Image Stitching and Alignment

Multiple Images

* So far, algorithms deal with a single, static image
* In the real world, a static pattern is a rarity, continuous motion and change are the rule
* Human eyes are well-equipped to take advantage of motion or change in an image sequence
* Stitching (Alignment) and Motion
\square Stitching has a "global" model - all pixel movement can be explained by a simple mathematic model (far field, pure rotational, pure translation)
$\square 2 \mathrm{D}$ motion field is a "local" model - pixels by themselves (similarity in a local neighborhood only)

General Taxonomy

Camera motion and the Scene is static
\square Driving, panorama
\square Near field (hard) vs. Far field (easy)
\square General camera motion (hard) vs. special camera motion (e.g., rotation only, easier)
\square General scene (hard) vs. special scene (planar, easier)

* Object motion and the camera is stationary
\square Surveillance
\square Background modeling and subtraction
* Both camera and object are moving
\square Sports video, driving, diving, etc.

Alignment

* Homographies
* Rotational Panoramas
* RANSAC
* Global alignment
* Warping
* Blending

(a)

Motivation: Recognition

Motivation: medical image
registration

Motivation: Mosaics

* Getting the whole picture
\square Consumer camera: $50^{\circ} \times 35^{\circ}$

Motivation: Mosaics

* Getting the whole picture
\square Consumer camera: $50^{\circ} \times 35^{\circ}$
\square Human Vision: $176^{\circ} \times 135^{\circ}$

Motivation: Mosaics

* Getting the whole picture
\square Consumer camera: $50^{\circ} \times 35^{\circ}$
\square Human Vision: $176^{\circ} \times 135^{\circ}$

Motion models

* What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- perspective?

Image Warping

* image filtering: change range of image

$$
g(x)=h(f(x))
$$

* image warping: change domain of image

$$
g(x)=f(h(x))
$$

Image Warping

image filtering: change range of image

$$
g(x)=h(f(x))
$$

* image warping: change domain of image

Parametric (global) warping

* Examples of parametric warps:

Image Warping

Given a coordinate transform $\boldsymbol{x} \boldsymbol{=} \boldsymbol{h}(\boldsymbol{x})$ and a source image $\boldsymbol{f}(\boldsymbol{x})$, how do we compute a transformed image $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)=$ $f(\boldsymbol{h}(\boldsymbol{x}))$?

Forward Warping

- Send each pixel $\boldsymbol{f}(\boldsymbol{x})$ to its corresponding location $\boldsymbol{x}=\boldsymbol{h}(\boldsymbol{x})$ in $g\left(x^{\prime}\right)$
- What if pixel lands "between" two pixels?

Forward Warping

* Send each pixel $\boldsymbol{f}(\boldsymbol{x})$ to its corresponding location $\boldsymbol{x}=\boldsymbol{h}(\boldsymbol{x})$ in $g\left(x^{\prime}\right)$
- What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse Warping

* Get each pixel $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$ from its corresponding location \boldsymbol{x} ' $=$ $\boldsymbol{h}(\boldsymbol{x})$ in $\boldsymbol{f}(\boldsymbol{x})$
- What if pixel comes from "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q : what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear...

Bilinear interpolation

Sampling at $f(x, y)$:

$$
\begin{array}{rll}
f(x, y)=(1-a)(1-b) & f[i, j] \\
& +a(1-b) & f[i+1, j] \\
\quad+a b & f[i+1, j+1] \\
+(1-a) b & f[i, j+1]
\end{array}
$$

Interpolation

* Possible interpolation filters:
\square nearest neighbor
\square bilinear
\square bicubic (interpolating)
\square sinc / FIR
* Needed to prevent "jaggies" and "texture crawl"

$2 D$ coordinate transformations

* translation:

$$
\begin{aligned}
& x^{\prime}=x+t \\
& x^{\prime}=R x+t \\
& x^{\prime}=s R x+t \\
& x^{\prime}=A x+t
\end{aligned}
$$

$$
\boldsymbol{x}=(x, y)
$$

rotation:
perspective: $\underline{x}^{\boldsymbol{\prime}} \cong \boldsymbol{H} \underline{\boldsymbol{x}}$

$$
\underline{\boldsymbol{x}}=(x, y, 1)
$$

(\underline{x} is a homogeneous coordinate)
These all form a nested group (closed w/ inv.)

Homogeneous Coordinates

consistent representation for all linear transform (including translation)

* can be concatenated \& pre-computed

$$
\begin{gathered}
(x, y) \rightarrow \\
(w x, w y, w) \rightarrow \quad(w x / w, w y / w)
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & T_{x} \\
0 & 1 & T_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=(T R S)\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{aligned}
$$

Basic 2D Transformations

* Basic 2D transformations as 3x3 matrices

$$
\left.\begin{array}{cc}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
0 \\
0
\end{array}\right]} & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}^{\prime} \\
1
\end{array}\right] \quad\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array} { l }
{ \boldsymbol { x } } \\
{ 0 } \\
{ s _ { y } }
\end{array} 0 0 [\begin{array} { l }
{ \boldsymbol { y } } \\
{ 0 }
\end{array} 0 0 1 1] \left[\begin{array}{l}
\text { Translate }
\end{array}\right.\right.
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\text { Rotate }
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \boldsymbol{s} \boldsymbol{h}_{\boldsymbol{x}} & 0 \\
\boldsymbol{h}_{\boldsymbol{y}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Shear }
\end{gathered}
$$

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

* Affine transformations are combinations of ...
\square Linear transformations, and
\square Translations
* Parallel lines remain parallel

Projective Transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

* Projective transformations:
\square Affine transformations, and
\square Projective warps
* Parallel lines do not necessarily remain parallel

Fitting an affine transformation

Affine model approximates perspective projection of planar objects.

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]
$$

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?
$\left(x_{i}, y_{i}\right) \bullet$

$\left[\begin{array}{l}x_{i}^{\prime} \\ y_{i}^{\prime}\end{array}\right]=\left[\begin{array}{ll}m_{1} & m_{2} \\ m_{3} & m_{4}\end{array}\right]\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]+\left[\begin{array}{l}t_{1} \\ t_{2}\end{array}\right]$
\wedge

Fitting an affine transformation

$$
\left[\begin{array}{cccccc}
& & \Lambda & & & \\
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& & \Lambda & & &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
\Lambda \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\Lambda
\end{array}\right]
$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for ? $\left(x_{\text {new }}, y_{\text {new }}\right)$

Panoramas

Obtain a wider angle view by combining multiple images.

How to stitch together a panorama?

* Basic Procedure
\square Take a sequence of images from the same position
> Rotate the camera about its optical center
\square Compute transformation between second image and first
DTransform the second image to overlap with the first
\square Blend the two together to create a mosaic
\square (If there are more images, repeat)
...but wait, why should this work at all?
\square What about the 3D geometry of the scene?
\square Why aren't we using it?

Panoramas: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

The mosaic has a natural interpretation in 3D
\square The images are reprojected onto a common plane
\square The mosaic is formed on this plane
\square Mosaic is a synthetic wide-angle camera

Image reprojection

The mosaic has a natural interpretation in 3D as a plane This is true even if the real scene is not planar as long as you have the same focal point

In reality

*The scene is not planar
\square But if you are shooting panorama against far-away objects (e.g., from the south rim of the Grand Canyon against the north rim), the distance variation can be ignored
\square Panorama works best for far-field scene

* The rotation is about the person holding the camera, not the camera's focal center
\square If the scene is far away, such small deviation does not matter
* In fact, image stitching works well if you exercise some caution
* Why all phones these days have the panorama mode

Homography

* How to relate two images from the same camera center?
> how to map a pixel from PP1 to PP2?
* Think of it as a 2D image warp from one image to another.
* A projective transform is a mapping between any two PPs with the same center of projection
\square rectangle should map to arbitrary quadrilateral
\square parallel lines aren't
\square but must preserve straight lines
called Homography

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
l
\end{array}\right]} \\
\mathbf{H} & \mathbf{p}
\end{array}\right.
$$

Homography

To apply a given homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathbf{H p}$ (regular matrix multiply)
- Convert \mathbf{p} ' from homogeneous to image coordinates

Homography

To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of \mathbf{H} are the unknowns...

Number of measurements required

* At least as many independent equations as degrees of freedom required
* Example:

$$
\lambda\left[\begin{array}{c}
x^{\prime} \\
\ddot{\mathbf{X}}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
h_{11} & h_{12} & h_{13} \\
\mathbf{H}_{2} \mathbf{X} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

2 independent equations / point 8 degrees of freedom
$4 \times 2 \geq 8$

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Can set scale factor $i=1$. So, there are 8 unknowns.
*Set up a system of linear equations:

$$
A h=b
$$

*where vector of unknowns $h=[a, b, c, d, e, f, g, h]^{T}$
*Need at least 8 eqs, but the more the better...
Solve for h. If overconstrained, solve using least-squares:

$$
\min \|A h-b\|^{2}
$$

Work well if i is not close to 0 (not recommended!)

Direct Linear Transformation (DLT)

$$
\begin{aligned}
& H=\left|\begin{array}{l}
h^{1 T} \\
h^{2 T} \\
h^{3 T}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0^{\top} & -w_{i}^{\prime} \mathrm{x}_{i}^{\top} & y_{i}^{\prime} \mathrm{x}_{i}^{\top} \\
w_{i}^{\prime} \mathrm{x}_{i}^{\top} & 0^{\top} & -x_{i}^{\prime} \mathrm{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathrm{x}_{i}^{\top} & x_{i}^{\prime} \mathrm{x}_{i}^{\top} & 0^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathrm{h}^{1} \\
\mathrm{~h}^{2} \\
\mathrm{~h}^{3}
\end{array}\right)=0} \\
& \mathrm{~A}_{i} \mathrm{~h}=0
\end{aligned}
$$

Direct Linear Transformation

(DLT)

*Equations are linear in h

$$
\mathrm{A}_{i} \mathrm{~h}=0
$$

- Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)
- Holds for any homogeneous representation, e.g. $\left(x_{i}^{\prime}, y_{i}^{\prime}, 1\right)$

Direct Linear Transformation (DLT)

* Solving for H

$$
\text { size } A \text { is }\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
8 \times 9_{4} \\
A_{4}
\end{array}\right]=0
$$

Trivial solution is $\mathrm{h}=0_{9}{ }^{\top}$ is not interesting
1-D null-space yields solution of interest pick for example the one with $\|\mathrm{h}\|=1 \mathrm{O}$

Direct Linear Transformation (DLT)

Over-determined solution

Find approximate solution

- Additional constraint needed to avoid 0, e.g. $\|\mathrm{h}\|=1$
- $\mathrm{Ah}=0$ not possible, so minimize $\|\mathrm{Ah}\|$

DLT algorithm

Objective

Given $n \geq 42 D$ to 2D point correspondences $\left\{x_{i} \leftrightarrow x_{i}{ }^{\prime}\right\}$, determine the 2D homography matrix H such that $\mathrm{x}_{\mathrm{i}}{ }^{\prime}=\mathrm{H} \mathrm{x}_{\mathrm{i}}$
Algorithm
(i) For each correspondence $x_{i} \leftrightarrow x_{i}^{\prime}$ compute A_{i}. Usually only two first rows needed.
(ii) Assemble $n 2 \times 9$ matrices A_{i} into a single $2 n \times 9$ matrix A
(iii) Obtain SVD of A. Solution for h is last column of V
(iv) Determine H from h

changing camera center

* Does it still work?

changing camera center

. Does it still work?

Planar scene (or far away)

- PP3 is a projection plane of both centers of projection, so we are OK!
* This is how big aerial photographs are made

Source: Alyosha Efros

Outliers

* Outliers can hurt the quality of our parameter estimates, e.g.,
\square an erroneous pair of matching points from two images
\square an edge point that is noise, or doesn't belong to the line we are fitting.

Example: least squares line fitting

* Assuming all the points that belong to a particular line are known

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

*RANdom Sample Consensus

* Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
* Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC

- RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

RANSAC Line Fitting Example

Sample two points
-

RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of points within a threshold of line.

RANSAC Line Fitting Example

Repeat, until get a good result -

RANSAC Line Fitting Example

RANSAC Line Fitting Example

How Many Trials?

* Well, theoretically it is $C(n, p)$ to find all possible p-tuples * Very expensive
$1-\left(1-(1-\varepsilon)^{p}\right)^{m}$
ε : fraction of bad data
($1-\varepsilon$): fraction of good data
$(1-\varepsilon)^{p}$: all p samples are good
$1-(1-\varepsilon)^{p}$: at least one sample is bad
$\left(1-(1-\varepsilon)^{p}\right)^{m}$: got bad data in all m tries
$1-\left(1-(1-\varepsilon)^{p}\right)^{m}$: got at least one good p set in m tries

How Many Trials (cont.)

* Make sure the probability is high (e.g. >95\%)
given p and epsilon, calculate m

p	5%	10	20	25	30	40	50
		$\%$	$\%$	$\%$	$\%$	$\%$	$\%$
1	1	2	2	3	3	4	5
2	2	2	3	4	5	7	11
3	2	3	5	6	8	13	23
4	2	3	6	8	11	22	47
5	3	4	8	12	17	38	95

Best Practice

* Randomized selection can completely remove outliers
*"plutocratic"
* Results are based on a small set of features
*S is most fair, everyone get an equal say
" "democratic"
* But can be seriously influenced by bad data
* Use randomized algorithm to remove outliers
* Use LS for final "polishing" of results (using all "good" data)
* Allow up to 50\% outliers theoretically

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

Feature-based alignment outline

Feature-based alignment outline

- Extract features

Feature-based alignment outline

- Extract features
- Compute putative matches

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
\square Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
\square Hypothesize transformation T (small group of putative matches that are related by T)
\square Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
\square Hypothesize transformation T (small group of putative matches that are related by T)
\square Verify transformation (search for other matches consistent with T)

Panoramas

What if you want a 360° field of view?

Cylindrical panoramas

* Steps

\square Project each image onto a cylinder (warp)
\square Estimate motion (a pure translation now)
\square Blend
\square Optional: project it back (unwarp)
\square Output the resulting mosaic

Cylindrical Panoramas

* Map image to cylindrical or spherical coordinates
\square need known focal length
\square Work only if a single tilt (e.g., camera on tripod)

Image 384×300
$\mathrm{f}=180$ (pixels)
$\mathrm{f}=\mathbf{2 8 0}$

Determining the focal length

1. Initialize from homography \boldsymbol{H} (see text or [SzSh'97])
2. Use camera's EXIF tags (approx.)
3. Use a tape measure
4. Try and error \odot

Practical Methods for F

Use program jhead (http://www.sentex.net/~mwandel/jhead/)

* Mac, Windows, and Linux
* Sample outputs

```
File name : 0805-153933.jpg
File size : 463023 bytes
File date : 2001:08:12 21:02:04
Camera make : Canon
Camera model : Canon PowerShot S100
Date/Time : 2001:08:05 15:39:33
Resolution : 1600 x 1200
Flash used : No
Focal length : 5.4mm (35mm equivalent: 36mm)
CCD Width : 5.23mm
Exposure time: 0.100 s (1/10)
Aperture : f/2.8
Focus Dist. : 1.18m
Metering Mode: center weight
Jpeg process : Baseline
```


Calculating F

* With image resolution (width x height), CCD width and f
$\square \mathrm{f}^{*}$ (width/CCD width) or $5.4^{*}(1600 / 5.23)=1652$ (pixels)
* With equivalent f (35 mm film is 36 mmx 24 mm)
\square (equivalent f) $*($ width $/ 36$) or $36 *(1600 / 36)=1600$ (pixels)
* If you don't have the above (more often than not), guess!
\square No zoom $\mathrm{f} \sim$ (picture width in pixels)
$\square 2 \mathrm{x}$ zoom $\mathrm{f} \sim 2$ (picture width in pixels)

Cylindrical projection

Cylindrical warping

*Given focal length f and image center $\left(x_{c}, y_{c}\right)$

$$
\begin{aligned}
\theta & =\left(x_{c y l}-x_{c}\right) / f \\
h & =\left(y_{c y l}-y_{c}\right) / f \\
\widehat{x} & =\sin \theta \\
\widehat{y} & =h \\
\widehat{z} & =\cos \theta \\
x & =f \hat{x} / \widehat{z}+x_{c} \\
y & =f \widehat{y} / \widehat{z}+y_{c}
\end{aligned}
$$

Spherical warping

*Given focal length f and image center $\left(x_{c}, y_{c}\right)$

$$
\begin{aligned}
\theta & =\left(x_{c y l}-x_{c}\right) / f \\
\varphi & =\left(y_{c y l}-y_{c}\right) / f \\
\widehat{x} & =\sin \theta \cos \varphi \\
\widehat{y} & =\sin \varphi \\
\widehat{z} & =\cos \theta \cos \varphi \\
x & =f \hat{x} / \widehat{z}+x_{c} \\
y & =f \widehat{y} / \hat{z}+y_{c}
\end{aligned}
$$

$3 D$ rotation

*Rotate image before placing on unrolled sphere

Radial distortion

* Correct for "bending" in wide field of view lenses

$$
\begin{aligned}
\hat{r}^{2} & =\widehat{x}^{2}+\widehat{y}^{2} \\
\widehat{x}^{\prime} & =\widehat{x} /\left(1+\kappa_{1} \hat{r}^{2}+\kappa_{2} \hat{r}^{4}\right) \\
\widehat{y}^{\prime} & =\widehat{y} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
x & =f \widehat{x}^{\prime} / \hat{z}+x_{c} \\
y & =f \widehat{y}^{\prime} / \hat{z}+y_{c}
\end{aligned}
$$

Fisheye lens

* Extreme "bending" in ultra-wide fields of view

$\widehat{r}^{2}=\widehat{x}^{2}+\widehat{y}^{2}$
$(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)=s(x, y, z)$
uations become

$$
\begin{aligned}
x^{\prime} & =s \phi \cos \theta=s \frac{x}{r} \tan ^{-1} \frac{r}{z} \\
y^{\prime} & =s \phi \sin \theta=s \frac{y}{r} \tan ^{-1} \frac{r}{z}
\end{aligned}
$$

Image Stitching

1. Align the images over each other
\square camera pan \leftrightarrow translation on cylinder
2. Blend the images together

Assembling the panorama

*Stitch pairs together, blend, then crop

Problem: Drift

* Error accumulation
\square small (vertical) errors accumulate over time
\square apply correction so that sum $=0$ (for 360° pan.)

Problem: Drift

\square add another copy of first image at the end image
\square this gives a constraint: $\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{1}$
\square there are a bunch of ways to solve this problem
$>$ add displacement of $\left(\mathrm{y}_{1}-\mathrm{y}_{\mathrm{n}}\right) /(\mathrm{n}-1)$ to each image after the first
$>$ compute a global warp: $y^{\prime}=y+a x$
$>$ run a big optimization problem, incorporating this constraint

- best solution, but more complicated
- known as "bundle adjustment"

Full-view (360 spherical) panoramas

Full-view Panorama

Texture Mapped Model

Global alignment

- Register all pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- Infer overlaps based on previous matches (incremental)
- Optionally discover which images overlap other images using feature selection (RANSAC)

Bundle adjustment formulations

All pairs optimization:
$E_{\text {all-pairs-2D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\boldsymbol{x}}_{i k}\left(\hat{\boldsymbol{x}}_{i j} ; \boldsymbol{R}_{j}, f_{j}, \boldsymbol{R}_{\boldsymbol{k}}, f_{k}\right)-\hat{\boldsymbol{x}}_{i k}\right\|^{2}$,
Map 2D point in in imagej to 2D point in image k k
Full bundle adjustment, using 3-D point positions $\quad\left\{\boldsymbol{x}_{i}\right\}$

$$
\begin{equation*}
E_{\mathrm{BA}-2 \mathrm{D}}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\boldsymbol{x}}_{i j}\left(\boldsymbol{x}_{i} ; \boldsymbol{R}_{j}, f_{j}\right)-\hat{\boldsymbol{x}}_{i j}\right\|^{2}, \tag{9.30}
\end{equation*}
$$

Bundle adjustment using 3-D ray:

$$
\begin{equation*}
\left.E_{\mathrm{BA}-3 \mathrm{D}}=\sum_{i} \sum_{j} c_{i j} \| \tilde{x}_{\substack{ \\3-\text { D ray from point } i}} \hat{\boldsymbol{x}}_{i j} ; \boldsymbol{R}_{j}, f_{j}\right)-\boldsymbol{x}_{i} \|^{2}, \tag{9.31}
\end{equation*}
$$

All-pairs 3-D ray formulation:
$E_{\text {all-pairs-3D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\boldsymbol{x}}_{i}\left(\hat{\boldsymbol{x}}_{3 i} ; \boldsymbol{R}_{j}, f_{j}\right)-\tilde{\boldsymbol{x}}_{i}\left(\hat{\boldsymbol{x}}_{i k} ; \boldsymbol{R}_{k}, f_{k}\right)\right\|^{2}$.

