Image Stitching and Alignment

Multiple Images

» So far, algorithms deal with a single, static image

“ In the real world, a static pattern is a rarity, continuous
motion and change are the rule

“* Human eyes are well-equipped to take advantage of
motion or change in an image sequence

¢ Stitching (Alignment) and Motion

] Stitching has a “global” model — all pixel movement can be
explained by a simple mathematic model (far field, pure rotational,
pure translation)

[2D motion field is a “local” model — pixels by themselves
(similarity in a local neighborhood only)

General Taxonomy

+2» Camera motion and the Scene Is static
[Driving, panorama
J Near field (hard) vs. Far field (easy)

(] General camera motion (hard) vs. special camera motion (e.g.,
rotation only, easier)

] General scene (hard) vs. special scene (planar, easier)

* Object motion and the camera is stationary
. Surveillance
[Background modeling and subtraction

++ Both camera and object are moving
. Sports video, driving, diving, etc.

Alignment

“* Homographies

“* Rotational Panoramas
“ RANSAC

“* Global alignment

“* Warping
* Blending

Motivation: Recognition

Motivation: medical image
registration

Motivation: Mosaics

¢+ Getting the whole picture
(dConsumer camera:; 50 x 35

Motivation: Mosaics

* Getting the whole picture
(dConsumer camera:; 50 x 35
JHuman Vision: 176 x 135

Motivation: Mosaics

* Getting the whole picture
(dConsumer camera:; 50 x 35
JHuman Vision: 176 x 135

Motion models

“* What happens when we take two images with a camera
and try to align them?

« translation?
* rotation?
 scale?
 affine?

* perspective?

Image Warping

» Image filtering: change range of image
< g(x) = h(f(x))

f
N -

“* Image warping: c)ﬁange domain of image
< g(x) = f(h(x))

f

[~

Image Warping

* Image filtering: change range of image
< g(x) = h(f(x))

“* Image warping: change domain of image
“ g(x) = f(h(x))

Parametric (global) warping

“» Examples of parametric warps:

perspective

Image Warping

< Glven a coordinate transform x’ = h(x) and a source image
f(x), how do we compute a transformed image g(x’) =
f(h(x))?

Forward Warping

+ Send each pixel f(x) to its corresponding location x’ = h(x)
In g(x’)

« What if pixel lands “between” two pixels?

Forward Warping

“» Send each pixel f(x) to its corresponding location x’ = h(x)
In g(x’)

« What if pixel lands “between” two pixels?

* Answer: add “contribution” to several pixels,
normalize later (splatting)

h(x)

L. L.

X)

[

.
L

Inverse Warping

“» Get each pixel g(x’) from its corresponding location x’ =
h(x) in f(x)

 What if pixel comes from “between” two pixels?

Inverse warping

] TL(x,Y) :#
y 4 Y

b

X (k) gy

Get each pixel g(x’,y’) from its corresponding location
(x,y) = T1(x",y’) in the first image

Q: what if pixel comes from “between’ two pixels?

A: Interpolate color value from neighbors

— nearest neighbor, bilinear...
Slide from Alyosha Efros, CMU

Bilinear interpolation

Sampling at f(x,y):
(4,5 + 1) (t4+1,7+1)
(z,y)
S
(2, 7) (14 1,7)

Flay) = (1-a)(1=b) flij]

+a(1—b) fli+1,]]
tab L+ 15+ 1)

+(1—a)p Sl j+ 1]

Slide from Alyosha Efros, CMU

Interpolation

¢ Possible interpolation filters:
] nearest neighbor
 bilinear
) bicubic (interpolating)
sinc/FIR

“* Needed to prevent “jaggies”
and “texture crawl”

2D coordinate transformations

+» translation: x’=X+t X =(X,y)
“* rotation: x’=RX+t

< similarity: x’=sRx+t

«» affine: x’=AX+t

“* perspective:x’ = H X X =(x,y,1)

(x 1s @ homogeneous coordinate)

*» These all form a nested group (closed w/ inv.)

Homogeneous Coordinates

+» consistent representation for all linear transform (including
translation)

** can be concatenated & pre-computed

(X,y)—> (wx, wy,w),w =0
(wx,wy,w)— (wx/w,wy/w)

O O o
I I
_ _ X 2
X > d O g | _
| = 8 0 OO
~ | | |

S
O
O
(TRS)

X >N X > X > X > -
| | | | | |

Basic 2D Transformations

¢+ Basic 2D transformations as 3x3 matrices

x| [1 0 t |x x| [s, 0 0]x
y'[=0 1ty y'|=| 0 s, 0
1] |00 1]1] 1, {0 0 1)1
Translate Scale
(X'] [cos® -sin® Of x’ (x| [1 sh, Ofx]|
y'|=lsin® cos® Ofvy y'|={sh, 1 0
1] | 0 0 191 | 1] 0 0 1]1]

Rotate Shear

2D Affine Transformations

s+ Affine transformations are combinations of ...
JLinear transformations, and
JTranslations

+» Parallel lines remain parallel

Projective Transformations

X a b c| x
y'i=ld e f|vy
W) |g h 1 |w]

“* Projective transformations:
J Affine transformations, and
JProjective warps

«» Parallel lines do not necessarily remain parallel

,A
V 5111111311“ Pt DJeLm ©
tr auslatlon
/’y
Emhdean qﬂme

__ X

Fitting an affine transformation

BASMATI

Affine model approximates perspective projection of planar
objects.

Fitting an affine transformation

« Assuming we know the correspondences, how do we get
the transformation?
(Xi’ yl) ®

(Xi: ¥i)
@
O
(@)
O —_— R
@)
@)
o
o

Fitting an affine transformation

« Assuming we know the correspondences, how do we get
the transformation?

%, Vi)
° (X, y})

3 o

O —_— ° R
@)
@)
o
o

Fitting an affine transformation
-
I A JIm, | [A]
Xy, 0 0 1 0fm, X
0 0 x vy, 0 1|m,] y!
i A |t A
t2

- How many matches (correspondence pairs) do we need to
solve for the transformation parameters?

« Once we have solved for the parameters, how do we
compute the coordinates of the corresponding point for

? (Xnew’ ynew)

S J:WHI
|

Panoramas

21185 'S wouy abewl

How to stitch together a panorama?

+s» Basic Procedure

1 Take a sequence of images from the same position
> Rotate the camera about its optical center

JCompute transformation between second image and first
dTransform the second image to overlap with the first

1 Blend the two together to create a mosaic

L (If there are more images, repeat)

4

L)

2 ...but wait, why should this work at all?
JWhat about the 3D geometry of the scene?
JWhy aren’t we using it?

J
> University ol Galiforina -
- e
&l “SEIZ

Panoramas: generating synthetic views

real synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection! ==y

Image reprojection

AN mosaic PP

“+ The mosaic has a natural interpretation in 3D
[The images are reprojected onto a common plane
. The mosaic is formed on this plane
] Mosaic is a synthetic wide-angle camera

e Seitz

Image reprojection

AN mosaic PP

“* The mosaic has a natural interpretation in 3D as a plane

“* This 1s true even if the real scene is not planar as long as
you have the same focal point

e Seitz

In reality

“+ The scene Is not planar

] But if you are shooting panorama against far-away objects (e.g.,
from the south rim of the Grand Canyon against the north rim), the
distance variation can be ignored

(] Panorama works best for far-field scene

“* The rotation is about the person holding the camera, not
the camera’s focal center
1 If the scene is far away, such small deviation does not matter

“ In fact, image stitching works well if you exercise some
caution

“* Why all phones these days have the panorama mode

Homography

“* How to relate two images from the same camera center?
> how to map a pixel from PP1 to PP2?

“ Think of it as a 2D image warp from one image to another.

“* A projective transform is a mapping between any two PPs with
the same center of projection

 rectangle should map to arbitrary quadrilateral
[parallel lines aren’t PP
] but must preserve straight lines

¢ called Homography

-

p’ H p

Homography

To apply a given homography H WX * ko k|| y
« Compute p> = Hp (regular matrix multiply) Wy' * * % Y
W * *x % 1
p’ p

« Convert p’ from homogeneous to image
coordinates

Homography

To compute the homography given pairs of corresponding points in
the images, we need to set up an equation where the parameters
of H are the unknowns...

Number of measurements required

At least as many independent equations as degrees
of freedom required

“* Example:
- o
X hll ’]12 ’]13 X

7\‘ »,(l I.HZX "122 "]23 y

1 | h31 ’]32 ’]33 1

2 independent equations / point
8 degrees of freedom

4x2>8

Solving for homographies
pP=Hp
WX’ a b cix

wy'|=1|d e f ||y
wi| |[g h 1]1

++Can set scale factor i=1. So, there are 8 unknowns.
“*Set up a system of linear equations:
“Ah=Db
“*where vector of unknowns h = [a,b,c,d,e,f,g,h]"
“*Need at least 8 egs, but the more the better...
“*Solve for h. If overconstrained, solve using least-squares:
min||Ah — bH2

“*Work well if i is not close to 0 (not recommended!)

H =

th

h3T

|

Direct Linear Transformation

(DLT)
h'' x.
%= Hx; =0 X =(x, yi,w)" Hx, = h*'x,
T T h®'x.
/ lh3 XI_WII,]Z Xi i
T T
X! xHx, =| wh' x, —x'h* x,
2T all
L n° X —yh" X
B T 1, T 1T 1/ 1kl
0 —WX; YV X, |[h \
wx! 0" —x/x/ [h*|=0
-yxi o xx; 0
Ah=0

Direct Linear Transformation
(DLT)

< Equations are linear in h

Ah=0

* Only 2 out of 3 are linearly independent
(indeed, 2 eq/pt)

0 —w'x! T I
0wl
W, O XX
——V>\/I:'§!T x(?x_T _6' .
- (onWAltopYEAiFdOVAT o

» Holds for any homogeneous
representation, e.g. (X;,y;,1)

Direct Linear Transformation
(DLT)

* Solving for H

size A is

Al
A,

Ah=0
A

3
RS

r 12x9, but rank 8

Trivial solution is h=04" is not interesting

1-D null-space yields solution of mterest
pick for example the one with HhH =1y N

Direct Linear Transformation
(DLT)

+¢» Over-determined solution

Al
AZ
Ah=0
M
No exact solution bﬁ\cause of inexact measurement
i.e. ‘noise”

Find approximate solution
- Additional constraint needed to avoid 0, e.qg. HhH =
- Ah = 0 not possible, so minimize HAhH |||_

DLT algorithm

Objective

Given n=4 2D to 2D point correspondences {x;«<x;’},
determine the 2D homography matrix H such that x;=Hx;

Algorithm

(i) For each correspondence x; <»x; compute A.. Usually
only two first rows needed.

(i) Assemble N 2x9 matrices A, into a single 2Nx9 matrix A
(i) Obtain SVD of A. Solution for h is last column of V
(iv) Determine H from h

changing camera center

% Does it still work? synthetic PP

] Not for near field
‘/Ppl —

~
~

e /

1 False point 2

//WQR\

T~

changing camera center

% Does it still work? synthetic PP

1 For far field ok
‘/F’Pl — >

~
/
~

S

T————g_False point 1 True point

1 False point 2

//WQR\

Planar scene (or far away)

VP rP3

AR [

fq:?g PP2

“* PP3 is a projection plane of both centers of projection, so

we are OK!

> This 1s how big aerial photographs are made

Outliers

» Qutliers can hurt the quality of our parameter
estimates, e.g.,
Jan erroneous pair of matching points from two images

Jan edge point that is noise, or doesn’t belong to the line we
are fitting.

Example: least squares line fitting

“» Assuming all the points that belong to a particular line are
known

Outliers affect least squares fit

Outliers affect least squares fit

B
4
2
0

al

_4

N

-8

-10

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B

RANSAC

“* RANdom Sample Consensus

“* Approach: we want to avoid the impact of outliers, so
let’s look for “inliers”, and use those only.

* Intuition: If an outlier 1s chosen to compute the
current fit, then the resulting line won’t have much
support from rest of the points.

L)

4

RANSAC

RANSAC loop:

Randomly select a seed group of points on which to base
transformation estimate (e.g., a group of matches)

Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute
least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

O
O
O
o ®
O
O ® ®
8
O
Task:
O O
® Estimate best line

Slide credit: Jinxiang Chai, CMU

RANSAC Line Fitting Example

Sample two points

RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of points within
a threshold of line.

RANSAC Line Fitting Example

RANSAC Line Fitting Example

RANSAC Line Fitting Example

How Many Trials?

“* Well, theoretically it is C(n,p) to find all possible p-tuples
“* Very expensive

1-(1-(1-¢)")"

¢ . fraction of bad data

(1 — &) : fraction of good data

(1 - ¢)? :all p samples are good

1-(1- &) :at least one sample is bad
(1-(1-¢)P)™ :got bad data in all m tries

1-(1-(Q1-¢)P)" :got at least one good p set in m tries

How Many Trials (cont.)

“* Make sure the probability is high (e.g. >95%)
“* given p and epsilon, calculate m

°% 10 20 25 30 40 50
% % % % % %
3 3 4 S

4) I 11
6 8 13 23
8 11 22 47
12 17 38 95

o » W NP T
W N NDN P
> W W NDDN
co O 01 W N

Best Practice

+* Randomized selection <+ LS Is most fair,

can completely everyone get an equal
remove outliers say
* “plutocratic” “* “democratic”

“»Results are based ona <+ But can be seriously
small set of features Influenced by bad data

<« Use randomized algorithm to remove outliers

« Use LS for final “polishing” of results (using all
“o000d” data)

< Allow up to 50% outliers theoretically

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

Feature-based alignment outline

Iniversity otiGalii

Tevaa Bar bey

Feature-based alignment outline

« Extract features

Feature-based alignment outline

3)
S UIREA o

0'. 0O

« Extract features
« Compute putative matches

eature-based alignment outline

« Extract features
« Compute putative matches

- Loop:
 Hypothesize transformation T (small group of putative matches
that are related by T)

Feature-based alignment outline

« Extract features
« Compute putative matches

- Loop:
 Hypothesize transformation T (small group of putative matches
that are related by T)

O Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

Extract features
Compute putative matches

Loop:

 Hypothesize transformation T (small group of putative matches
that are related by T)

 Verify transformation (search for other matches consistent with T)

Panoramas

< What if you want a 360° field of view?

\ mosaic Projection Cylinder

Cylindrical panoramas

e Steps
] Project each image onto a cylinder (warp)
] Estimate motion (a pure translation now)
1 Blend
] Optional: project it back (unwarp)
[Output the resulting mosaic

mcmillan.mpeg
mcmillan.mpeg

Cylindrical Panoramas

<+ Map image to cylindrical or spherical coordinates
[need known focal length
 Work only if a single tilt (e.g., camera on tripod)

Image 384x300 f =180 (pixels)

Determining the focal length

Initialize from homography H
(see text or [SzSh’97])

Use camera’s EXIF tags (approx.)
Use a tape measure
Try and error ©

Practical Methods for F

»» Use program jhead
(http://www.sentex.net/~mwandel/[head/)

«* Mac, Windows, and Linux

s+ Sample outputs

File name
File size
File date
Camera make
Camera model
Date/Time
Resoclution
Flash used

CCD Width

Exposure time:

Aperture
Focus Dist.

Metering Mode:

Jpeg process

0A05-153933.7jpg
453023 bytes
2001:08:12 Z1:02:04
Canon

Canon PowerShot S100
2001:08:05 15:39:33
1600 = 1200

¢ No
Focal length :

5. 4mm
5. 23mm
0.100 s
£f/2.8
1.18m
center weight
Raseline

{1/10)

(35mm equivalent:

3 &rmm)

http://www.sentex.net/~mwandel/jhead/

Calculating F

“* With image resolution (width x height), CCD width and f
0 f*(width/CCD width) or 5.4*(1600/5.23) = 1652 (pixels)

< With equivalent f (35mm film is 36mmx24mm)
 (equivalent f)*(width/36) or 36*(1600/36) = 1600 (pixels)

¢ If you don’t have the above (more often than not), guess!
J No zoom f ~ (picture width in pixels)
O 2x zoom f ~ 2 * (picture width in pixels)

Cylindrical projection

P -
- =~

N— -
unit ciylinder

(EEC? gc)

0

unwrapped cylinder

/ (X,Y,z) dMap 3D point (X,Y,Z) onto cylinder

S s o) — 1
(iU,y,Z)— \/7(X,Y,Z)

« Convert to cylindrical coordinates

(sind, h,cosh) = (2,7, 2)

« Convert to cylindrical image coordinates

™

(z,5) = (s0, sh) + (Z¢, Je)
— s defines size of the final image

—

Z cylindrical image

Cylindrical warping

“*Given focal length f and
Image center (X.,Y.)

0 = (xcyl_xc)/f
h = Yyt —Yc)/f
° (X.Y,2) R .
/ 7 = sin6
- R
%i Z = cosé
— TN ~/a
— - r = fx/Z4 xc
y = fY/Z+ ye

Spherical warping

“*Given focal length f and
Image center (X.,Y.)

P SN A

L 8 Ny ©

(xcyl —xc)/ f
(?chl —ye)/f
Sin 6 COS ¢
sin ¢

COS 6 cos ¢
fx/z 4+ xc

JCQ‘/2 Ye

3D rotation

*»*Rotate image before
placing on unrolled sphere

(xcyl —xc)/ f
(ycyl —ye)/f

Sin 6 COS ¢
sin ¢

COS 6 cos ¢
fZ/Z 4+ xc

f§/§ Yc

Radial distortion

¢ Correct for “bending” in wide field of view lenses

A2 3?2
z/(1+ K172 -
7/(1 + k172

— ROT

+ KoT

Fisheye lens

< Extreme “bending” in ultra-wide fields of view

P2 = 324 52

(cos B sin ¢, sin 0 sin ¢, cos @) = s (x, Y, 2)

uations become

1

, | r
r = S¢cosf = s—tan
r

l\lul"%z\z|-g

Yy = sosinf = sZ tan~
r

Image Stitching

1. Align the images over each other
(d camera pan < translation on cylinder

2. Blend the images together

Assembling the panorama

«*Stitch pairs together, blend, then crop

Problem: Drift

¢+ Error accumulation
J small (vertical) errors accumulate over time
1 apply correction so that sum = 0 (for 360° pan.)

Problem: Drift

(X1,¥1)

(Xn:¥n)

'
’:’ SO'UtiOﬂ copy of first
add another copy of first image at the end 'ma9¢

Jthis gives a constraint: y, =Yy,

dthere are a bunch of ways to solve this problem
> add displacement of (y, — y,)/(n -1) to each image after the first
» compute a global warp: y’ =y + ax
> run a big optimization problem, incorporating this constraint

= pest solution, but more complicated
= known as “bundle adjustment”

Full-view (360° spherical)
panoramas

Full-view Panorama

Texture Mapped Model

"

Global alignment

Register all pairwise overlapping images

Use a 3D rotation model (one R per image)

Use direct alignment (patch centers) or feature based
Infer overlaps based on previous matches (incremental)

Optionally discover which images overlap other images
using feature selection (RANSAC)

Bundle adjustment formulations

Confidence / uncertainty of point i in image j
All pairs optimization:

~ (A A 12
Eall—pairs—ED = ZZ Ceﬂj"f-z'k||$-ﬂ.:($z'j; Rj: fj: Ry, f&:) - ?13-1';.:|| : (9.29)
i gk Map 2D point i in image j to 2D point in image k

Full bundle adjustment, using 3-D point positions {z.}

EBA 2D — Z Z ‘:13”3313 Ly, R fj‘) *Arzj ||2 (930}
F Map 3D point | in to 2D point inimage i

Bundle adjustment using 3-D ray:

EEﬂ 3D _ZZC13||$1 ‘BijﬂR fj‘) mi‘-Hz: (931}

3-D ray from pomt I
All-pairs 3-D ray formulatlon.

E"ill—p"tll's b — chijciknmé‘rwﬁ 'n (1.1.,1Rk fk)” . (932}

ray from pomts I andj

Projected point === 3, ~ K;R,x; and x; ~ R'K &, €

