Edge Linking

Example

Lane Detection and Departure Warning

Edge Linking Rationale

Edge maps are still in an image format

* Image to data structure transform
* Two issues
\square Identity: there are so many edge points, which ones should be grouped together?
\square Representation: now that a group of edge pixels are identified, how best to represent them?

The Canny edge detector

Problem: pixels along this edge didn't survive the
thresholding
thinning
(non-maximum suppression)

Hysteresis thresholding

Check that maximum value of gradient value is sufficiently large
\square drop-outs? use hysteresis
$>$ use a high threshold to start edge curves and a low threshold to continue them.

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Object boundaries vs. edges

Background

Texture

Shactows III

Edge detection is just the beginning...

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Much more on segmentation later in term
 source L.E Lazebnik

Identity

* Measurement space clustering
\square curve fitting
\square global technique
* Image space grouping
\square tracing or following
\square with known templates
\square local technique

Intuition

Q: If several points fall on the same line, what "commonality" is there?

$$
\begin{aligned}
& \left(x_{o}, y_{o}\right) \cdot(\cos \theta, \sin \theta)=\rho \\
& x_{o} \cos \theta+y_{o} \sin \theta=\rho
\end{aligned}
$$

Measurement Space Clustering

* Example: Hough transform

Duality of Representation

* Image space
\square a line
\square a point
* Measurement space
\square a point
\square a sinusoidal curve

$$
\begin{aligned}
\rho & =x_{o} \cos \theta+y_{o} \sin \theta \\
& =\sqrt{x_{o}^{2}+y_{o}^{2}}\left(\frac{x_{o}}{\sqrt{x_{o}^{2}+y_{o}^{2}}} \cos \theta+\frac{y_{o}}{\sqrt{x_{o}^{2}+y_{o}^{2}}} \sin \theta\right) \\
& =\sqrt{x_{o}^{2}+y_{o}^{2}} \cos (\theta-\alpha) \\
& \text { where } \alpha=\tan ^{-1} \frac{y_{o}}{x_{o}}
\end{aligned}
$$

\% A voting (evidence accumulation) scheme

* A point votes for all lines it is on
* All points (on a single line) vote for the single line they are on
* Tolerate a certain degree of occlusion
* Must know the parametric form

Hough Transform Algorithm

* Select a parametric form
* Quantize measurement space
* For each edge pixel, increment all cells satisfying the parametric form
* Locate maximum in the measurement space

$$
\rho-\theta
$$

$\theta: \min : 0^{\circ}, \max : 359^{\circ}$, inc $: 1^{\circ}$
$\rho: \min : 0, \max : N \sqrt{2}, i n c: 1 \mathrm{pxl}$
for $\theta=0$ to 360 inc 1 $\rho=x_{o} \cos \theta+y_{o} \sin \theta$
$(\rho, \theta)++$
end

Example

Image
Accumulator arras (θ, d $)$ E

(a)

$$
\begin{array}{l:l}
\rho & 0 \\
Q & 0
\end{array}
$$

Hough Transform for Circles

Image space

Measurement space

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

$$
\left(a-x_{o}\right)^{2}+\left(b-y_{o}\right)^{2}=r_{o}^{2}
$$

General 3D Measurement Space

$$
\left(a-x_{o}\right)^{2}+\left(b-y_{o}\right)^{2}=r^{2}
$$

Hough Transform (cont.)

Theoretically, Hough transform can be constructed for any parametric curve
\square a curve with n parameters
\square n-dimensional measurement space
\square ($\mathrm{n}-1$)-dimensional surfaces for each image point
\square highly computationally intensive if $\mathrm{n}>3$
\square used mainly for lines, circles, ellipses, etc.

(a)

(b)

Sometimes edge detectors find the boundary pretty well

Sometimes not well at all

At times we want to find a complete bounding contour of an object:

At other times we want to find an internal or partial contour. E.g., the best path between two points:

Which of these two paths is better?

How do we decide how good a path is?

Example: edgels to line segments to contours

Original image

Contours derived from edgels

Desired properties of an image contour:

- Contour should be near/on edges
- Strength of gradient
- Contour should be smooth (good continuation)
- Low curvature

Active Contours (deformable

 contours, snakes)

* Points, corners, lines, circles, etc., do not characterize well many objects, especially non-man-made ones
* We want other ways to describe and represent objects and image regions: Contour representations
* In particular, active contours are contour representations that conform to the (2D) shape by combining geometry and physics to make elastic, deformable shape models
\square These are often used to track contours in time, so the shape deforms to stay with the changing object

Active Contours

Given an initial contour estimate, find the best match to the image data - evolve the contour to fit the object boundary
\square This is an optimization problem
> Often uses dynamic programming, or something similar, in its solution
$>$ Iterates until final solution, or until a time limit
\square Visual evidence (support) for the contour can come from edges, corners, detected features, or even user input

* Current best contour fit can be the initial estimate for the subsequent frame (e.g., in tracking over time)
* Active contours are particularly useful when dealing with deformable (non-rigid) objects and surfaces
\square These are not easily described by edges, corners, etc.

Active Contours

- Applications:
\square Object segmentation (for object recognition, medical imaging, etc.)
\square Tracking through time
\square Region selection (e.g., in Photoshop) - human in the loop

Contour tracking examples

* http://www.youtube.com/watch?v=laiykNbPkgg
* http://www.youtube.com/watch?v=5se69vcbqxA
* http://www.youtube.com/watch?v=ARIZzcE11Es
http://www.youtube.com/watch?v=OFTDqGLa2p0

Illusory contours

Human vision seems to "fill in" where there is visual evidence of a contour

C

Partial contours

* Active contours can deal with occluded or missing image data

initial

intermediate

Active contours

* Think of an active contour as an elastic band, with an initial default (low energy) shape, that gets pulled or pushed to be near image positions that satisfy various criteria
\square Be near high gradients, detected points, user input, etc.
\square Don't get stretched too much
\square Keep a smooth shape
* How is the current contour adjusted to find the new contour at each iteration?
\square Define a cost function ("energy" function) that says how good a possible configuration is.
\square Seek next configuration that minimizes that cost function.

Energy minimization framework

* Framework: energy minimization
\square Bending and stretching curve = more energy
\square Good features $=$ less energy
\square Curve evolves to minimize energy
* Parametric representation of the curve

$$
v(s)=(x(s), y(s))
$$

* Minimize an energy function on $\boldsymbol{v}(\boldsymbol{s})$

$$
E_{\text {total }}=E_{\text {internal }}+E_{\text {external }}+E_{\text {constraint }}
$$

Energy minimization framewo ${ }_{600}$

$$
E_{\text {total }}=E_{\text {internal }}+E_{\text {external }}+E_{\text {constraint }}
$$

* A good fit between the current deformable contour and the target shape in the image will yield a low value for this cost (energy) function

Internal energy: encourage prior shape preferences: e.g., smoothness, elasticity, particular known shape.
\square External energy ("image" energy): encourage contour to fit on places where image structures exist, e.g., edges.
\square Constraint energy: allow for specific (often user-specified) constraints that alter the contour locally

Energy minimization

The energy functional typically consists of three terms:

$$
\mathcal{E}=\int\left[\mathcal{E}_{\mathrm{int}}(\mathrm{v}(s))+\varepsilon_{i m g}(\mathrm{v}(s))+\mathcal{E}_{c o n}(\mathrm{v}(s))\right] d s
$$

$$
\varepsilon_{i m g}=-w \cdot\|\nabla I(x, y)\|^{2}
$$

Maximize gradient along contour
(Minimize the negative of this)

$$
\varepsilon_{c o n}=k \cdot\|\mathrm{~V}-\mathrm{x}\|^{2}
$$

Spring constraint (attraction)

$$
\varepsilon_{c o n}=\frac{k}{\|\mathrm{v}-\mathrm{x}\|^{2}}
$$

Negative spring constraint (repulsion)

Examples

are large only directly on the boundary

Internal model is too "tight"

Examples

Examples

Corpus callosum example

Corpus callosum example

Lips example

Active contours: pros and cons

Pros:

Useful to track and fit non-rigid shapes

* Contour remains connected
* Possible to fill in "subjective" contours

Flexibility in how energy function is defined, weighted.
Cons:

* Must have decent initialization near true boundary, may get stuck in local minimum
* Parameters of energy function must be set well based on prior information

Devil in the Details

* Snake: an energy minimizing spline
subject to
\square internal forces (template shape)
$>$ resisting stretching and compression
- maintain natural length
$>$ resisting bending
- maintain natural curvature
$>$ resisting twisting
- maintain natural torsion (for 3D snake)
\square external forces (shape detector)
$>$ attract a snake to lines, edges, corners, etc.

Physics Law

* A snake's final position and shape influenced by
\square balance of all applied forces
\square total potential energy is minimum
\square a dynamic sequence is played out which is based on physics principle

A 2D snake

- Internal energy

$$
E_{\mathrm{int}}=\int^{\alpha\left(c_{s}(s)-c_{s}^{(0)}(s)\right)^{2}} \begin{aligned}
& +\beta\left(c_{s s}(s)-c_{s s}^{(0)}(s)\right)^{2} d s
\end{aligned}
$$

- resisting stretching and compression

$$
E_{1}=\int\left(c_{s}(s)-c_{s}^{(0)}(s)\right)^{2} d s
$$

- resisting bending

$$
E_{2}=\int\left(c_{s s}(s)-c_{s s}^{(0)}(s)\right)^{2} d s
$$

* External energy
\square point attachment

$$
E=l\left|\left(x_{o}, y_{o}\right)-\left(x\left(s_{o}\right), y\left(s_{o}\right)\right)\right|^{2}
$$

- attach the snake to a bright line (not used in hw)

$$
E=-\int I(c(s)) d s
$$

- attach the snake to an edge

$$
E=-\int(\nabla I(c(s)))^{2} d s
$$

* Treated as an minimization problem, we are looking for a function $c(s)$ or $f(s, t)$ that minimizes the total energy (int+ext)
* Intuitively,
\square small internal energy, less stretching, bending, twisting, closer to the natural resting state
\square small external energy, confirming to external constraints (e.g., close to attachment points, image contours, etc.)
* For those of you who are mathematics-gifted, you probably recognize this as a calculus of variation problem
* The solution is the Euler equation (a partial differential equation)
* The energy expression is a "functional"
* Need a function to give the extremal value of the "functional"

Calculus

function\square locations (extremums of function)
\square derivatives
\square ordinary equations

$\frac{d f}{d x}=0$

* Variational Calculus

\square functional
\square functions (extremums of functional)
\square variational derivatives
\square partial differential equations

* For those of you who are physics-gifted, you probably recognize this as a generalized force problem
* Again, the solution is based on the Euler equation (a partial differential equation) of variational derivatives

Math Detail

Need to maintain
\square Length (no stretching)
\square Curvature (no bending)

* Both arc length and curvature are vectors!

Math Detail

Most generally, allowing both translation and rotation (a rigid-body motion) that doesn't deform the shape

* Tangent and curvature vectors do not have to line up (under rotation), but their magnitude should be maintained
* Turn out the math becomes very messy

* Simpler formulation: translation only (or small rotation)
* Vectors should line up

Mathematical Details

Minimize

$$
\begin{aligned}
& E_{\text {total }}=E_{\mathrm{int}}+E_{\text {ext }} \\
& \left.\left.=\int \alpha\left(\left|c_{s}(s)\right|-\left|c_{s}{ }^{(0)}(s)\right|\right)^{2}+\beta\left(\left|c_{s s}(s)\right|-\left|c_{s s}{ }^{(0)}(s)\right|\right)^{2}-\delta\right\rangle(s)\right)-(\nabla I(c(s)))^{2} d s
\end{aligned}
$$

Simplify (translati on only)

$$
E_{\text {total }}=E_{\mathrm{int}}+E_{e x t}
$$

$$
\left.\left.=\int \alpha\left(c_{s}(s)-c_{s}{ }^{(0)}(s)\right)^{2}+\beta\left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}-\delta<s\right)\right)-(\nabla I(c(s)))^{2} d s
$$

Discretize

$$
\begin{aligned}
& c_{s}(s)=c_{i+1}-c_{i}=\left(x_{i+1}-x_{i}, y_{i+1}-y_{i}\right) \\
& c_{s s}(s)=c_{i+1}-2 c_{i}+c_{i-1}=\left(x_{i+1}-2 x_{i}+x_{i-1}, y_{i+1}-2 y_{i}+y_{i-1}\right) \\
& E(c) \Rightarrow E\left(x_{o}, y_{o}, \cdots, x_{n-1}, y_{n-1}\right)
\end{aligned}
$$

Mathematical Details

* Turn a variational calculus problem into a standard calculus problem
* 2 n variables
* 2 n equations (linear equations)
* Can solve a (very sparse) matrix equation of $\mathrm{AX}=\mathrm{B}$ using Matlab A\B (or iterative)
* Sparsity comes from $1^{\text {st }}$ and $2^{\text {nd }}$ order derivative approximation using only neighboring points minimize
$\mathrm{y}_{\mathrm{n}-1}\left\{\begin{array}{ll}\mathrm{E}\end{array} \quad \begin{array}{l}E(c) \Rightarrow E\left(x_{o}, y_{o}, \cdots, x_{n-1}, y_{n-1}\right) \\ \\ \\ \frac{\partial E}{\partial x_{o}}=\frac{\partial E}{\partial y_{o}}=\cdots=\frac{\partial E}{\partial x_{n-1}}=\frac{\partial E}{\partial y_{n-1}}=0\end{array}\right.$

Mathematical Details

Minimize

$$
\begin{aligned}
& E_{\text {total }}=E_{\text {int }}+E_{\text {ext }} \\
& \left.=\int \alpha\left(c_{s}(s)-c_{s}{ }^{(0)}(s)\right)^{2}+\beta\left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}-\delta I(\nabla s)\right)-(\nabla I(c(s)))^{2} d s
\end{aligned}
$$

Discretize

$$
\begin{aligned}
& c_{s}(s)=c_{i+1}-c_{i}=\left(x_{i+1}-x_{i}, y_{i+1}-y_{i}\right) \\
& c_{s s}(s)=c_{i+1}-2 c_{i}+c_{i-1}=\left(x_{i+1}-2 x_{i}+x_{i-1}, y_{i+1}-2 y_{i}+y_{i-1}\right)
\end{aligned}
$$

For a particular c_{i} :

$$
\begin{aligned}
& \left(c_{s}(s)-c_{s}{ }^{(0)}(s)\right)^{2}=\left(\left[x_{i+1}-x_{i}, y_{i+1}-y_{i}\right]-\left[x^{(0)}{ }_{i+1}-x^{(0)}{ }_{i}, y^{(0)}{ }_{i+1}-y^{(0)}{ }_{i}\right]\right)^{2} \\
& =\left[\left(x_{i+1}-x_{i}\right)-\left(x^{(0)}{ }_{i+1}-x^{(0)}{ }_{i}\right),\left(y_{i+1}-y_{i}\right)-\left(y^{(0)}{ }_{i+1}-y^{(0)}{ }_{i}\right)\right]^{2} \\
& =\left(\left(\left(x_{i+1}-x_{i}\right)-\left(x^{(0)}{ }_{i+1}-x^{(0)}{ }_{i}\right)\right)^{2}+\left(\left(y_{i+1}-y_{i}\right)-\left(y^{(0)}{ }_{i+1}-y^{(0)}{ }_{i}\right)\right)^{2}\right. \\
& \frac{\partial\left(c_{s}(s)-c_{s}{ }^{(0)}(s)\right)^{2}}{\partial x_{k}}=2\left[-\left(\left(x_{k+1}-x_{k}\right)-\left(x^{(0)}{ }_{k+1}-x^{(0)}{ }_{k}\right)\right)+\left(x_{k}-x_{k-1}\right)-\left(x^{(0)}{ }_{k}-x^{(0)}{ }_{k-1}\right)\right]+\cdots
\end{aligned}
$$

$1^{\text {st }}$ derivatives of x_{k+1} and x_{k} involve x_{k} Pattern: -1, 2, -1

Mathematical Details

Minimize

$E_{\text {total }}=E_{\text {int }}+E_{\text {ext }}$
$\left.=\int_{0}^{0} \alpha\left(c_{s}(s)-c_{s}{ }^{(0)}(s)\right)^{2}+\beta\left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}-1\right)-(\nabla I(c(s)))^{2} d s$
Discretize
$c_{s}(s)=c_{i+1}-c_{i}=\left(x_{i+1}-x_{i}, y_{i+1}-y_{i}\right)$
$c_{s s}(s)=c_{i+1}-2 c_{i}+c_{i-1}=\left(x_{i+1}-2 x_{i}+x_{i-1}, y_{i+1}-2 y_{i}+y_{i-1}\right)$
For a particular x_{i} :

$$
\begin{aligned}
& \left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}=\left(\left[x_{i+1}-2 x_{i}+x_{i-1}, y_{i+1}-2 y_{i}+y_{i-1}\right]-\left[x^{(0)}{ }_{i+1}-2 x^{(0)}{ }_{i}+x^{(0)}{ }_{i-1}, y^{(0)}{ }_{i+1}-2 y^{(0)}{ }_{i}+y^{(0)}{ }_{i-1}\right]\right)^{2} \\
& =\left[\left(x_{i+1}-2 x_{i}+x_{i-1}\right)-\left(x^{(0)}{ }_{i+1}-2 x^{(0)}{ }_{i}+x^{(0)}{ }_{i-1}\right),\left(y_{i+1}-2 y_{i}+y_{i-1}\right)-\left(y^{(0)}{ }_{i+1}-2 y^{(0)}{ }_{i}+y^{(0)}{ }_{i-1}\right)\right]^{2} \\
& =\left(\left(x_{i+1}-2 x_{i}+x_{i-1}\right)-\left(x^{(0)}{ }_{i+1}-2 x^{\left(0{ }_{i}\right.}{ }_{i}+x^{(0)}{ }_{i-1}\right)\right)^{2}+\left(\left(y_{i+1}-2 y_{i}+y_{i-1}\right)-\left(y^{(0)}{ }_{i+1}-2 y^{(0)}{ }_{i}+y^{(0)}{ }_{i-1}\right)\right)^{2} \\
& \frac{\partial\left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}}{\partial x_{k}}= \\
& 2\left[\left(\left(x_{k+2}-2 x_{k+1}+x_{k}\right)-\left(x^{(0)}{ }_{k+2}-2 x^{(0)}{ }_{k+1}+x^{(0)}{ }_{k}\right)\right)\right]+ \\
& 2\left[-2\left(\left(x_{k+1}-2 x_{k}+x_{k-1}\right)-\left(x^{(0)}{ }_{k+1}-2 x^{(0)}{ }_{k}+x^{(0)}{ }_{k-1}\right)\right)\right]+ \\
& 2\left[\left(\left(x_{k}-2 x_{k-1}+x_{k-2}\right)-\left(x^{(0)}{ }_{k}-2 x^{(0)}{ }_{k-1}+x^{(0)}{ }_{k-2}\right)\right)\right]
\end{aligned}
$$

$$
\uparrow
$$

2nd derivatives of $\mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}}$ and $\mathrm{x}_{\mathrm{k}-1}$ involve x_{k}
Pattern: 1, -4, 6, -4, 1

Mathematical Details

Minimize

$$
\begin{aligned}
& E_{\text {total }}=E_{\mathrm{int}}+E_{\text {ext }} \\
& \left.\left.\left.=\int \alpha\left(c_{s}(s)-c_{s}{ }^{(0)}(s)\right)^{2}+\beta\left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}-\delta \\
right\rangle s\right)\right)-(\nabla I(c(s)))^{2} d s
\end{aligned}
$$

Discretize

$$
\begin{aligned}
& c_{s}(s)=c_{i+1}-c_{i}=\left(x_{i+1}-x_{i}, y_{i+1}-y_{i}\right) \\
& c_{s s}(s)=c_{i+1}-2 c_{i}+c_{i-1}=\left(x_{i+1}-2 x_{i}+x_{i-1}, y_{i+1}-2 y_{i}+y_{i-1}\right)
\end{aligned}
$$

For a particular c_{i} :
$(\nabla I(c(s)))^{2}=\left[I_{x}\left(x_{i}, y_{i}\right), I_{y}\left(x_{i}, y_{i}\right)\right]^{2}=\left(I_{x}\left(x_{i}, y_{i}\right)\right)^{2}+\left(I_{y}\left(x_{i}, y_{i}\right)\right)^{2}$
$\frac{\partial(\nabla I(c(s)))^{2}}{\partial x_{k}}=2\left[I_{x}\left(x_{k}, y_{k}\right) \frac{\partial I_{x}}{\partial x_{k}}+I_{y}\left(x_{k}, y_{k}\right) \frac{\partial I_{y}}{\partial x_{k}}\right]=2\left[I_{x}\left(x_{k}, y_{k}\right), I_{y}\left(x_{k}, y_{k}\right)\right]\left[\frac{\partial I_{x}}{\partial x_{k}}, \frac{\partial I_{y}}{\partial x_{k}}\right]$

Mathematical Details

Minimize

$$
\begin{aligned}
& E_{\text {total }}=E_{\text {int }}+E_{\text {ext }} \\
& =\int \alpha\left(c_{s}(s)-c_{s}^{(0)}(s)\right)^{2}+\beta\left(c_{s s}(s)-c_{s s}{ }^{(0)}(s)\right)^{2}-\delta I(c(s))-(\nabla I(c(s)))^{2} d s \\
& \frac{\partial(\nabla I(c(s)))^{2}}{\partial x_{k}}=2\left[I_{x}\left(x_{k}, y_{k}\right) \frac{\partial I_{x}}{\partial x_{k}}+I_{y}\left(x_{k}, y_{k}\right) \frac{\partial I_{y}}{\partial x_{k}}\right]=2\left[I_{x}\left(x_{k}, y_{k}\right), I_{y}\left(x_{k}, y_{k}\right)\right]\left[\frac{\partial I_{x}}{\partial x_{k}}, \frac{\partial I_{y}}{\partial x_{k}}\right]
\end{aligned}
$$

Derivative of E (potential) is a gradient (force) field

- Minimization go in the negative gradient direction

Pull the snake in the direction
\square Large gradient
Large increase in gradient
\square around a node

Details

$(-1,2,-1)+(1-4,6,-4,1)=(1,-5,8,-5,1)$
\square Not diagonally dominant, need conditioning (regularization)

* Resulting in linear equations of form $\mathrm{AX}+\mathrm{B}$
\square A is pentdiagonal matrix of the form $(1,-5,8,-5,1)$
\square B has all constant terms
$>$ Template $\left(\mathrm{x}^{(0)}, \mathrm{y}^{(0)}\right)$
- Fixed
- Has the form of - $\mathrm{AX}^{(0)}$
> External energy term <- varying

$$
\left[I_{x}\left(x_{k}, y_{k}\right), I_{y}\left(x_{k}, y_{k}\right)\right]\left[\frac{\partial I_{x}}{\partial x_{k}}, \frac{\partial I_{y}}{\partial x_{k}}\right]
$$

* The equation represents balance of forces!
\square A force to enforce similar tangent

$$
\left(x_{k+1}-x_{k}\right)-\left(x^{(0)}{ }_{k+1}-x^{(0)}{ }_{k}\right)
$$

\square A force to enforce similar curvature

$$
\left(x_{k+2}-2 x_{k+1}+x_{k}\right)-\left(x_{k+2}^{(0)}-2 x_{k+1}^{(0)}+x_{k}^{(0)}\right)
$$

\square A force to penalize non-maximum intensity
\square A force to penalize not at zero crossing
$\frac{\partial I}{\partial x_{k}}$

$$
\frac{\partial^{2} I}{\partial x_{k}^{2}}
$$

Caveat:
\square Snake needs good initial position
\square Provided by initial interactive placement
\square Smooth images to enlarge "potential field"
\square Snake won't move if
$>$ Gradient is zero or
$>$ Change of gradient is zero

Numerical Methods - Iterative

Using Euler's method: expressions $\mathrm{AX}+\mathrm{B}$ are gradient
Minimize $E_{\text {total }}=E_{\mathrm{int}}+E_{\text {ext }}$
gradient $: \frac{\partial E_{\text {total }}}{\partial x}=\frac{\partial E_{\mathrm{int}}}{\partial x}+\frac{\partial E_{\text {ext }}}{\partial x}$

Explicit Euler:

$$
\begin{aligned}
& A X_{t-1}+B_{t-1}=-\lambda\left(X_{t}-X_{t-1}\right) \\
& A X_{t}+B_{t}=-\lambda\left(X_{t}-X_{t-1}\right) \\
& A X_{t}+B_{t-1}=-\lambda\left(X_{t}-X_{t-1}\right) \\
& (A+\lambda I) X_{t}=-B_{t-1}+\lambda X_{t-1} \\
& X_{t}=(A+\lambda I)^{-1}\left(-B_{t-1}+\lambda X_{t-1}\right)
\end{aligned}
$$

- Justification for mixed Euler:
\square B cannot be evaluated without knowing X_{t}, so use values at X_{t-1}
A can be easily inverted, so use X_{t}

Numerical Methods - Direct

* Should result in a sparse, pentadiagonal matrix
* $\mathbf{A X}=\mathbf{B}$, solve with
\square Direct method $\mathbf{X}=\operatorname{inv}(\mathbf{A}) * \mathbf{B}$ (preferred for small system <20 points and GOOD initialization)
Caveats:
\square A can be numerically ill-conditioned (not diagonally dominant the |diagonal element| is larger than the sum of |off-diagonal elements|)
* Fix: Regularization (a topic to be discussed more later)
* Minimize $\|A X-B\|^{\wedge} 2+w\|X\|^{\wedge} 2$
* $\left(\mathrm{A}^{\prime} \mathrm{A}+\mathrm{wI}\right) \mathrm{X}=\mathrm{A}^{\prime} \mathrm{B}$ or $\mathrm{X}=\operatorname{inv}\left(\mathrm{A}^{\prime} \mathrm{A}+w \mathrm{I}\right)^{*} \mathrm{~A}^{\prime} \mathrm{B}$

Numerical Methods

$$
\begin{aligned}
& \begin{array}{crrrrrr}
a=[\\
8 & -5 & 1 & 0 & 0 & 1 & -5 \\
-5 & 8 & -5 & 1 & 0 & 0 & 1 \\
1 & -5 & 8 & -5 & 1 & 0 & 0 \\
0 & 1 & -5 & 8 & -5 & 1 & 0 \\
0 & 0 & 1 & -5 & 8 & -5 & 1 \\
1 & 0 & 0 & 1 & -5 & 8 & -5 \\
-5 & 1 & 0 & 0 & 1 & -5 & 8
\end{array} \\
& \text {]; } \\
& \mathrm{b}=\operatorname{rand}(7,1) ;
\end{aligned}
$$

for lambda $=0: 1: 10$
$x=\operatorname{inv}(a ' a+l a m b d a * \operatorname{eye}(7)) * a^{\prime} * b ;$ $\operatorname{err}(\operatorname{lambda}+1)=\operatorname{norm}\left(a^{*} x-b\right)$;
end
plot(err)

Lambda=0

Direct or Iterative

* No iteration
* Initial state must be close to final state (because external energy is position dependent), image smoothing is important
* Require good template and update of templates
* Iterative
- Initial state does not have to be close to final state

External energy terms must be updated through out

