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Object Categorization

• How to recognize ANY car

• How to recognize ANY cow



Challenges: robustness

Illumination Object pose Clutter

ViewpointIntra-class 

appearance
Occlusions
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Challenges: robustness

• Detection in Crowded Scenes

– Learn object variability

 Changes in appearance, scale, and articulation

– Compensate for clutter, overlap, and occlusion



Challenges: context and human experience

K. Grauman, B. Leibe



Challenges: context and human experience

Context cues

Image credit: D. Hoeim



Challenges: learning with minimal supervision

MoreLess

K. Grauman, B. Leibe



Slide from Pietro Perona, 2004 Object Recognition workshop



Slide from Pietro Perona, 2004 Object Recognition workshop



Rough evolution of focus in recognition research

1980s 2000-2010…1990s to early 2000s



Detection, recognition, and classification

• Detection = 2-class classification problem

– Object/class or not object/class

– E.g., detect all the faces in this image

• Recognition of identity = within-class classification 

problem

– Within a given class of objects (e.g., faces, logos), identify the 

object as one particular member of the class (e.g., Joe’s face, Nike 

logo)

• Recognition of class = among-class classification

– Which class of things is this: sky, cloud, forest, face, …



Example: Face detection

Found Face   at [x=108, y=80] 

Found Face   at [x=76, y=73] 

Found Face   at [x=257, y=99]

Found Face   at [x=154, y=44]

Found Face   at [x=211, y=100]

Found Face   at [x=147, y=97]



Example: Face recognition



Example: Polyhedral object recognition



Approaches to detection and classification

• There are many approaches to object detection and 
recognition, depending on how the object is modeled

– Template-based: Match an image template (or a family of image 
templates) of the desired object

– Feature-based: Derive image features and then match with feature 
model of object

 Colors, texture, edges, corners, …

– Shape (2D or 3D): Describe (parameterize) the object contour or 
full shape, and look for that shape in the image

– And many more…

• In some sense, all these can be viewed as three steps:

– Modeling the object(s) (“training”)

– Preprocessing the image (computing features, shape, ...)

– Classify based on a comparison or match between model and 
image data



Template matching and classification

• If we want to detect and recognize (classify) objects in 

images, one simple technique is to use normalized 

correlation

– Provides a measure of how well the correlation template matches 

the image region

– I.e., “template matching”

• But in general there is not just one template to match

– E.g., in face recognition – possibly many example templates 

(different people, expressions, lighting, rotation, scale, …)

– A classifier takes an input feature set and produces an output class 

label



Classifiers

• A classifier assigns a label to any new example

– E.g., the object name

– Classes: {Joe, Bob, Mary, Fred, Lisa, unknown}

• A two-class classifier is a detector

– Classes: {face, no face}

• The classifier is trained from a training set

– Training set: (x1, y1), (x2, y2), (x3, y3), ….

– xi – measurements (image, features, histogram, …)

– yi – labels

– This is typically framed as a learning problem

• Outcome: (i  j) means outcome i is labeled as j

– (Matthew  Ralph) – error

– (Matthew  Matthew) – correct

Extra



Training set

• Training set examples:

– (image1, “Joe”), (image2, “Fred”), (image3, “Sue”), …

– (color1, “Face”), (color2, “Hair”), (color3, “Lips”), …

– (template1, “eye”), (template2, “eye”), (template3, “eye”), …

– Perhaps negative examples also: (imagei, “Not a face”)…

• We want a rule (function) that does

– F(new measurement) = label

…with a low error rate

• Errors

– False positives: Yes when the true answer is No

– False negatives: No when the true answer is Yes

– Misclassifications: A when the true answer is B

Extra



Classification errors

• For detection (two-class)

True negative (0  0) False negative (1  0)

False positive (0  1) True positive (1  1)

Absent (0) Present (1)

Not detected (0)

Detected (1)

Misclassifications:  (i  j), where i  j

Misclassifications = False negatives + False positives



Segmentation and clustering

• Segmentation is about labeling similar 

pixels as belonging to the same group 

or segment

– Pixels that belong together = pixels that 

cluster

• Clustering can be done along many 

dimensions (intensity, color, depth, 

motion, texture, ...)

– Individually or combined

• There are some basic clustering 

methods that do well in certain cases

– E.g., “k-means clustering”
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Clustering/segmenting by k-means

• The “k-means” algorithm is a fast, simple way to cluster N-

dimensional data

– Given a bunch of data points, group them into k different clusters

– Each data point is typically a feature vector

 But could even be RGB values

• We would like to minimize the objective function
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...but this is too expensive to do for lots of data points!
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Extra



k-means clustering
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= the sum of the squares of the distances to cluster centers (means)
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k-means clustering

Algorithm

• Randomly choose k data points to be the initial cluster 

centers

• Iterate until centers are stable:

– Assign each point to the nearest cluster

– Recalculate the cluster center (mean)

Extra
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Classification/detection example

Task: Automatically detect 

abnormal white blood cells 

1. Process images to find outlines

2. Count white blood cells

3. Classify abnormal white blood 

cells

Steps 2 and 3 require training – teaching the system how to distinguish 

between white blood cells and others, and between normal and abnormal 

white blood cells

It’s very important to choose good, discriminating features



Classification/detection example

Size

Symmetry

Size

Symmetry

Size

Symmetry

White blood 

cells

Other



Where to place the boundary?

Size

Symmetry

False positive

False negative (miss)

We wish to minimize false 

positives and false negatives

Training vs. Testing

The training set (known 

examples) should be 

representative of the testing 

set (real data).

Good performance on your 

training set alone is 

meaningless...!

In every experiment, keep the 

training and testing data 

separate.



Evaluating performance – the ROC curve

False positives

Detection rate

(1 - false negative rate)

0

0 1.0

1.0

Perfect

Random chance

Improving performance

= better separability between classes

For (two-class) detection



Improving classification/detection

• More training samples

– So classification strategy is more general

• Don’t “overtrain”

– Don’t want to “learn the noise” – keep it simple

• Use better features

– Good features lead to good class separation

• Don’t confuse movement along the ROC curve with 

improving the ROC curve

Extra



General approach to recognition

Feature

extraction
Image

Feature

vector

Images

Training

Object models

(feature vectors)

Classification Match

Training

stage

Recognition

stage

Extra



Invariant features for recognition

• An invariant feature is one that does not change under a 

certain class of transformations

– Lengths and angles are invariant under rigid motion

– Normalized correlation is invariant under scaling of image 

intensities

– Brightness/color of a Lambertian surface is invariant under rotation

– Length and angles in the image are not invariant under out-of-

plane rotation and translation

– Etc....

• Invariants can be geometric (location, shape) or 

radiometric (image values)

– Geometric invariants tend to be much more common and useful

Extra



General approach to recognition

Feature

extraction
Image

Feature

vector

Images

Training

Object models

(feature vectors)

Classification Match

Training

stage

Recognition

stage

Would like 

invariant features

here if possible

Extra



Why not this for face recognition/detection?

1. Ahead of time, search over all possible images to see 
which ones look like my face, and save these

2. During recognition, see if the input image is one of these

• Image space is vastly large

– 8x8 binary image  264 image points (distinct images)

– 1 billion images per second 

• Step #1 would never finish!

• Not to mention, we’d have to do this for every possible 
view of my face

– Range of facial expressions, lighting conditions, poses, etc.

600 years

Extra



Levels of Recognition/Matching

Shape

Features

Pixels

Shape

Features

Pixels

Model ExampleAbstraction

Appearance based 

recognition

Feature based 

recognition

Model based 

recognition

Extra



Reminder: Why computer vision is so hard!

These are all images 

of Simon’s face!

How can we reliably detect/recognize Simon???

In general, object recognition is difficult because of the immense 

variability of object appearance. With faces, this is even worse!



Scanning windows…



Detection via classification: Main idea

Car/non-car 

Classifier

Yes, car.No, not a car.

K. Grauman, B. Leibe

Basic component: a binary classifier



Detection via classification: Main idea

Car/non-car 

Classifier

K. Grauman, B. Leibe

If object may be in a cluttered scene, slide a window 

around looking for it.

(Essentially, our skin detector was doing this, with a 

window that was one pixel big.)



Detection via classification: Main idea

Car/non-car 

Classifier

Feature 

extraction

Training examples

K. Grauman, B. Leibe

1. Obtain training data

2. Define features

3. Define classifier

Fleshing out this 

pipeline a bit more, 

we need to:
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Detection via classification: Main idea

• Consider all subwindows in an image

– Sample at multiple scales and positions (and orientations)

• Make a decision per window:

– “Does this contain object category X or not?”



Feature extraction: 

global appearance
Feature 

extraction

Simple holistic descriptions of image content

 grayscale / color histogram

 vector of pixel intensities

K. Grauman, B. Leibe



Eigenfaces: global appearance description

K. Grauman, B. Leibe
Turk & Pentland, 1991

Training images

Mean

Eigenvectors computed 

from covariance matrix

Project new 

images to “face 

space”.

Recognition via 

nearest neighbors 

in face space

Generate low-

dimensional 

representation 

of appearance 

with a linear 

subspace.


+ +

Mean

+ +

...

An early appearance-based approach to face recognition



Feature extraction: global appearance

• Pixel-based representations sensitive to small shifts

• Color or grayscale-based appearance description can be 

sensitive to illumination and intra-class appearance 

variation

K. Grauman, B. Leibe

Cartoon example: 

an albino koala



Gradient-based representations

• Consider edges, contours, and (oriented) intensity 

gradients

K. Grauman, B. Leibe



Gradient-based representations

• Consider edges, contours, and (oriented) intensity gradients

• Summarize local distribution of gradients with histogram

– Locally orderless: offers invariance to small shifts and rotations

– Contrast-normalization: try to correct for variable illumination

K. Grauman, B. Leibe



GIST



| vt | PCA

80 features

Representing Image Structure with “GIST”

Oliva & Torralba (2001,2002, 2006)

V = {energy at each orientation and 

scale} =  6 x 4 dimensions

VG

Vector of

Global features

Slide Credit: Olivia



What do Images Statistics say about 

Depth?

V: Vertical

H: Horizontal

O: Oblique

Slide Credit: Torralba, Olivia, J. Huang 



Scene Scale

 “The point of view that any given observer adopts on a 
specific scene is constrained by the volume of the scene.”

 How does the amount of clutter vary against scene scale in 
man-made environments? In natural environments?

Slide Credit: Torralba, Olivia, J. Huang 



Categorization of Natural Scenes

Coast              Countryside        Forest              Mountain

Coast  88.6                      8.9                  1.2                     1.3

Countryside 9.8                      85.2                 3.7                     1.3

Forest 0.4                       3.6               91.5                      4.5

Mountain  0.4                       4.6                 3.8                    91.2

Confusion Matrix (in % using Layout template) : 

Classification of prototypical scenes  (400 / category) Local organization:

correct for 92 % images
(4 similar images on 7 K-NN)

Slide Credit: Olivia



HOG



Gradient-based representations:

Histograms of oriented gradients (HoG)

Dalal & Triggs, CVPR 2005

Map each grid cell in the input 

window to a histogram counting 

the gradients per orientation.

Code available: 

http://pascal.inrialpes.fr/soft/olt/

K. Grauman, B. Leibe



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



• Tested with

– RGB

– LAB

– Grayscale

• Gamma Normalization and Compression

– Square root

– Log

Slide credit: Dalal, Triggs, P. Barnum



uncentered

centered

cubic-corrected

diagonal

Sobel

Slide credit: Dalal, Triggs, P. Barnum



• Histogram of gradient orientations

-Orientation     -Position

– Weighted by magnitude

Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Boosted Face Detection

with Gradient Features



Gradient-based representations:

Rectangular features

Compute differences between sums of pixels in rectangles

Captures contrast in adjacent spatial regions, efficient to 

compute

Each feature parameterized by scale, position, type.

Viola & Jones, CVPR 2001
K. Grauman, B. Leibe



Boosting

• Build a strong classifier by combining number of “weak 

classifiers”, which need only be better than chance

• Sequential learning process: at each iteration, add a weak 

classifier

• Flexible to choice of weak learner

– including fast simple classifiers that alone may be inaccurate

• We’ll look at Freund & Schapire’s AdaBoost algorithm

– Easy to implement

– Base learning algorithm for Viola-Jones face detector

66
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AdaBoost: Intuition

67
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Figure adapted from Freund and Schapire

Consider a 2-d feature 

space with positive and 

negative examples.

Each weak classifier splits 

the training examples with 

at least 50% accuracy.

Examples misclassified by 

a previous weak learner 

are given more emphasis 

at future rounds.



AdaBoost: Intuition

68
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AdaBoost: Intuition

69
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Final classifier is 

combination of the 

weak classifiers



AdaBoost Algorithm

Start with 

uniform 

weights on 

training 

examples

Evaluate 

weighted error 

for each 

feature, pick 

best.
Re-weight the examples:

Incorrectly classified -> more 

weight

Correctly classified -> less weight
Final classifier is combination of 

the weak ones, weighted 

according to error they had.
Freund & Schapire 1995

{x1,…xn}
For T rounds



Example: Face detection

• Frontal faces are a good example of a class where global 

appearance models + a sliding window detection approach fit 

well:

– Regular 2D structure

– Center of face almost shaped like a “patch”/window

• Now we’ll take AdaBoost and see how the Viola-Jones face 

detector works

71
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Feature extraction

72
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Feature output is difference 

between adjacent regions

Viola & Jones, CVPR 

2001

Efficiently computable 

with integral image: any 

sum can be computed 

in constant time

Avoid scaling images 

scale features directly 

for same cost

“Rectangular” filters

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y)

Integral image



Large library of filters

Considering all 

possible filter 

parameters: 

position, scale, 

and type: 

180,000+ 

possible features 

associated with 

each 24 x 24 

window

Use AdaBoost both to select the informative 

features and to form the classifier

Viola & Jones, CVPR 

2001



AdaBoost for feature+classifier selection

• Want to select the single rectangle feature and threshold that best 

separates positive (faces) and negative (non-faces) training 

examples, in terms of weighted error.

Outputs of a 

possible rectangle 

feature on faces 

and non-faces.

…

Resulting weak classifier:

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo.

Viola & Jones, CVPR 

2001



AdaBoost Algorithm

Start with 

uniform 

weights on 

training 

examples

Evaluate 

weighted error 

for each 

feature, pick 

best.
Re-weight the examples:

Incorrectly classified -> more 

weight

Correctly classified -> less weight
Final classifier is combination of 

the weak ones, weighted 

according to error they had.
Freund & Schapire 1995

{x1,…xn}
For T rounds





• Even if the filters are fast to compute, each new image has 

a lot of possible windows to search.

• How to make the detection more efficient?



Cascading classifiers for detection

For efficiency, apply less accurate but 

faster classifiers first to immediately 

discard windows that clearly appear to 

be negative; e.g.,

– Filter for promising regions with an initial 

inexpensive classifier

– Build a chain of classifiers, choosing 

cheap ones with low false negative rates 

early in the chain

78
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Fleuret & Geman, IJCV 2001

Rowley et al., PAMI 1998

Viola & Jones, CVPR 2001
Figure from Viola & Jones CVPR 2001



Viola-Jones Face Detector: Summary

• Train with 5K positives, 350M negatives

• Real-time detector using 38 layer cascade

• 6061 features in final layer

• [Implementation available in OpenCV: 

http://www.intel.com/technology/computing/opencv/]
79

K. Grauman, B. Leibe

Faces

Non-faces

Train cascade of 

classifiers with 

AdaBoost

Selected features, 

thresholds, and weights

New image



Viola-Jones Face Detector: Results

80
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First two features 

selected



Viola-Jones Face Detector: Results



Viola-Jones Face Detector: Results



Viola-Jones Face Detector: Results



Detecting profile faces?

Detecting profile faces requires training separate 

detector with profile examples.



Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results
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Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV video,

BMVC 2006. 

http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example application

Frontal faces 

detected and 

then tracked,  

character 

names inferred 

with alignment 

of script and 

subtitles.



Example application: faces in photos



Highlights

• Sliding window detection and global appearance 

descriptors:

– Simple detection protocol to implement

– Good feature choices critical

– Past successes for certain classes

88
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Limitations

• High computational complexity 

– For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 

evaluations!

– If training binary detectors independently, means cost increases linearly 

with number of classes

• With so many windows, false positive rate better be low

89
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Limitations (continued)

• Not all objects are “box” shaped

90
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Limitations (continued)

• Non-rigid, deformable objects not captured well with 

representations assuming a fixed 2d structure; or must 

assume fixed viewpoint

• Objects with less-regular textures not captured well with 

holistic appearance-based descriptions

91
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Limitations (continued)

• If considering windows in isolation, context is lost

92
K. Grauman, B. LeibeFigure credit: Derek Hoiem

Sliding window Detector’s view
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Context can constrain a sliding window search



Limitations (continued)

• In practice, often entails large, cropped training set 

(expensive) 

• Requiring good match to a global appearance description 

can lead to sensitivity to partial occlusions

94
K. Grauman, B. LeibeImage credit: Adam, Rivlin, & Shimshoni



Models based on local features will 

alleviate some of these limitations…

95
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Local-feature Alignment



Hypothesize and test: main idea

• Given model of object

• New image: hypothesize object identity and pose

• Render object in camera

• Compare rendering to actual image: if close, good hypothesis.



Recall: Alignment

• Alignment: fitting a model to a transformation between 

pairs of features (matches) in two images

 
i

ii xxT )),((residual

Find transformation T

that minimizesT

xi
xi

'



Alignment-based

L. G. Roberts, Machine Perception of 

Three Dimensional Solids, Ph.D. 

thesis, MIT Department of Electrical 

Engineering, 1963.

http://www.packet.cc/files/mach-per-3D-solids.html


Alignment-based

Huttenlocher & Ullman (1987)
Source: Lana Lazebnik



Alignment-based

ACRONYM (Brooks 

and Binford, 1981)



How to form a hypothesis?

Given a particular model object,  we can estimate the 
correspondences between image and model features

Use correspondence to estimate model pose relative to object 
coordinate frame 



Generating hypotheses

We want a good correspondence between model features and 

image features.

– Brute force?



Brute force hypothesis generation

• For every possible model, try every possible subset of image 

points as matches for that model’s points.

• Say we have L objects with N features, M features in image



Generating hypotheses

We want a good correspondence between model features and 

image features.

– Brute force?

– Pose consistency, alignment: use subsets of features to 

estimate larger correspondence

– Voting, pose clustering



Pose consistency / alignment

• Key idea: 

– If we find good correspondences for a small set of features, 
it is easy to obtain correspondences for a much larger set.

• Strategy:

– Generate hypotheses using small numbers of 

correspondences 

– Backproject: transform all model features to image features

– Verify



Example: 2d affine mappings

• Say camera is looking down perpendicularly on planar surface

• We have two coordinate systems (object and image), and they 

are related by some affine mapping (rotation, scale, translation, 

shear).

P1 in image

P2 in image

P1 in object

P2 in object



Alignment: verification

• Given the back-projected model in the image:

– Check if image edges coincide with predicted model 

edges

– May be more robust if also require edges to have the 

same orientation

– Consider texture in corresponding regions

• Possible issues?



Alignment: verification



Alignment: verification



Issue with hypothesis & 

test approach

• May have false matches

– We want reliable features to form the matches

 Local invariant features useful to find matches, 

and to verify hypothesis 

(SIFT, etc.)

• May be too many hypotheses to consider

– We want to look at the most likely hypotheses first

 Pose clustering (voting): Narrow down number of 

hypotheses to verify by letting features vote  on 

model parameters.



Pose clustering (voting)

• Narrow down the number of hypotheses to verify: identify 

those model poses that a lot of features agree on.

– Use each group’s correspondence to estimate pose

– Vote for that object pose in accumulator array (one 

array per object if we have multiple models)

• Local invariant features can give more reliable matches 

and means of verification 



Pose clustering and verification with SIFT 

[Lowe]

1) Index descriptors (distinctive 

features narrow possible matches)

To detect instances of objects from a model base:



Indexing local features

…



Pose clustering and verification with SIFT 

[Lowe]

1) Index descriptors (distinctive 

features narrow possible matches)

2) Generalized Hough transform to 

vote for poses (keypoints have record 

of parameters relative to model 

coordinate system)

3) Affine fit to check for agreement 

between model and image 

features (approximates perspective 

projection for planar objects)

To detect instances of objects from a model base:



Model images and 

their SIFT keypoints

Input image

Recognition result

[Lowe]

Model keypoints 

that were used to 

recognize, get 

least squares 

solution.

Planar 

objects



Objects recognized, 

though affine model not 

as accurate.

Recognition in spite 

of occlusion

3d 

objects

Background subtract for 

model boundaries

[Lowe]



Recall: difficulties of voting

• Noise/clutter can lead to as many votes as true target

• Bin size for the accumulator array must be chosen 

carefully

• (Recall Hough Transform)

• In practice, good idea to make broad bins and spread 

votes to nearby bins, since verification stage can 

prune bad vote peaks.



A probabilistic interpretation (and re-tuning) of Lowe’s 

system:

P. Moreels and P. Perona, "A probabilistic 
cascade of detectors for individual object 

recognition," European Conference on Computer 
Vision, 2008.



• Progressively narrow down focus on correct region of 

hypothesis space

• Reject with little computation cost irrelevant regions 

of search space

• Use first information that is easy to obtain

• Simple building blocks organized in a cascade

• Probabilistic interpretation of each step

Coarse-to-Fine detection



Score of an extended hypothesis

Hypothesis:

model + position

observed features

geometry + appearance
database of models

constant

Consistency

(after PROSAC)
Prior on model

and poses

Features

assignments

Votes per model Votes per model pose bin

(Hough transform)

Prior on assignments

(before actual observations)



Coarse data : prior knowledge

• Which objects are likely to be there, which pose are they 

likely to have ? 

unlikely

situations



(x1,y1,s1,1)

(x2,y2,s2,2)

Transform predicted by this match:

• x = x2-x1

• y = y2-y1

• s = s2 / s1

•  = 2 - 1

Each match is represented by a dot in

the space of 2D similarities (Hough space)

x

y

s



Coarse Hough transform

[Lowe1999,2004]



• Prediction of position of model 

center after transform

• The space of transform 

parameters is discretized into 

‘bins’

• Coarse bins to limit boundary 

issues and have a low false-

alarm rate for this stage

• We count the number        of 

votes collected by each bin.

Coarse Hough transform

N
~

Model

Test scene

correct transformation
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Output of PROSAC : pose transformation 

+ set of features correspondences

Correspondence or clutter ? PROSAC

• Similar to RANSAC – robust statistic 

for parameter estimation

• Priority to candidates with good 

quality of appearance match

• 2D affine transform : 6 parameters

 each sample contains 3 candidate 

correspondences.

d

d

d

[Fischler 1973]         

[Chum&Matas 2005]



Consistency

Consistency between observations and predictions from hypothesis

model m

position of 

model m

Common-frame approximation : parts are 

conditionally independent once reference position 

of the object is fixed. [Lowe1999,Huttenlocher90,Moreels04]

C
o
n

st
el

la
ti

o
n

 m
o

d
el

C
o
m

m
o

n
-f

ra
m

e



foreground features ‘null’ assignments

geometry geometryappearance appearance

Consistency - appearance Consistency - geometry

Consistency

Consistency between observations and predictions from hypothesis



An example



An example



Efficiency of coarse-to-fine processing



Giuseppe Toys database – Models

61 objects, 1-2 views/object



Giuseppe Toys database – Test scenes

141  test scenes



Results – Giuseppe Toys database

Lowe’99,’04

Lower false alarm

rate

- more systematic 

verification of 

geometry consistency

- more consistent 

verification of 

geometric consistency

undetected objects: 

features with poor 

appearance distinctiveness

index to incorrect models

-

+



• Coarse-to-fine strategy prunes irrelevant search 
branches at early stages.

• Probabilistic interpretation of each step.

• Higher performance than Lowe, especially in cluttered 
environment. 

• Front end (features) needs more work for smooth or 
shiny surfaces.

Conclusions – Moreels and Perona



Scaling up: 

BOW Indexing



frames

regions

invariant 

descriptor 

vectors

invariant 

descriptor 

vectors

1. Compute affine covariant regions in each frame independently

2. “Label” each region by a vector of descriptors based on its intensity 

3. Finding corresponding regions is transformed to finding nearest neighbour vectors

4. Rank retrieved frames by number of corresponding regions

5. Verify retrieved frame based on spatial consistency

Outline of a large-scale retrieval strategy

Slide credit: J. Sivic



Example of object recognition

Shape adapted regions

Maximally stable regions

1000+ descriptors per frame

Slide credit: J. Sivic



Match regions between frames using SIFT descriptors and spatial 

consistency

Shape adapted regions 

Maximally stable regions 

Multiple regions overcome problem of partial occlusion

Slide credit: J. Sivic



Visual search using local regions

Schmid and Mohr ’97 – 1k images

Sivic and Zisserman’03 – 5k images

Nister and Stewenius’06 – 50k images 

(1M)

Philbin et al.’07 – 100k images

Chum et al.’07 + Jegou and Schmid’07 – 1M images

Chum et al.’08 – 5M images

Index 1 billion (10^9) images 

– 200 servers each indexing 5M images?

Slide credit: J. Sivic



For text documents, an 

efficient way to find all 

pages on which a word

occurs is to use an index…

We want to find all images

in which a feature occurs.

To use this idea, we’ll need 

to map our features to 

“visual words”.

140
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Beyond Nearest Neighbors…

Indexing local features using inverted file index

Slide credit: J. Sivic



Object Bag of ‘words’

Slide credit  L. Fei-Fei



Analogy to documents

Of all the sensory impressions proceeding to the 

brain, the visual experiences are the dominant 

ones. Our perception of the world around us is 

based essentially on the messages that reach the 

brain from our eyes. For a long time it was 

thought that the retinal image was transmitted 

point by point to visual centers in the brain; the 

cerebral cortex was a movie screen, so to speak, 

upon which the image in the eye was projected. 

Through the discoveries of Hubel and Wiesel we 

now know that behind the origin of the visual 

perception in the brain there is a considerably 

more complicated course of events. By following 

the visual impulses along their path to the various 

cell layers of the optical cortex, Hubel and Wiesel 

have been able to demonstrate that the message 

about the image falling on the retina undergoes a 

step-wise analysis in a system of nerve cells stored 

in columns. In this system each cell has its 

specific function and is responsible for a specific 

detail in the pattern of the retinal image.

sensory, brain, 

visual, perception, 

retinal, cerebral cortex,

eye, cell, optical 

nerve, image

Hubel, Wiesel

China is forecasting a trade surplus of $90bn 

(£51bn) to $100bn this year, a threefold increase 

on 2004's $32bn. The Commerce Ministry said the 

surplus would be created by a predicted 30% jump 

in exports to $750bn, compared with a 18% rise in 

imports to $660bn. The figures are likely to 

further annoy the US, which has long argued that 

China's exports are unfairly helped by a 

deliberately undervalued yuan.  Beijing agrees the 

surplus is too high, but says the yuan is only one 

factor. Bank of China governor Zhou Xiaochuan 

said the country also needed to do more to boost 

domestic demand so more goods stayed within the 

country. China increased the value of the yuan 

against the dollar by 2.1% in July and permitted it 

to trade within a narrow band, but the US wants 

the yuan to be allowed to trade freely. However, 

Beijing has made it clear that it will take its time 

and tread carefully before allowing the yuan to 

rise further in value.

China, trade, 

surplus, commerce, 

exports, imports, US, 

yuan, bank, domestic, 

foreign, increase, 

trade, value

Slide credit  L. Fei-Fei



Looser definition

– Independent features

A clarification: definition of “BoW”

Slide credit  L. Fei-Fei



A clarification: definition of “BoW”
Looser definition

– Independent features

Stricter definition

– Independent features 

– histogram representation

Slide credit  L. Fei-Fei



Visual words: main idea

Extract some local features from a number of images …

145
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e.g., SIFT descriptor space: 

each point is 128-dimensional

Slide credit: D. Nister



Visual words: main idea
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K. Grauman, B. LeibeSlide credit: D. Nister



Visual words: main idea
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K. Grauman, B. LeibeSlide credit: D. Nister



Visual words: main idea
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K. Grauman, B. LeibeSlide credit: D. Nister
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Visual words

Example: each group of 

patches belongs to the 

same visual word
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Figure from  Sivic & Zisserman, ICCV 2003

Slide credit: J. Sivic



Visual words

• First explored for texture and 
material representations

• Texton = cluster center of filter 
responses over collection of 
images

• Describe textures and materials 
based on distribution of 
prototypical texture elements.

Leung & Malik 1999; Varma & 

Zisserman, 2002; Lazebnik, 

Schmid & Ponce, 2003;

Slide credit: J. Sivic



Inverted file index for images comprised of 

visual words

Image credit: A. Zisserman K. Grauman, B. Leibe

Word 

number

List of image 

numbers

• Score each image by the number of common visual words 

(tentative correspondences)

• But: does not take into account spatial layout of regions

Slide credit: J. Sivic



Clustering / quantization methods

• k-means (typical choice), agglomerative clustering, mean-

shift,…

• Hierarchical clustering: allows faster insertion / word 

assignment while still allowing large vocabularies 

– Vocabulary tree [Nister & Stewenius, CVPR 2006]

156
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Slide credit: J. Sivic
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Example: Recognition with Vocabulary Tree

Tree construction:

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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Vocabulary Tree

Training: Filling the tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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Vocabulary Tree

Training: Filling the tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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Vocabulary Tree

Training: Filling the tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]



161
K. Grauman, B. Leibe

Vocabulary Tree

Training: Filling the tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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Vocabulary Tree

Training: Filling the tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]



163
K. Grauman, B. Leibe

Vocabulary Tree

Recognition

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]

Verification on

spatial layout
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Vocabulary Tree: Performance

Evaluated on large databases

– Indexing with up to 1M images

Online recognition for database

of 50,000 CD covers

– Retrieval in ~1s

Find experimentally that large 

vocabularies can be beneficial for 

recognition

[Nister & Stewenius, CVPR’06]

Slide credit: J. Sivic



“Bag of visual words”

Slide credit: J. Sivic


