; 131	Circus Museum, Ringling; 147
afia River; 143	Citrus; 88,97,130,136,140,180
apaha, Name; 126	CityPlace, W Palm Beach; 180
fred B Maclay Gardens; 106	City Maps,
ligator Alley; 154-155	Ft Lauderdale Expwys; 194-195
ligator Farm, St Augustine; 169	Jacksonville; 163
ligator Hole (definition); 157	Kissimmee Expwys; 192-193
ligator, Buddy; 155	Miami Expressways; 194-195
ligators; 100,135,138,147,156	Orlando Expressways; 192-193
nastasia Island; 170	Pensacola; 26
nhaica; 108-109,146	Tallahassee; 191
palachicola River; 112	Tampa-St. Petersburg; 63
opleton Mus of Art; 136	St. Augsutine; 191
quifer; 102	Civil War; 100,108,127,138,141
rabian Nights; 94	Clearwater Marine Aquarium; 187
rt Museum, Ringling; 147	Collier County; 154
ruba Beach Cafe; 183	Collier, Barron; 152
ucilla River Project; 106	Colonial Spanish Quarters; 168
abcock-Web WMA; 151	Columbia County; 101,128
ahia Mar Marina; 184	Coquina Building Material; 165
aker County; 99	Corkscrew Swamp, Name; 154
arefoot Maimen; 182	Cowboys; 95
arge Canal; 137	Crab Irap II; 144
ee Line Expy; 80	Cracker, Pionda; 88,95,132
eiz Outlief Mail; 89	Crosstown Expy: 11,35,98,143
enalo Gastro; 136	Cuban bread; 164 Dada Datilatiala; 140
g 1; 100	Dade Balleneio; 140 Dade Mai Erenaia; 190 140 161
g Cypress; 100,108	Datio, endj. Prancis; 139-140,161 Dania Banah Hurrianaa; 194
g Foot monster; 100 Bis Swamp Cafari: 160	Danial Beans, Elorida Walk: 112
ardvanter Divar CD- 117	Daudona Beach: 172,172
nonnain Pinn or, 117	De Lood: 97
ue migeià	De Land, 0/

Index

AI

Bi

B

B

B

B

Be

B

B

Bi

Bi

Bi

Bi

BI

Ri

Driving Lanes; 85 Duval County: 163 Eau Gallie; 175 Edison, Thomas; 152 Eglin AFB; 116-118 Eight Reale; 176 Ellenton; 144-145 Emanuel Point Wreck; 120 Emergency Caliboxes; 83 Epiphyles; 142,148,157,159 Escambia Bay: 119 Bridge (I-10); 119 County; 120 Estero: 153 Everglade.90,95,139-140,154-160 Draining of; 156,181 Wildlife MA; 160 Wonder Gardens: 154 Falling Waters SP: 115 Fantasy of Flight: 95 Fayer Dykes SP; 171 Fires, Forest; 166 Fires, Prescribed ; 148 Fisherman's Village; 151 Flagler County; 171 Flagler, Henry; 97,165,167,171 Florida Aquarium: 186 Florida. 12,000 years ago; 187 Cavern SP: 114 Map of all Expressways; 2-3 Mus of Natural History; 134 National Cemetery ; 141 Part of Africa; 177 Platform; 187 Sheriff's Boys Camp; 126 Sports Hall of Fame: 130 Sun 'n Fun Museum: 97 Supreme Court; 107 Florida's Tumpike (FTP), 178,189 25 mile Strip Maps: 66 Administration; 189 Coin System; 190 Exit Services; 189 HEFT: 76.161.190 History: 189 Names; 189 Service Plazas; 190 Spur SR91; 76 Ticket System: 190 Toll Plazas; 190 Ford, Henry: 152

For text documents, an efficient way to find all *pages* on which a *word* occurs is to use an index...

We want to find all *images* in which a *feature* occurs.

To use this idea, we'll need to map our features to "visual words".

Slide credit L. Fei-Fei

Analogy to documents

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception i pround us is based essential sensory, bram, ech the brain from o visual, perception, thought the point by retinal, cerebral cortex, cerebral upon wi eye, cell, optical Through now kno nerve, image perception more compli the visual imputient Hubel, Wiese cell layers of the op-/iesel have been able to demonstrate that the about the image falling on the retina un step-wise analysis in a system of nerve ce in columns. In this system each cell has its specific function and is responsible for a spec detail in the pattern of the retinal image.

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surplus would be ad 30% jump ina. trade in exports to 6 rise in imports to surplus, commerce, further a China's exports, imports, US, deliber surplus yuan, bank, domestic, factor. I said the d **Solution** foreign, increase, domestic a country. Chin trade, value against the dollar nitted it to trade within a narrow ants the yuan to be allowed to trade freely. Beijing has made it clear that it will take and tread carefully before allowing the yu rise further in value.

A clarification: definition of "BoW"

Looser definition

Independent features

Slide credit L. Fei-Fei

A clarification: definition of "BoW"

Looser definition

Independent features

Stricter definition

- Independent features
- histogram representation

Slide credit L. Fei-Fei
Extract some local features from a number of images ...

e.g., SIFT descriptor space: each point is 128-dimensional

Slide credit: D. Nister

Map high-dimensional descriptors to tokens/words by quantizing the feature space

 Quantize via clustering, let cluster centers be the prototype "words"

Map high-dimensional descriptors to tokens/words by quantizing the feature space

 Determine which word to assign to each new image region by finding the closest cluster center.

Visual words

Example: each group of patches belongs to the same visual word

Visual words

- First explored for texture and material representations
- *Texton* = cluster center of filter responses over collection of images
- Describe textures and materials based on distribution of prototypical texture elements.

Leung & Malik 1999; Varma & Zisserman, 2002; Lazebnik, Schmid & Ponce, 2003;

Inverted file index for images comprised of visual words

- Score each image by the number of common visual words (tentative correspondences)
- But: does not take into account spatial layout of regions

Clustering / quantization methods

• k-means (typical choice), agglomerative clustering, meanshift,...

- Hierarchical clustering: allows faster insertion / word assignment while still allowing large vocabularies
 - Vocabulary tree [Nister & Stewenius, CVPR 2006]

Example: Recognition with Vocabulary Tree

Tree construction:

Vocabulary Tree

Training: Filling the tree

[Nister & Stewenius, CVPR'06]

Vocabulary Tree

Training: Filling the tree

[Nister & Stewenius, CVPR'06]

[Nister & Stewenius, CVPR'06]

Slide credit: David Nister

Vocabulary Tree: Performance

Evaluated on large databases

– Indexing with up to 1M images

Online recognition for database of 50,000 CD covers

Retrieval in ~1s

Find experimentally that large vocabularies can be beneficial for recognition

[Nister & Stewenius, CVPR'06]

"Bag of visual words"

