
Image Stitching and Alignment

Multiple Images

 So far, algorithms deal with a single, static image

 In the real world, a static pattern is a rarity, continuous

motion and change are the rule

 Human eyes are well-equipped to take advantage of

motion or change in an image sequence

 Stitching (Alignment) and Motion

 Stitching has a “global” model – all pixel movement can be

explained by a simple mathematic model (far field, pure rotational,

pure translation)

 2D motion field is a “local” model – pixels by themselves

(similarity in a local neighborhood only)

General Taxonomy

 Camera motion and the Scene is static

 Driving, panorama

 Near field (hard) vs. Far field (easy)

 General camera motion (hard) vs. special camera motion (e.g.,

rotation only, easier)

 General scene (hard) vs. special scene (planar, easier)

 Object motion and the camera is stationary

 Surveillance

 Background modeling and subtraction

 Both camera and object are moving

 Sports video, driving, diving, etc.

Alignment

 Homographies

 Rotational Panoramas

 RANSAC

 Global alignment

Warping

 Blending

Motivation: Recognition

Motivation: medical image

registration

Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Human Vision: 176˚ x 135˚

Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Human Vision: 176˚ x 135˚

 Panoramic Mosaic = up to 360 x 180°

Motion models

What happens when we take two images with a camera

and try to align them?

• translation?

• rotation?

• scale?

• affine?

• perspective?

Image Warping

 image filtering: change range of image

 g(x) = h(f(x))

 image warping: change domain of image

 g(x) = f(h(x))

f

x

h

f

x

f

x

h
f

x

Image Warping

 image filtering: change range of image

 g(x) = h(f(x))

 image warping: change domain of image

 g(x) = f(h(x))

h

h

f

f g

g

Parametric (global) warping

 Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Image Warping

 Given a coordinate transform x’ = h(x) and a source image

f(x), how do we compute a transformed image g(x’) =

f(h(x))?

f(x) g(x’)
x x’

h(x)

Forward Warping

 Send each pixel f(x) to its corresponding location x’ = h(x)

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

Forward Warping

 Send each pixel f(x) to its corresponding location x’ = h(x)

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels,

normalize later (splatting)

Inverse Warping

 Get each pixel g(x’) from its corresponding location x’ =

h(x) in f(x)

f(x) g(x’)
x x’

h(x)

• What if pixel comes from “between” two pixels?

f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors

– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU

Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU

Interpolation

 Possible interpolation filters:

 nearest neighbor

 bilinear

 bicubic (interpolating)

 sinc / FIR

 Needed to prevent “jaggies”

and “texture crawl”

2D coordinate transformations

 translation: x’ = x + t x = (x,y)

 rotation: x’ = R x + t

 similarity: x’ = s R x + t

 affine: x’ = A x + t

 perspective:x’  H x x = (x,y,1)

(x is a homogeneous coordinate)

 These all form a nested group (closed w/ inv.)

Homogeneous Coordinates

 consistent representation for all linear transform (including

translation)

 can be concatenated & pre-computed

(,) (, ,),

(, ,) (/ , /)

x y wx wy w w

wx wy w wx w wy w

 



0

x

y

T

T

x

y

x

y

x

y

x

y

S

S

x

y

x

y

x

y

'

'

'

'

cos sin

sin cos

'

'

1

1 0

0 1

0 0 1 1

1

0

0

0 0 1 1

1

0 0

0 0

0 0 1 1























































































































































 

 

x

y TRS

x

y

'

' ()

1 1



































Basic 2D Transformations

 Basic 2D transformations as 3x3 matrices























































1100

0cossin

0sincos

1

'

'

y

x

y

x



















































1100

10

01

1

'

'

y

x

t

t

y

x

y

x



















































1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear



















































1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

2D Affine Transformations

 Affine transformations are combinations of …

Linear transformations, and

Translations

 Parallel lines remain parallel












































w

y
x

fed
cba

w

y
x

100

'
'

Projective Transformations

 Projective transformations:

Affine transformations, and

Projective warps

 Parallel lines do not necessarily remain parallel












































w

y
x

ihg

fed
cba

w

y
x

'

'
'

Fitting an affine transformation

Affine model approximates perspective projection of planar

objects.

Fitting an affine transformation

• Assuming we know the correspondences, how do we get

the transformation?

),(ii yx 
),(ii yx








































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i

Fitting an affine transformation

• Assuming we know the correspondences, how do we get

the transformation?

),(ii yx 
),(ii yx








































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Fitting an affine transformation

• How many matches (correspondence pairs) do we need to

solve for the transformation parameters?

• Once we have solved for the parameters, how do we

compute the coordinates of the corresponding point for

?












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

),(newnew yx

Panoramas

Obtain a wider angle view by combining multiple images.

im
a

g
e fro

m
 S

. S
eitz

. . .

How to stitch together a panorama?

Basic Procedure

Take a sequence of images from the same position

 Rotate the camera about its optical center

Compute transformation between second image and first

Transform the second image to overlap with the first

Blend the two together to create a mosaic

(If there are more images, repeat)

…but wait, why should this work at all?

What about the 3D geometry of the scene?

Why aren’t we using it?

Source: Steve Seitz

Panoramas: generating synthetic views

real

camera
synthetic

camera

Can generate any synthetic camera view

as long as it has the same center of projection!

mosaic PP

Image reprojection

 The mosaic has a natural interpretation in 3D

 The images are reprojected onto a common plane

 The mosaic is formed on this plane

Mosaic is a synthetic wide-angle camera
Source: Steve Seitz

mosaic PP

Image reprojection

 The mosaic has a natural interpretation in 3D as a plane

 This is true even if the real scene is not planar as long as
you have the same focal point

Source: Steve Seitz

In reality

 The scene is not planar

 But if you are shooting panorama against far-away objects (e.g.,

from the south rim of the Grand Canyon against the north rim), the

distance variation can be ignored

 Panorama works best for far-field scene

 The rotation is about the person holding the camera, not

the camera’s focal center

 If the scene is far away, such small deviation does not matter

 In fact, image stitching works well if you exercise some

caution

Why all phones these days have the panorama mode

Homography
 How to relate two images from the same camera center?

 how to map a pixel from PP1 to PP2?

 Think of it as a 2D image warp from one image to another.

 A projective transform is a mapping between any two PPs with

the same center of projection

 rectangle should map to arbitrary quadrilateral

 parallel lines aren’t

 but must preserve straight lines

 called Homography

PP2

PP1











































1

y
x

w

wy'
wx'

H pp’

Homography












































1

y
x

w

wy'
wx'

H pp’








 
w

yw
w

xw
,

 yx  ,

 yx,

To apply a given homography H

• Compute p’ = Hp (regular matrix multiply)

• Convert p’ from homogeneous to image

coordinates

Homography

 11, yx  11, yx 

To compute the homography given pairs of corresponding points in

the images, we need to set up an equation where the parameters

of H are the unknowns…

 22 , yx  22 , yx

…

…

 nn yx ,  nn yx  ,

Number of measurements required

At least as many independent equations as degrees

of freedom required

Example:

Hxx'






















































11

λ

333231

232221

131211

y

x

hhh

hhh

hhh

y

x

2 independent equations / point

8 degrees of freedom

4x2≥8

Solving for homographies

Can set scale factor i=1. So, there are 8 unknowns.

Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]T

Need at least 8 eqs, but the more the better…

Solve for h. If overconstrained, solve using least-squares:

Work well if i is not close to 0 (not recommended!)



















































1

y

x

ihg

fed

cba

w

wy'

wx'

p’ = Hp

2
min bAh 

Direct Linear Transformation

(DLT)

ii Hxx  0Hxx  ii





















i

i

i

i

xh

xh

xh

Hx
3

2

1

T

T

T



























iiii

iiii

iiii

ii

yx

xw

wy

xhxh

xhxh

xhxh

Hxx
12

31

23

TT

TT

TT

0

h

h

h

0xx

x0x

xx0

3

2

1








































TTT

TTT

TTT

iiii

iiii

iiii

xy

xw

yw

 Tiiii wyx  ,,x

0hA i

𝐻 =
ℎ1𝑇

ℎ2𝑇

ℎ3𝑇

Direct Linear Transformation

(DLT)

Equations are linear in h

0

h

h

h

0xx

x0x

xx0

3

2

1








































TTT

TTT

TTT

iiii

iiii

iiii

xy

xw

yw

0AAA 321 
iiiiii wyx

0hA i

• Only 2 out of 3 are linearly independent

(indeed, 2 eq/pt)

0

h

h

h

x0x

xx0

3

2

1






























TTT

TTT

iiii

iiii

xw

yw

(only drop third row if wi’≠0)

• Holds for any homogeneous

representation, e.g. (xi’,yi’,1)

Direct Linear Transformation

(DLT)

 Solving for H

0Ah  0h

A

A

A

A

4

3

2

1





















size A is 8x9 or 12x9, but rank 8

Trivial solution is h=09
T is not interesting

1-D null-space yields solution of interest

pick for example the one with 1h 

Direct Linear Transformation

(DLT)

 Over-determined solution

No exact solution because of inexact measurement

i.e. “noise”

0Ah  0h

A

A

A

n

2

1























Find approximate solution

- Additional constraint needed to avoid 0, e.g.

- not possible, so minimize

1h 

Ah0Ah 

DLT algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’},

determine the 2D homography matrix H such that xi’=Hxi

Algorithm

(i) For each correspondence xi ↔xi’ compute Ai. Usually

only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V

(iv) Determine H from h

changing camera center
 Does it still work?

 Not for near field
synthetic PP

PP1

PP2

True point
False point 1

False point 2

changing camera center
 Does it still work?

 For far field ok
synthetic PP

PP1

PP2

True point
False point 1

False point 2

Planar scene (or far away)

 PP3 is a projection plane of both centers of projection, so

we are OK!

 This is how big aerial photographs are made

PP1

PP3

PP2

Source: Alyosha Efros

Grauman

Outliers

Outliers can hurt the quality of our parameter

estimates, e.g.,

an erroneous pair of matching points from two images

an edge point that is noise, or doesn’t belong to the line we

are fitting.

Grauman

Example: least squares line fitting

 Assuming all the points that belong to a particular line are

known

Grauman

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

RANdom Sample Consensus

Approach: we want to avoid the impact of outliers, so

let’s look for “inliers”, and use those only.

Intuition: if an outlier is chosen to compute the

current fit, then the resulting line won’t have much

support from rest of the points.

RANSAC

 RANSAC loop:

1. Randomly select a seed group of points on which to base

transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-compute

least-squares estimate of transformation on all of the inliers

 Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

Task:

Estimate best line

Slide credit: Jinxiang Chai, CMU

RANSAC Line Fitting Example

Sample two points

RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of points within

a threshold of line.

RANSAC Line Fitting Example

Repeat, until get a good result

RANSAC Line Fitting Example

Repeat, until get a good result

RANSAC Line Fitting Example

Repeat, until get a good result

How Many Trials?
Well, theoretically it is C(n,p) to find all possible p-tuples

 Very expensive

 tries inset good oneleast at got :))1(1(1

 tries all indata badgot :))1(1(

bad is sample oneleast at :)1(-1

good are samples all:)1(

data good of fraction:)1(

data bad of fraction:

))1(1(1

mp

m

p

mp

mp

p

p

mp



























How Many Trials (cont.)

Make sure the probability is high (e.g. >95%)

 given p and epsilon, calculate m

p 5% 10

%

20

%

25

%

30

%

40

%

50

%

1 1 2 2 3 3 4 5

2 2 2 3 4 5 7 11

3 2 3 5 6 8 13 23

4 2 3 6 8 11 22 47

5 3 4 8 12 17 38 95

Best Practice

Randomized selection

can completely

remove outliers

“plutocratic”

Results are based on a

small set of features

LS is most fair,

everyone get an equal

say

“democratic”

But can be seriously

influenced by bad data

 Use randomized algorithm to remove outliers

 Use LS for final “polishing” of results (using all

“good” data)

 Allow up to 50% outliers theoretically

RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector

Feature-based alignment outline

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches

that are related by T)

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches

that are related by T)

 Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches

that are related by T)

 Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

Panoramas

What if you want a 360 field of view?

mosaic Projection Cylinder

Szeliski

Cylindrical panoramas

 Steps

 Project each image onto a cylinder (warp)

 Estimate motion (a pure translation now)

 Blend

 Optional: project it back (unwarp)

 Output the resulting mosaic

mcmillan.mpeg
mcmillan.mpeg

f = 180 (pixels)

Cylindrical Panoramas

Map image to cylindrical or spherical coordinates

 need known focal length

Work only if a single tilt (e.g., camera on tripod)

Image 384x300 f = 380f = 280

Determining the focal length

1. Initialize from homography H

(see text or [SzSh’97])

2. Use camera’s EXIF tags (approx.)

3. Use a tape measure

4. Try and error 

1m
4m

Practical Methods for F

 Use program jhead

(http://www.sentex.net/~mwandel/jhead/)

Mac, Windows, and Linux

 Sample outputs

http://www.sentex.net/~mwandel/jhead/

Calculating F

With image resolution (width x height), CCD width and f

 f*(width/CCD width) or 5.4*(1600/5.23) = 1652 (pixels)

With equivalent f (35mm film is 36mmx24mm)

 (equivalent f)*(width/36) or 36*(1600/36) = 1600 (pixels)

 If you don’t have the above (more often than not), guess!

 No zoom f ~ (picture width in pixels)

 2x zoom f ~ 2 * (picture width in pixels)

Map 3D point (X,Y,Z) onto cylinder

Cylindrical projection

X

Y

Z

unit cylinder

unwrapped cylinder

• Convert to cylindrical coordinates

cylindrical image

• Convert to cylindrical image coordinates

– s defines size of the final image

Cylindrical warping

Given focal length f and

image center (xc,yc)

X

Y

Z

(X,Y,Z)

(sin,h,cos)

Spherical warping

Given focal length f and

image center (xc,yc)

X

Y

Z

(x,y,z)

(sinθcosφ,cosθcosφ,sinφ)

cos φ

φ

cos θ cos φ

sin φ

3D rotation

Rotate image before

placing on unrolled sphere

(x,y,z)

(sinθcosφ,cosθcosφ,sinφ)

cos φ

φ

cos θ cos φ

sin φ

_ _

_ _

p = R p

Radial distortion

 Correct for “bending” in wide field of view lenses

Fisheye lens

 Extreme “bending” in ultra-wide fields of view

Image Stitching

1. Align the images over each other

 camera pan ↔ translation on cylinder

2. Blend the images together

Assembling the panorama

Stitch pairs together, blend, then crop

Problem: Drift

 Error accumulation

 small (vertical) errors accumulate over time

 apply correction so that sum = 0 (for 360° pan.)

Problem: Drift

Solution

add another copy of first image at the end

this gives a constraint: yn = y1

there are a bunch of ways to solve this problem

 add displacement of (y1 – yn)/(n -1) to each image after the first

 compute a global warp: y’ = y + ax

 run a big optimization problem, incorporating this constraint

 best solution, but more complicated

 known as “bundle adjustment”

(x1,y1)

copy of first

image

(xn,yn)

Full-view (360° spherical)

panoramas

Full-view Panorama

+

+

+

+

Texture Mapped Model

Global alignment

• Register all pairwise overlapping images

• Use a 3D rotation model (one R per image)

• Use direct alignment (patch centers) or feature based

• Infer overlaps based on previous matches (incremental)

• Optionally discover which images overlap other images

using feature selection (RANSAC)

Bundle adjustment formulations

All pairs optimization:

Full bundle adjustment, using 3-D point positions

Bundle adjustment using 3-D ray:

All-pairs 3-D ray formulation:

Projected point 3-D ray from point

Map 2D point i in image j to 2D point in image k

Map 3D point i in to 2D point in image i

3-D ray from point i

3-D ray from points i and j

Confidence / uncertainty of point i in image j

