
Image Stitching and Alignment

Multiple Images

 So far, algorithms deal with a single, static image

 In the real world, a static pattern is a rarity, continuous

motion and change are the rule

 Human eyes are well-equipped to take advantage of

motion or change in an image sequence

 Stitching (Alignment) and Motion

 Stitching has a “global” model – all pixel movement can be

explained by a simple mathematic model (far field, pure rotational,

pure translation)

 2D motion field is a “local” model – pixels by themselves

(similarity in a local neighborhood only)

General Taxonomy

 Camera motion and the Scene is static

 Driving, panorama

 Near field (hard) vs. Far field (easy)

 General camera motion (hard) vs. special camera motion (e.g.,

rotation only, easier)

 General scene (hard) vs. special scene (planar, easier)

 Object motion and the camera is stationary

 Surveillance

 Background modeling and subtraction

 Both camera and object are moving

 Sports video, driving, diving, etc.

Alignment

 Homographies

 Rotational Panoramas

 RANSAC

 Global alignment

Warping

 Blending

Motivation: Recognition

Motivation: medical image

registration

Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Human Vision: 176˚ x 135˚

Motivation: Mosaics

 Getting the whole picture

Consumer camera: 50˚ x 35˚

Human Vision: 176˚ x 135˚

 Panoramic Mosaic = up to 360 x 180°

Motion models

What happens when we take two images with a camera

and try to align them?

• translation?

• rotation?

• scale?

• affine?

• perspective?

Image Warping

 image filtering: change range of image

 g(x) = h(f(x))

 image warping: change domain of image

 g(x) = f(h(x))

f

x

h

f

x

f

x

h
f

x

Image Warping

 image filtering: change range of image

 g(x) = h(f(x))

 image warping: change domain of image

 g(x) = f(h(x))

h

h

f

f g

g

Parametric (global) warping

 Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Image Warping

 Given a coordinate transform x’ = h(x) and a source image

f(x), how do we compute a transformed image g(x’) =

f(h(x))?

f(x) g(x’)
x x’

h(x)

Forward Warping

 Send each pixel f(x) to its corresponding location x’ = h(x)

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

Forward Warping

 Send each pixel f(x) to its corresponding location x’ = h(x)

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels,

normalize later (splatting)

Inverse Warping

 Get each pixel g(x’) from its corresponding location x’ =

h(x) in f(x)

f(x) g(x’)
x x’

h(x)

• What if pixel comes from “between” two pixels?

f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors

– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU

Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU

Interpolation

 Possible interpolation filters:

 nearest neighbor

 bilinear

 bicubic (interpolating)

 sinc / FIR

 Needed to prevent “jaggies”

and “texture crawl”

2D coordinate transformations

 translation: x’ = x + t x = (x,y)

 rotation: x’ = R x + t

 similarity: x’ = s R x + t

 affine: x’ = A x + t

 perspective:x’ H x x = (x,y,1)

(x is a homogeneous coordinate)

 These all form a nested group (closed w/ inv.)

Homogeneous Coordinates

 consistent representation for all linear transform (including

translation)

 can be concatenated & pre-computed

(,) (, ,),

(, ,) (/ , /)

x y wx wy w w

wx wy w wx w wy w

0

x

y

T

T

x

y

x

y

x

y

x

y

S

S

x

y

x

y

x

y

'

'

'

'

cos sin

sin cos

'

'

1

1 0

0 1

0 0 1 1

1

0

0

0 0 1 1

1

0 0

0 0

0 0 1 1

x

y TRS

x

y

'

' ()

1 1

Basic 2D Transformations

 Basic 2D transformations as 3x3 matrices

1100

0cossin

0sincos

1

'

'

y

x

y

x

1100

10

01

1

'

'

y

x

t

t

y

x

y

x

1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear

1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

2D Affine Transformations

 Affine transformations are combinations of …

Linear transformations, and

Translations

 Parallel lines remain parallel

w

y
x

fed
cba

w

y
x

100

'
'

Projective Transformations

 Projective transformations:

Affine transformations, and

Projective warps

 Parallel lines do not necessarily remain parallel

w

y
x

ihg

fed
cba

w

y
x

'

'
'

Fitting an affine transformation

Affine model approximates perspective projection of planar

objects.

Fitting an affine transformation

• Assuming we know the correspondences, how do we get

the transformation?

),(ii yx
),(ii yx

2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i

Fitting an affine transformation

• Assuming we know the correspondences, how do we get

the transformation?

),(ii yx
),(ii yx

2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i

i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Fitting an affine transformation

• How many matches (correspondence pairs) do we need to

solve for the transformation parameters?

• Once we have solved for the parameters, how do we

compute the coordinates of the corresponding point for

?

i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

),(newnew yx

Panoramas

Obtain a wider angle view by combining multiple images.

im
a

g
e fro

m
 S

. S
eitz

. . .

How to stitch together a panorama?

Basic Procedure

Take a sequence of images from the same position

 Rotate the camera about its optical center

Compute transformation between second image and first

Transform the second image to overlap with the first

Blend the two together to create a mosaic

(If there are more images, repeat)

…but wait, why should this work at all?

What about the 3D geometry of the scene?

Why aren’t we using it?

Source: Steve Seitz

Panoramas: generating synthetic views

real

camera
synthetic

camera

Can generate any synthetic camera view

as long as it has the same center of projection!

mosaic PP

Image reprojection

 The mosaic has a natural interpretation in 3D

 The images are reprojected onto a common plane

 The mosaic is formed on this plane

Mosaic is a synthetic wide-angle camera
Source: Steve Seitz

mosaic PP

Image reprojection

 The mosaic has a natural interpretation in 3D as a plane

 This is true even if the real scene is not planar as long as
you have the same focal point

Source: Steve Seitz

In reality

 The scene is not planar

 But if you are shooting panorama against far-away objects (e.g.,

from the south rim of the Grand Canyon against the north rim), the

distance variation can be ignored

 Panorama works best for far-field scene

 The rotation is about the person holding the camera, not

the camera’s focal center

 If the scene is far away, such small deviation does not matter

 In fact, image stitching works well if you exercise some

caution

Why all phones these days have the panorama mode

Homography
 How to relate two images from the same camera center?

 how to map a pixel from PP1 to PP2?

 Think of it as a 2D image warp from one image to another.

 A projective transform is a mapping between any two PPs with

the same center of projection

 rectangle should map to arbitrary quadrilateral

 parallel lines aren’t

 but must preserve straight lines

 called Homography

PP2

PP1

1

y
x

w

wy'
wx'

H pp’

Homography

1

y
x

w

wy'
wx'

H pp’

w

yw
w

xw
,

 yx ,

 yx,

To apply a given homography H

• Compute p’ = Hp (regular matrix multiply)

• Convert p’ from homogeneous to image

coordinates

Homography

 11, yx 11, yx

To compute the homography given pairs of corresponding points in

the images, we need to set up an equation where the parameters

of H are the unknowns…

 22 , yx 22 , yx

…

…

 nn yx , nn yx ,

Number of measurements required

At least as many independent equations as degrees

of freedom required

Example:

Hxx'

11

λ

333231

232221

131211

y

x

hhh

hhh

hhh

y

x

2 independent equations / point

8 degrees of freedom

4x2≥8

Solving for homographies

Can set scale factor i=1. So, there are 8 unknowns.

Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]T

Need at least 8 eqs, but the more the better…

Solve for h. If overconstrained, solve using least-squares:

Work well if i is not close to 0 (not recommended!)

1

y

x

ihg

fed

cba

w

wy'

wx'

p’ = Hp

2
min bAh

Direct Linear Transformation

(DLT)

ii Hxx 0Hxx ii

i

i

i

i

xh

xh

xh

Hx
3

2

1

T

T

T

iiii

iiii

iiii

ii

yx

xw

wy

xhxh

xhxh

xhxh

Hxx
12

31

23

TT

TT

TT

0

h

h

h

0xx

x0x

xx0

3

2

1

TTT

TTT

TTT

iiii

iiii

iiii

xy

xw

yw

 Tiiii wyx ,,x

0hA i

𝐻 =
ℎ1𝑇

ℎ2𝑇

ℎ3𝑇

Direct Linear Transformation

(DLT)

Equations are linear in h

0

h

h

h

0xx

x0x

xx0

3

2

1

TTT

TTT

TTT

iiii

iiii

iiii

xy

xw

yw

0AAA 321
iiiiii wyx

0hA i

• Only 2 out of 3 are linearly independent

(indeed, 2 eq/pt)

0

h

h

h

x0x

xx0

3

2

1

TTT

TTT

iiii

iiii

xw

yw

(only drop third row if wi’≠0)

• Holds for any homogeneous

representation, e.g. (xi’,yi’,1)

Direct Linear Transformation

(DLT)

 Solving for H

0Ah 0h

A

A

A

A

4

3

2

1

size A is 8x9 or 12x9, but rank 8

Trivial solution is h=09
T is not interesting

1-D null-space yields solution of interest

pick for example the one with 1h

Direct Linear Transformation

(DLT)

 Over-determined solution

No exact solution because of inexact measurement

i.e. “noise”

0Ah 0h

A

A

A

n

2

1

Find approximate solution

- Additional constraint needed to avoid 0, e.g.

- not possible, so minimize

1h

Ah0Ah

DLT algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’},

determine the 2D homography matrix H such that xi’=Hxi

Algorithm

(i) For each correspondence xi ↔xi’ compute Ai. Usually

only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V

(iv) Determine H from h

changing camera center
 Does it still work?

 Not for near field
synthetic PP

PP1

PP2

True point
False point 1

False point 2

changing camera center
 Does it still work?

 For far field ok
synthetic PP

PP1

PP2

True point
False point 1

False point 2

Planar scene (or far away)

 PP3 is a projection plane of both centers of projection, so

we are OK!

 This is how big aerial photographs are made

PP1

PP3

PP2

Source: Alyosha Efros

Grauman

Outliers

Outliers can hurt the quality of our parameter

estimates, e.g.,

an erroneous pair of matching points from two images

an edge point that is noise, or doesn’t belong to the line we

are fitting.

Grauman

Example: least squares line fitting

 Assuming all the points that belong to a particular line are

known

Grauman

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

RANdom Sample Consensus

Approach: we want to avoid the impact of outliers, so

let’s look for “inliers”, and use those only.

Intuition: if an outlier is chosen to compute the

current fit, then the resulting line won’t have much

support from rest of the points.

RANSAC

 RANSAC loop:

1. Randomly select a seed group of points on which to base

transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-compute

least-squares estimate of transformation on all of the inliers

 Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

Task:

Estimate best line

Slide credit: Jinxiang Chai, CMU

RANSAC Line Fitting Example

Sample two points

RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of points within

a threshold of line.

RANSAC Line Fitting Example

Repeat, until get a good result

RANSAC Line Fitting Example

Repeat, until get a good result

RANSAC Line Fitting Example

Repeat, until get a good result

How Many Trials?
Well, theoretically it is C(n,p) to find all possible p-tuples

 Very expensive

 tries inset good oneleast at got :))1(1(1

 tries all indata badgot :))1(1(

bad is sample oneleast at :)1(-1

good are samples all:)1(

data good of fraction:)1(

data bad of fraction:

))1(1(1

mp

m

p

mp

mp

p

p

mp

How Many Trials (cont.)

Make sure the probability is high (e.g. >95%)

 given p and epsilon, calculate m

p 5% 10

%

20

%

25

%

30

%

40

%

50

%

1 1 2 2 3 3 4 5

2 2 2 3 4 5 7 11

3 2 3 5 6 8 13 23

4 2 3 6 8 11 22 47

5 3 4 8 12 17 38 95

Best Practice

Randomized selection

can completely

remove outliers

“plutocratic”

Results are based on a

small set of features

LS is most fair,

everyone get an equal

say

“democratic”

But can be seriously

influenced by bad data

 Use randomized algorithm to remove outliers

 Use LS for final “polishing” of results (using all

“good” data)

 Allow up to 50% outliers theoretically

RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector

Feature-based alignment outline

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches

that are related by T)

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches

that are related by T)

 Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

 Hypothesize transformation T (small group of putative matches

that are related by T)

 Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

Panoramas

What if you want a 360 field of view?

mosaic Projection Cylinder

Szeliski

Cylindrical panoramas

 Steps

 Project each image onto a cylinder (warp)

 Estimate motion (a pure translation now)

 Blend

 Optional: project it back (unwarp)

 Output the resulting mosaic

mcmillan.mpeg
mcmillan.mpeg

f = 180 (pixels)

Cylindrical Panoramas

Map image to cylindrical or spherical coordinates

 need known focal length

Work only if a single tilt (e.g., camera on tripod)

Image 384x300 f = 380f = 280

Determining the focal length

1. Initialize from homography H

(see text or [SzSh’97])

2. Use camera’s EXIF tags (approx.)

3. Use a tape measure

4. Try and error

1m
4m

Practical Methods for F

 Use program jhead

(http://www.sentex.net/~mwandel/jhead/)

Mac, Windows, and Linux

 Sample outputs

http://www.sentex.net/~mwandel/jhead/

Calculating F

With image resolution (width x height), CCD width and f

 f*(width/CCD width) or 5.4*(1600/5.23) = 1652 (pixels)

With equivalent f (35mm film is 36mmx24mm)

 (equivalent f)*(width/36) or 36*(1600/36) = 1600 (pixels)

 If you don’t have the above (more often than not), guess!

 No zoom f ~ (picture width in pixels)

 2x zoom f ~ 2 * (picture width in pixels)

Map 3D point (X,Y,Z) onto cylinder

Cylindrical projection

X

Y

Z

unit cylinder

unwrapped cylinder

• Convert to cylindrical coordinates

cylindrical image

• Convert to cylindrical image coordinates

– s defines size of the final image

Cylindrical warping

Given focal length f and

image center (xc,yc)

X

Y

Z

(X,Y,Z)

(sin,h,cos)

Spherical warping

Given focal length f and

image center (xc,yc)

X

Y

Z

(x,y,z)

(sinθcosφ,cosθcosφ,sinφ)

cos φ

φ

cos θ cos φ

sin φ

3D rotation

Rotate image before

placing on unrolled sphere

(x,y,z)

(sinθcosφ,cosθcosφ,sinφ)

cos φ

φ

cos θ cos φ

sin φ

_ _

_ _

p = R p

Radial distortion

 Correct for “bending” in wide field of view lenses

Fisheye lens

 Extreme “bending” in ultra-wide fields of view

Image Stitching

1. Align the images over each other

 camera pan ↔ translation on cylinder

2. Blend the images together

Assembling the panorama

Stitch pairs together, blend, then crop

Problem: Drift

 Error accumulation

 small (vertical) errors accumulate over time

 apply correction so that sum = 0 (for 360° pan.)

Problem: Drift

Solution

add another copy of first image at the end

this gives a constraint: yn = y1

there are a bunch of ways to solve this problem

 add displacement of (y1 – yn)/(n -1) to each image after the first

 compute a global warp: y’ = y + ax

 run a big optimization problem, incorporating this constraint

 best solution, but more complicated

 known as “bundle adjustment”

(x1,y1)

copy of first

image

(xn,yn)

Full-view (360° spherical)

panoramas

Full-view Panorama

+

+

+

+

Texture Mapped Model

Global alignment

• Register all pairwise overlapping images

• Use a 3D rotation model (one R per image)

• Use direct alignment (patch centers) or feature based

• Infer overlaps based on previous matches (incremental)

• Optionally discover which images overlap other images

using feature selection (RANSAC)

Bundle adjustment formulations

All pairs optimization:

Full bundle adjustment, using 3-D point positions

Bundle adjustment using 3-D ray:

All-pairs 3-D ray formulation:

Projected point 3-D ray from point

Map 2D point i in image j to 2D point in image k

Map 3D point i in to 2D point in image i

3-D ray from point i

3-D ray from points i and j

Confidence / uncertainty of point i in image j

