
Image Stitching and Alignment



Multiple Images

 So far, algorithms deal with a single, static image 

 In the real world, a static pattern is a rarity, continuous 

motion and change are the rule

 Human eyes are well-equipped to take advantage of 

motion or change in an image sequence

 Stitching (Alignment) and Motion

 Stitching has a “global” model – all pixel movement can be 

explained by a simple mathematic model (far field, pure rotational, 

pure translation)

 2D motion field is a “local” model – pixels by themselves 

(similarity in a local neighborhood only)



General Taxonomy

 Camera motion and the Scene is static

 Driving, panorama

 Near field (hard) vs. Far field (easy)

 General camera motion (hard) vs. special camera motion (e.g., 

rotation only, easier)

 General scene (hard) vs. special scene (planar, easier)

 Object motion and the camera is stationary

 Surveillance 

 Background modeling and subtraction

 Both camera and object are moving

 Sports video, driving, diving, etc. 



Alignment

 Homographies

 Rotational Panoramas

 RANSAC

 Global alignment

Warping

 Blending



Motivation: Recognition 



Motivation: medical image 

registration



Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚



Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Human Vision: 176˚ x 135˚



Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Human Vision: 176˚ x 135˚

 Panoramic Mosaic        = up to 360 x 180°



Motion models

What happens when we take two images with a camera 

and try to align them?

• translation?

• rotation?

• scale?

• affine?

• perspective?



Image Warping

 image filtering: change range of image

 g(x) = h(f(x))

 image warping: change domain of image

 g(x) = f(h(x))
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Image Warping

 image filtering: change range of image

 g(x) = h(f(x))

 image warping: change domain of image

 g(x) = f(h(x))
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Parametric (global) warping

 Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical



Image Warping

 Given a coordinate transform x’ = h(x) and a source image 

f(x), how do we compute a transformed image g(x’) =

f(h(x))?

f(x) g(x’)
x x’

h(x)



Forward Warping

 Send each pixel f(x) to its corresponding location x’ = h(x) 

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?



Forward Warping

 Send each pixel f(x) to its corresponding location x’ = h(x) 

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels, 

normalize later (splatting)



Inverse Warping

 Get each pixel g(x’) from its corresponding location x’ =

h(x) in f(x)

f(x) g(x’)
x x’

h(x)

• What if pixel comes from “between” two pixels?



f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors

– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU



Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU



Interpolation

 Possible interpolation filters:

 nearest neighbor

 bilinear

 bicubic (interpolating)

 sinc / FIR

 Needed to prevent “jaggies”

and “texture crawl”



2D coordinate transformations

 translation: x’ = x + t x = (x,y)

 rotation: x’ = R x + t

 similarity: x’ = s R x + t

 affine: x’ = A x + t

 perspective:x’  H x x = (x,y,1)

(x is a homogeneous coordinate)

 These all form a nested group (closed w/ inv.)



Homogeneous Coordinates

 consistent representation for all linear transform (including 

translation)

 can be concatenated & pre-computed
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Basic 2D Transformations

 Basic 2D transformations as 3x3 matrices
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2D Affine Transformations

 Affine transformations are combinations of …

Linear transformations, and

Translations

 Parallel lines remain parallel
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Projective Transformations

 Projective transformations:

Affine transformations, and

Projective warps

 Parallel lines do not necessarily remain parallel
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Fitting an affine transformation

Affine  model approximates perspective projection of planar 

objects.



Fitting an affine transformation

• Assuming we know the correspondences, how do we get 

the transformation?
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Fitting an affine transformation

• Assuming we know the correspondences, how do we get 

the transformation?

),( ii yx 
),( ii yx
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Fitting an affine transformation

• How many matches (correspondence pairs) do we need to 

solve for the transformation parameters?

• Once we have solved for the parameters, how do we 

compute the coordinates of the corresponding point for                      

? 
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Panoramas

Obtain a wider angle view by combining multiple images.
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How to stitch together a panorama?

Basic Procedure

Take a sequence of images from the same position

 Rotate the camera about its optical center

Compute transformation between second image and first

Transform the second image to overlap with the first

Blend the two together to create a mosaic

(If there are more images, repeat)

…but wait, why should this work at all?

What about the 3D geometry of the scene?

Why aren’t we using it?

Source: Steve Seitz



Panoramas: generating synthetic views

real

camera
synthetic

camera

Can generate any synthetic camera view

as long as it has the same center of projection!



mosaic PP

Image reprojection

 The mosaic has a natural interpretation in 3D

 The images are reprojected onto a common plane

 The mosaic is formed on this plane

Mosaic is a synthetic wide-angle camera
Source: Steve Seitz



mosaic PP

Image reprojection

 The mosaic has a natural interpretation in 3D as a plane

 This is true even if the real scene is not planar as long as 
you have the same focal point

Source: Steve Seitz



In reality

 The scene is not planar 

 But if you are shooting panorama against far-away objects (e.g., 

from the south rim of the Grand Canyon against the north rim), the 

distance variation can be ignored

 Panorama works best for far-field scene

 The rotation is about the person holding the camera, not 

the camera’s focal center

 If the scene is far away, such small deviation does not matter

 In fact, image stitching works well if you exercise some 

caution

Why all phones these days have the panorama mode



Homography
 How to relate two images from the same camera center?

 how to map a pixel from PP1 to PP2?

 Think of it as a 2D image warp from one image to another.

 A projective transform is a mapping between any two PPs with 

the same center of projection

 rectangle should map to arbitrary quadrilateral 

 parallel lines aren’t

 but must preserve straight lines

 called Homography
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Homography
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To apply a given homography H

• Compute p’ = Hp   (regular matrix multiply)

• Convert p’ from homogeneous to  image 

coordinates



Homography

 11, yx  11, yx 

To compute the homography given pairs of corresponding points in 

the images, we need to set up an equation where the parameters 

of H are the unknowns…

 22 , yx  22 , yx

…

…

 nn yx ,  nn yx  ,



Number of measurements required

At least as many independent equations as degrees 

of freedom required

Example: 

Hxx'






















































11

λ

333231

232221

131211

y

x

hhh

hhh

hhh

y

x

2 independent equations / point

8 degrees of freedom

4x2≥8



Solving for homographies

Can set scale factor i=1. So, there are 8 unknowns.

Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]T

Need at least 8 eqs, but the more the better…

Solve for h. If overconstrained, solve using least-squares: 

Work well if i is not close to 0 (not recommended!)
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Direct Linear Transformation

(DLT)
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Direct Linear Transformation

(DLT)

Equations are linear in h
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Direct Linear Transformation

(DLT)

 Solving for H

0Ah  0h
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Trivial solution is h=09
T is not interesting

1-D null-space yields solution of interest

pick for example the one with 1h 



Direct Linear Transformation

(DLT)

 Over-determined solution

No exact solution because of inexact measurement

i.e. “noise”

0Ah  0h
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- Additional constraint needed to avoid 0, e.g.

- not possible, so minimize 

1h 

Ah0Ah 



DLT algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 

determine the 2D homography matrix H such that xi’=Hxi

Algorithm

(i) For each correspondence xi ↔xi’ compute Ai. Usually 

only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V

(iv) Determine H from h



changing camera center
 Does it still work?

 Not for near field
synthetic PP

PP1

PP2

True point
False point 1

False point 2



changing camera center
 Does it still work?

 For far field ok
synthetic PP

PP1

PP2

True point
False point 1

False point 2



Planar scene (or far away)

 PP3 is a projection plane of both centers of projection, so 

we are OK!

 This is how big aerial photographs are made

PP1

PP3

PP2

Source: Alyosha Efros



Grauman





Outliers

Outliers can hurt the quality of our parameter 

estimates, e.g., 

an erroneous pair of matching points from two images

an edge point that is noise, or doesn’t belong to the line we 

are fitting.

Grauman



Example: least squares line fitting

 Assuming all the points that belong to a particular line are 

known

Grauman



Outliers affect least squares fit



Outliers affect least squares fit



RANSAC

RANdom Sample Consensus

Approach: we want to avoid the impact of outliers, so 

let’s look for “inliers”, and use those only.

Intuition: if an outlier is chosen to compute the 

current fit, then the resulting line won’t have much 

support from rest of the points.



RANSAC

 RANSAC loop:

1. Randomly select a seed group of points on which to base 

transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute 

least-squares estimate of transformation on all of the inliers

 Keep the transformation with the largest number of inliers



RANSAC Line Fitting Example

Task:

Estimate best line

Slide credit: Jinxiang Chai, CMU



RANSAC Line Fitting Example

Sample two points



RANSAC Line Fitting Example

Fit Line



RANSAC Line Fitting Example

Total number of points within 

a threshold of line.



RANSAC Line Fitting Example

Repeat, until get a good result



RANSAC Line Fitting Example

Repeat, until get a good result



RANSAC Line Fitting Example

Repeat, until get a good result



How Many Trials?
Well, theoretically it is C(n,p) to find all possible p-tuples

 Very expensive

 tries inset   good oneleast at got  :))1(1(1

 tries all indata  badgot  :))1(1(

bad is sample oneleast at  :)1(-1

good are samples  all:)1(

data good of fraction:)1(

data bad of fraction:

))1(1(1

mp

m

p

mp

mp

p

p

mp





























How Many Trials (cont.)

Make sure the probability is high (e.g. >95%) 

 given p and epsilon, calculate m

p 5% 10

%

20

%

25

%

30

%

40

%

50

%

1 1 2 2 3 3 4 5

2 2 2 3 4 5 7 11

3 2 3 5 6 8 13 23

4 2 3 6 8 11 22 47

5 3 4 8 12 17 38 95



Best Practice

Randomized selection 

can completely 

remove outliers

“plutocratic” 

Results are based on a 

small set of features

LS is most fair, 

everyone get an equal 

say

“democratic”

But can be seriously 

influenced by bad data

 Use randomized algorithm to remove outliers

 Use LS for final “polishing” of results (using all 

“good” data) 

 Allow up to 50% outliers theoretically



RANSAC example: Translation

Putative matches

Source: Rick Szeliski



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Find “average” translation vector



Feature-based alignment outline

Source: L. Lazebnik



Feature-based alignment outline

• Extract features

Source: L. Lazebnik



Feature-based alignment outline

• Extract features

• Compute putative matches

Source: L. Lazebnik



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches 

that are related by T)

Source: L. Lazebnik



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches 

that are related by T)

 Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches 

that are related by T)

 Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik



Panoramas

What if you want a 360 field of view?

mosaic Projection Cylinder

Szeliski



Cylindrical panoramas

 Steps

 Project each image onto a cylinder (warp)

 Estimate motion (a pure translation now)

 Blend 

 Optional: project it back (unwarp)

 Output the resulting mosaic

mcmillan.mpeg
mcmillan.mpeg


f = 180 (pixels)

Cylindrical Panoramas

Map image to cylindrical or spherical coordinates

 need known focal length

Work only if a single tilt (e.g., camera on tripod)

Image 384x300 f = 380f = 280



Determining the focal length

1. Initialize from homography H

(see text or [SzSh’97])

2. Use camera’s EXIF tags (approx.)

3. Use a tape measure

4. Try and error 

1m
4m



Practical Methods for F

 Use program jhead

(http://www.sentex.net/~mwandel/jhead/)

Mac, Windows, and Linux

 Sample outputs 

http://www.sentex.net/~mwandel/jhead/


Calculating F

With image resolution (width x height), CCD width and f

 f*(width/CCD width) or 5.4*(1600/5.23) = 1652 (pixels)

With equivalent f (35mm film is 36mmx24mm)

 (equivalent f)*(width/36) or 36*(1600/36) = 1600 (pixels)

 If you don’t have the above (more often than not), guess!

 No zoom f ~ (picture width in pixels)

 2x zoom f ~ 2 * (picture width in pixels)



Map 3D point (X,Y,Z) onto cylinder

Cylindrical projection

X

Y

Z

unit cylinder

unwrapped cylinder

• Convert to cylindrical coordinates

cylindrical image

• Convert to cylindrical image coordinates

– s defines size of the final image



Cylindrical warping

Given focal length f and 

image center (xc,yc)

X

Y

Z

(X,Y,Z)

(sin,h,cos)



Spherical warping

Given focal length f and 

image center (xc,yc)

X

Y

Z

(x,y,z)

(sinθcosφ,cosθcosφ,sinφ)

cos φ

φ

cos θ cos φ

sin φ



3D rotation

Rotate image before 

placing on unrolled sphere

(x,y,z)

(sinθcosφ,cosθcosφ,sinφ)

cos φ

φ

cos θ cos φ

sin φ

_    _

_    _

p = R p



Radial distortion

 Correct for “bending” in wide field of view lenses



Fisheye lens

 Extreme “bending” in ultra-wide fields of view



Image Stitching

1. Align the images over each other

 camera pan ↔ translation on cylinder

2. Blend the images together



Assembling the panorama

Stitch pairs together, blend, then crop



Problem:  Drift

 Error accumulation

 small (vertical) errors accumulate over time

 apply correction so that sum = 0 (for 360° pan.)



Problem:  Drift

Solution

add another copy of first image at the end

this gives a constraint:  yn = y1

there are a bunch of ways to solve this problem

 add displacement of (y1 – yn)/(n -1) to each image after the first

 compute a global warp:  y’ = y + ax

 run a big optimization problem, incorporating this constraint

 best solution, but more complicated

 known as “bundle adjustment” 

(x1,y1)

copy of first 

image

(xn,yn)



Full-view (360° spherical) 

panoramas



Full-view Panorama

+

+

+

+



Texture Mapped Model



Global alignment

• Register all pairwise overlapping images

• Use a 3D rotation model (one R per image)

• Use direct alignment (patch centers) or feature based

• Infer overlaps based on previous matches (incremental)

• Optionally discover which images overlap other images 

using feature selection (RANSAC)



Bundle adjustment formulations

All pairs optimization:

Full bundle adjustment, using 3-D point positions 

Bundle adjustment using 3-D ray:

All-pairs 3-D ray formulation:

Projected point 3-D ray from point

Map 2D point i in image j to 2D point in image k

Map 3D point i in to 2D point  in image i

3-D ray from point i

3-D ray from points i and j 

Confidence / uncertainty of point i in image j


